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Abstract

Cardiac resynchronization therapy (CRT) is the therapy of choice for selected patients suffering from drug-refractory congestive

heart failure and presenting an interventricular desynchronization. CRT is delivered by an implantable biventricular pacemaker,

which stimulates the right atrium and both ventricles at specific timings. The optimization and personalization of this therapy

requires to quantify both the electrical and the mechanical cardiac functions during the intraoperative and postoperative phases.

The objective of this paper is to evaluate the feasibility of the calculation of features extracted from endocardial acceleration (EA)

signals and the potential utility of these features for the intraoperative optimization of CRT. Endocardial intraoperative data from

one patient are analyzed for 33 different pacing configurations, including changes in the atrio-ventricular and inter-ventricular delays

and different ventricular stimulation sites. The main EA features are extracted for each pacing configuration and analyzed so as to

estimate the intra-configuration and inter-configuration variability. Results show the feasibility of the proposed approach and suggest

the potential utility of EA for intraoperative monitoring of the cardiac function and defining optimal, adaptive pacing configurations.

INTRODUCTION

Heart failure (HF) is a multifactorial syndrome presenting one of the highest prevalence and incidence worldwide. Selected patients

suffering from drug-refractory congestive heart failure (CHF) and presenting an inter-ventricular desynchronization are candidates for

Cardiac Resynchronization Therapy (CRT) 1 . In CRT, a bi-ventricular stimulator is implanted in order to electrically stimulate the right[ ]
atrium (RA), the right ventricle (RV) and the left ventricle (LV) at specific timings, so as to improve the ventricular filling phase and

re-synchronize the mechanical function of both ventricles. Previous clinical trials, have demonstrated the efficacy of CRT, however, they

have also shown a proportion of nonresponders to the therapy of around 30  1 .% [ ]

Several factors may cause the nonresponse to CRT, including i) inappropriate patient selection, ii) sub-optimal lead positioning and iii)

the inaccurate and non-adaptive programming of the stimulation instants of each lead, which are defined by the atrioventricular (AV) and

interventricular (VV) delays (AVD and VVD respectively). The optimization of these factors, in a patient-specific manner, are thus a main

priority in the context of CRT. This work is focused on a method that may assist the clinician in optimizing lead placement and the

programming of AVD and VVD. It requires the ability to quantify both the electrical and the mechanical cardiac functions during the

intra-operative and post-operative phases. We hypothesize that the joint analysis of intracardiac electrocardiographic and

micro-acceleration signals could be useful for this optimization task.

The analysis of cardiac acoustic signals has been shown to be useful for the evaluation of the mechanical function of the heart. A

variety of methods for the analysis of the phonocardiogram (PCG) or the seismocardiogram (SCG) have been proposed to extract useful

information about the cardiac function and to estimate the main events of the cardiac cycle 2,3 . Although the arrival of Doppler[ ]
echocardiography significantly reduced the clinical use of these signals, the quality of new miniaturized accelerometers and new

signal-processing techniques have lead to a renewed interest in quantitative analysis of cardiac acoustic signals, especially in the field of

CRT 4,5,6,7,8 .[ ]

In this context, previous animal experimentation studies have shown that the analysis of endocardial acceleration (EA) signals may be

valuable for an online follow-up of the inotropic state 9 . The EA signal is composed of two main components, denoted here EA1 and[ ]
EA2, that are synchronous with the first and second heart sounds of the PCG, respectively. Plicchi et al. have particularly shown that

changes in the peak-to-peak amplitude of EA1 (PEA1) were significantly correlated to changes on the positive peak of LV dP/dt 9 .[ ]

Previous works from our group have demonstrated how the joint analysis of a set of features extracted from thoracic cardiac

micro-acceleration signals may be useful for AV and VV delay optimization in CRT 5,7,8 . Recently, a right atrial lead integrating a[ ]
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micro-accelerometer inside a hermetically-sealed capsule located in the tip of the pacing lead, has been approved for human use (SonRtip

lead, Sorin CRM SAS, Clamart, France). The objective of this work is to evaluate the feasibility of the calculation of features extracted റ

from the EA, using the methods proposed in our previous works, that are sensitive to intraoperative changes on AVD, VVD or in pacing

lead position. Data acquired during intraoperative CRT optimization from one clinical case will be analyzed and presented.

METHOD
Experimental Protocol

This paper is focused on data from one patient that were acquired during a clinical procedure using the recent SonRtip atrial lead. റ

Leads on the RA, RV and LV were implanted using the standard procedure for a CRT system. The RA lead was implanted on the RA

appendage or in the RA septum. Data acquired from the EA sensor represents thus a mixture of mainly the antero-posterior and coronal

components of the mechanical cardiac function. Different pacing configurations during stable atrial pacing were applied intra-operatively

to evaluate their impact on the acquired EA signal. Each configuration, denoted here P , for   11,12,14,16,18,19,21,22,24,25,26 ,k k ෛ [ ]
consisted of a combination of the following parameters:

Pacing mode: All beats were initiated by an RA stimulation with a fixed heart rate of 90 beats per minute, in AAI mode. Three

ventricular pacing modes were evaluated: i) spontaneous AV conduction and no ventricular pacing (P -AAI), ii) pacing only the rightk

ventricle (P -RV) and iii) bi-ventricular pacing (P -BiV).k k

Atrio-ventricular delay (AVD): All configurations have been acquired with an AVD of 120 ms, except from the following

configurations: P24, with an AVD  100 ms; P25, with an AVD  80 ms and P26, with an AVD  140 ms.= = =

Position of ventricular stimulation sites: P11, P12, P14 and P16 have been acquired with the RV lead located at the apex. P18 and P19

where acquired with the RV lead at the outflow tract. Finally, the RV lead was located in the mid-septum for configurations P21 to P26.

The LV lead was located at a middle position into the lateral coronary vein, for all configurations.

In summary, 33 different configurations were available for analysis (P -AAI, P -RV, P -BiV, for all   k k k k ෛ [
11,12,14,16,18,19,21,22,24,25,26 ). Records of 15 cardiac cycles, including a synchronous acquisition of the RA, RV and LV electrograms]
(EGM) and the EA signal were obtained for each pacing configuration, using a dedicated external system.

Analysis of intracardiac acceleration signals

EGM signals of each record were firstly analyzed, in order to detect the electrical activation time of the RA, RV and LV and to detect

each beat. The earliest detection between the RV and LV electrical activation instants was used to trigger EA signal averaging. For each

detected cardiac cycle, standard ensemble averaging was performed for each individual EA component (EA1 and EA2): i) the phase shifts

that maximize the correlation between each cycle are calculated, ii) the cycles are aligned according to a reference component (first cycle

of the analysis window) and iii) the two average components EA1 and EA2 are computed. Only the 7 highest correlated cycles with a

normalized correlation coefficient greater than 0.6 were included in the averaging phase. The record was considered as noisy if there were

less than 7 cycles with a correlation coefficient higher than 0.6. All data were analyzed offline.

Envelograms are computed from the average EA cycle and an optimal algorithm-switching method was applied to estimate the start

and end instants of EA1 and EA2, their instant of maximum energy, and their global energy. The method is described in detail in 8 . In[ ]
this work, we have adapted certain parameters of the signal-processing chain (cut-off frequencies of the filters, thresholds, etc.) to better fit

the specificities of the intracardiac version of the signal.

Once the main EA features have been extracted, the intraconfiguration and interconfiguration variabilities of these features are

analyzed. Intraconfiguration variability is evaluated on configurations P11-P16, which were acquired sequentially with the same AVD,

VVD and the same LV and RV stimulation sites, in an 11 minutes interval. The standard deviation of each EA feature, for each pacing

mode (spontaneous rhythm, RV, LV and BiV stimulation) will be considered as an indicator of the measurement error for that feature,

using that particular pacing mode. This measurement error will be integrated in the analysis of interconfiguration modifications of the EA

features.

RESULTS

After a description of the typical characteristics of the acquired intracardiac signals for two different pacing configurations, this section

presents preliminary results on the stability and usefulness of the main features of the EA1 component, in the context of intraoperative

CRT optimization.

General characteristics of the EA signal during CRT
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Figure 1 show typical intracardiac signals obtained during the implant procedure for configuration P18 and two extremely different

pacing modes: atrial stimulation with spontaneous ventricular activity (figure 1a) and bi-ventricular pacing (figure 1b). The signals shown

are obtained after the application of the above-mentioned averaging method. Upper panels show the mean intracardiac electrograms

acquired by the RA, RV and LV leads, while the lower panels present the mean EA signal.

EGMs in figure 1a clearly show the significant atrio-ventricular and inter-ventricular electrical activation delays in this patient. The

RA to RV delay is of 275 ms and the RA to LV delay is of 375 ms (VVD  100 ms). Note also the wide aspect of the LV deflection in the=
spontaneous case. The EA signal shows a wide EA1 component of more than 200 ms, with a rather low PEA1. Indeed, the desynchronized

ventricular activation generates an increased AVD, abbreviating the diastolic filling time. The atrio-ventricular pressure gradient is low in

this case at the moment of the closure of the AV valves, thus producing a low PEA1. The de-synchronization of both ventricles and the

extended AVD may also contribute to the widening of the other EA components.

The case of a bi-ventricular pacing is shown in figure 1b. The AVD is still defined at 120 ms, but in this configuration, both ventricles

are paced at the same time (VVD  0). It should be noted that, since the LV lead is placed on the epicardium, the time from the LV pacing=
instant to the actual recruitment of LV myocardium is higher than for the RV, which is paced on the endocardium. Thus, even with this

pacing configuration, LV activation and contraction is slower than that of the RV and both ventricles are still not mechanically

synchronized. The EA signal shows in this case an even higher PEA1.

Exclusive ventricular stimulation of the RV or the LV produces a complex mix of the responses in figures 1a and 1b, as the AVD and

VVD are modified. These examples show the difficulty associated with the intraoperative optimization of CRT, particularly when

performed, as in most cases, without a marker of the mechanical cardiac response. The next section will be focused on the analysis of the

EA1 component, so as to evaluate the intra- and inter-configuration variabilities of the features extracted from the EA signal.

EA modifications for different pacing configurations

The PEA1 and the duration of the EA1 component were automatically extracted from the mean EA signal of each record. An example

of the EA1 segmentation obtained for all biventricular configurations is shown in figure 2. Here, the RV/LV stimulation spike was used as

reference time (t 0), so the atrial component is seen for t > 550 ms.=

Morphological differences on the EA signals can be observed for the different lead positions and AVD. P11 to P16 share the same

configuration (AVD, VVD and lead locations) and show minor morphological differences. EA signals for P18 and P19 were acquired with

a different RV lead location (outflow tract) and show a slightly larger EA1, with an earlier EA1 component and a higher EA2 amplitude.

Configurations P24 to P26 show the effect of varying the AVD and moving the RV lead to the mid-septum, with significant modifications

on EA1 and on the atrial component.

Intra and inter-configuration variability of EA1 features

Boxplots representing the intra-configuration variability for PEA1 and EA1 duration, for configurations P11-P16 (same AVD and lead

locations), are proposed in figure 3. The median and standard deviation of each case are shown in Table I. The intra-configuration

variability is generally lower than the variability due to changes in pacing mode, except for the differentiation between RV and BiV

stimulation, using the EA1 duration.

Figure 4 presents a scatter plot showing EA1 duration vs. PEA1 for all the configurations analyzed for this patient. Ellipses represent

the intra-configuration variability of one standard deviation, based on values from Table I. This graph shows that complementary

information can be obtained from the joint analysis of PEA1 and EA1 duration, especially for distinguishing different AVD or lead

positions, using the same pacing mode. The correlation coefficient between these variables equals 0.61. The inter-configurationr=෥
variability in this bivariate plane is higher than on the corresponding univariate projections (see Figure 4). For instance, the different

pacing modes for configuration P24 (red) could not be correctly differentiated with an univariate approach.

A particular attention should be paid to configuration P25 (cyan), which presents the lowest AVD. This configuration provoked an

increased EA1 duration during RV and BiV, which may be due to the appearance of new components at the beginning and end of EA1

(see figure 2, for the BiV case). This configuration provoked also a loss in PEA1 during RV with respect to the AAI configuration, but a

significant increase in PEA1 during BiV pacing. The shortest EA1 durations are obtained for the RV stimulation. Most bi-ventricular

configurations show a high PEA1 value with a relatively short EA1 duration. These results are in accordance with the expected

physiological response to CRT and with our previous results based on computational models 10 , suggesting that the best configurations[ ]
should be on the upper-left part of the plane, where almost all BiV stimulations are located. However, further validation is required in

order to select the set of EGM and EA features that should be used for intraoperative CRT optimization.

CONCLUSIONS
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This work presented preliminary results showing the feasibility of feature extraction form intracardiac signals during the implant of a

CRT system. A bivariate analysis of the extracted EA features (PEA1 and EA1 duration) seems to provide useful information about the

modifications on the mechanical and hemodynamic conditions provoked by different CRT pacing configurations. If confirmed, this

approach may be the first to provide a CRT optimization method that can be applied during the intra-operative and chronic phases.

However, these results have to be confirmed with a larger patient population. Also, a validation phase with respect to a gold standard, such

as the LV dP/dt, is necessary in order to derive a new marker for intraoperative CRT optimization, based on intracardiac signals.
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Fig. 1
Mean EGM signals (upper panel) and intracardiac EA signal for configuration P18 under atrial pacing only (a) and BiV stimulation (b).

Fig. 2
Mean EA signals for all configurations tested during bi-ventricular pacing. Detection instants of the beginning and end of the EA1 component

are marked with a circle. Line colors code the configurations with the same AVD and RV stimulation site.
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Fig. 3
Boxplots representing the intra-configuration variability for variables PEA1 and EA1 duration, and for configurations P11 P16 forದ
spontaneous rhythm and RV, LV and BiV pacing.

Fig. 4
Scatter plot showing the values of PEA1 vs. EA1 duration for all pacing configurations. Circles represent AAI configurations, and squares and

triangles represent RV and BiV pacing, respectively. The same color coding as in figure 2 is used: P11 P16: black, P18 P19: blue, P20 P22:ದ ದ ದ
green, P24: red, P25: cyan and P26: magenta. Ellipses represent the intra-configuration variability of one standard deviation, using values

from table I.
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TABLE I
Median and standard deviation for PEA1 and EA1 duration calculated from configurations P11 P16 as a function of the pacing mode.ದ

AAI RV BiV

PEA1 0.332  0.04± 0.566  0.02± 0.657  0.03±
EA1d 193  5.1± 143  3.1± 140  4.2±


