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F-35000, France
bLaboratory of Image Science and Technology, Department of Computer Science and

Engineering, Southeast University, 210096, Nanjing, China
cCRIBS, Laboratoire International Associé, Inserm, Université de Rennes 1, France,
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Abstract

This paper deals with a T2 MRI prostate segmentation method. We assume
to have an initial surface mesh obtained interactively or after a first rough
segmentation. The surface of the prostate is then searched within the initial
mesh neighborhood using the Optimal Surface Detection algorithm (OSD).
This algorithm is based on the construction of a directed graph from the
information obtained around the initial mesh. The optimal surface is then
obtained by a graph cut. Three different cost functions for the graph have
been explored, one based on the local gradient, another on a statistical model
of shape and a third on a model of gradient profile. The parameters of this
method have been tuned on 33 different T2 MRI volumes.

Keywords: Prostate, surface segmentation, T2 MRI

1. Introduction

The segmentation of the prostate surface in T2 MRI is a difficult task
because several prostatic zones are not homogeneous and its surface has got
little information (hyposignal of the capsule) with gray level values close to
those of the neighboring organs surface (bladder and rectum). In this paper
we will adapt a method previously developed for the semiautomated prostate
segmentation on transrectal ultrasound images to the T2 MRI case [1]. This
method uses the Optimal Surface Detection (OSD) [2] to refine the prostate
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surface segmentation in the neighborhood of a first approximate surface ob-
tained interactively or after a first rough segmentation. This paper will deal
with the adaptation and the tuning of the OSD in the T2 MRI context. Two
attempts to introduce statistical shape information will also be presented.

2. Material et methods

2.1. Optimal Surface Detection - OSD

As an initial stage we assume to have a first approximative prostate sur-
face mesh. This initial mesh can be defined semi-automatically (e.g. an
ellipsoid adjusted on 6 initial points on the boundary of the prostate volume
-apex, base and 4 points within the central axial plane- defined interactively
by a radiologist [1]) or after a first more automated rough segmentation.

The principle of the OSD algorithm is to consider the segmentation
problem as the computation of a minimum s-t cut in an oriented weighted
graph [2]. The graph is built as follows. Each vertex i of the initial mesh
serves as a graph node. From each vertex i a column of nodes is created along
the surface normal Ni and distributed on both side of the surface (Fig.1).
The search distances inside and outside the surface are set respectively to
InDi and OutDi. Two auxiliary nodes s and t (source and sink respectively
in Boykov’s terminology [3]) will allow the volume segmentation into two
classes ”inside” and ”outside” of the surface.

These nodes are connected by links. The weights of the links will be
used to encode different information (local image-based surface energy, shape
constraints, gradient profile, ...). Several kind of links will be defined:

1) Intra-column links of infinite weights connect together two adjacent
nodes of a same column from outside to inside. This construction insures
that the surface intersects each column on only one of its nodes.

2) Inter-columns links of infinite weights will be used as a regularity con-
straint. One node Ni,c of column i and position c on the column is connected
to the node Nj,max(0,c−∆i,j) of column j, with ∆i,j a smoothness constraint
(Fig.1). The purpose of this constraint is to ensure that a surface can only
move from distance less than ∆ from one column to another. ∆ will be
adapted according to the distance between two neighbor vertexes pi and pj
by ∆i,j = ⌊δ ‖pi − pj‖⌋ with δ a constant.

3) The surface local energy is encoded as follows. In a first step a cost
function C based on local image features and/or shape probability and/or
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some gradient profile model is defined. This function is then used to assign
a weight wi,c to each node (with c = 0 the lowest node in a column):

wi,c =

{

Ci,c, if c = 0
Ci,c − Ci,c−1, otherwise

The nodes with negative weights will be linked to the source s with a weight
|wi,c| and the nodes with positive (or null) weights to the sink t with a weight
wi,c.

4) The optimal surface is finally obtained with a min-cut/max-flow graph
cut algorithm [3].

2.2. Cost function

The definition of the cost function is the key point of the OSD algorithm.
Three different classes of cost functions have been tested based on: 1) lo-
cal image information (gradients), 2) a shape probability function and 3) a
gradient profile model.

Image-based feature: gradients. The image-based surface energy is based
on the smoothed gradient of the volume V : E(x, y, z) = ‖∇(Gσ ∗ V (x, y, z))‖ =
‖G(x, y, z)‖ with Gσ a Gaussian filter with standard deviation σ. We tested
3 different cost functions: POS GDT promoting positive gradients (low to
high value transitions which means the same direction as the surface normal):

Ci,c = −‖G(xi,c, yi,c, zi,c)‖
si,c+1

2

with si,c =
G(xi,c,yi,c,zi,c)·Ni

‖G(xi,c,yi,c,zi,c)‖
.

EG GDT promoting negative gradients:
Ci,c = −‖G(xi,c, yi,c, zi,c)‖

|si,c−1|

2
.

ALL GDT promoting any directions:
Ci,c = −‖G(xi,c, yi,c, zi,c)‖.
Shape probability function. A shape model is first constructed from a

training set of prostate contours manually extracted by an urologist on a set
of prostate volumes (see § 3.1 for the data): 1) For each volume, a surface
is built from the contours. For this, a local prostate-based reference system
is first defined (the first axis is aligned from the apex to the base, the refer-
ence origin is set as the middle of the apex-base segment, the 2 other axes
are adjusted to the prostate surface). Then the expert surface is regularly
resampled within this local reference system in order to form a regular mesh.
2) The meshes of all the surfaces of the training set are aligned using the gen-
eralized Procustes algorithm [4] implemented in VTK. This algorithm gives
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on one hand an average shape and on the other all the forms aligned on the
average shape. A probability map is then estimated from the aligned shapes:
a) a 3D distance map is build on each shape; b) the distance map is con-

verted into a Gaussian distance map: exp
(

− d2

2σ2
m

)

with σm a constant; and

c) the probability map is deduced by averaging the Gaussian maps of all the
aligned shapes. For the segmentation of a new prostate the probability map
must be adjusted on the data. The model average shape is aligned onto the
initial mesh of the data to segment. The estimated rigid transformation ma-
trix (translation, rotation scaling) is finally applied on the probability map.
The node cost value is the gradient-based cost multiplied by the probability
at the node voxel position. Cost functions that add the probability to the
gradient-based cost were also tested. As they lead to worse performance,
results were not reported.

Gradient profile model. The idea is to build a statistical model of the
gradient profiles variation from a learning set and then use this model to
assign some costs [5]. Surfaces of the training set are first aligned as described
previously. At this stage, we have K shapes each sampled on N vertexes. N
gradient profile models are then built as described in [5]. A gradient profile
gij is estimated at each sample i (i = 1, . . . , N) in each training surface j (j =
1, . . . , K). Each profile consists in the energy of 10 voxels on both sides of the
surface. For each i we have a profile vector gi which can be normalized as:
gi →

1∑
j |gij |

gi. If we assume that all profiles are distributed as a multivariate

Gaussian, the appearance on one sample can be modeled by the mean profile
ĝi and the covariance matrix Sgi. The quality of the fit of a new profile gsi
to the model can be estimated by the Mahalanobis distance: f(gsi) = (gsi −
ĝi)

TSgi
−1(gsi − ĝi). For the segmentation of a new prostate, the initial mesh

must be aligned on its local prostate based reference system and resampled in
order to ensure correspondence to the model vertices. Gradients profiles gi,c
are computed for each voxel that corresponds to a node N(i, c) in the graph.
The node cost value is then defined as: Ci,c = f(gi,c) − max(f(gs)) where
max(f(gs)) is the maximum Mahalanobis distance over all the computed
profiles in the current image.
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3. Results

3.1. Data and evaluation protocol

The algorithms were tested on 33 T2 axial MRI volumes from 5 different
devices. We had images of different qualities and image size ranged from
256 × 256 × 24 to 720 × 720 × 20 voxels with pixel size ranging from 0.391
to 0.781mm and axial slice thicknesses from 2.63 to 4.50mm. On each of the
33 volumes, an urologist delineates manually the contours of the prostate.
These contours will serve as ground truth or to build the shape and the
gradient profile model. The MRI 3D images were interpolated along z before
segmenting the prostate.

The performance of a specific segmentation scheme is evaluated with the
Volume Overlap metric: VO = VM∩VA

VM∪VA
with VM and VA respectively the expert

(manual) and the OSD (automatic) segmented volume. The mean in % and
the standard deviation (std) of all the 33 VOs serve as global performance
metrics. However, it has to be noticed that this evaluation scheme is just one
indicator of a performance. Only one manual segmentation per volume from
one expert has been performed. Other studies with several segmentations
per volume from one or several experts showed relative huge intra- and inter-
observer variabilities [6]. So the results of our VO metric should be used
only with caution and should only be considered as a relative performance
measurement which gives high performance increases in some cases (e.g. cases
8, 11, 25) but also really important performance decreases (e.g. case 10).

3.2. Graph parameters setting

The graph parameters setting is performed on the classical OSD algo-
rithm with the gradient-based cost function. Five parameters have to be
tuned: InD and OutD the search distances inside and outside the surface, δ
from the hard shape constraint, σ the Gaussian filter standard deviation and
the promoted gradient direction (POS GDT, NEG GDT or ALL GDT). We
tuned sequentially δ, σ, InD and OutD and the gradient direction. For a
specific parameter, the value which gives the best performance is kept for the
next parameter tuning. The optimal setting after our exhaustive search for
the several parameters variations was: δ = 1/2, σ = 1mm, InD = −5mm,
OutD = 15mm and the ALL GDT gradient direction. This setting gives a
mean VO of 77.2% with a standard deviation of 5.5%.

The VO of 77.2% could be considered as relatively low. However, it
should be noticed that due to the high interslice spacing of T2 MRI, the

5



prostate is generally described on only 6 or 7 slices and that it is relatively
difficult even for the radiologist or urologist to define the prostate shape in
the planes tangent to the organ near the base or the apex. We also showed
in a previous study [1] that the VO obtained between the prostate extracted
on 3D US images (which had a better interslice spacing as T2 MRI) by two
different experts or twice by the same expert presented a mean VO value of
around 83%. Even if the score obtained on T2 MRI could not be compared
to this obtained on the US volume, an analog behavior should be considered.

3.3. Shape probability and gradient profile model

In order to evaluate these algorithms, the training set used for the seg-
mentation of a specific prostate volume was built from the expert manual
segmentations of all the other 32 volumes. We first tuned the shape proba-
bility cost function based method on 7 volumes in order to find the optimal
σm parameter (σm = 8).

Fig. 2 compares the VO obtained by the gradient based, shape proba-
bility and gradient profile model for all the 33 cases. The shape probability
increases slightly the overlap in some cases but globally gives less performing
results. A same conclusion can be drawn with the gradient profile model-
based cost function which gives some high performance increasing in some
cases (e.g. cases 8, 11, 25) but also some really performance decreases (e.g.
case 10).

Some of the assumptions like a Gaussian distribution of the profiles are
not always pertinent. Also because T2 MRIs of diseased prostates have a
high variability in texture the gradient search (or model) has difficulty to
separate the prostate boundary from its surroundings or its inside part.

4. Conclusion

The shape probability and gradient profile model can in some cases in-
crease the performance of the segmentation but also can lead to very poor
results. Such algorithms can be interesting in a segmentation scheme where
the end-user (the urologist) can choose the best results in his sense between
the several intermediary results obtained using the different cost functions.
This work is part of the French MULTIP project supported by an ANR Grant
(ANR-09-TECS-011-06).
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Figure 1: Graph construction.

Figure 2: Comparison of local gradient-, shape probability- and gradient profile model-

based cost functions performance. Volume overlap metric for all the 33 volumes.
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