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Dorothée Michaux1, Catherine Barbaroux1, Catherine Dubois d’Enghien1, André Nicolas1, Laurent Castéra1,

Xavier Sastre-Garau1, Marc-Henri Stern1,2, Claude Houdayer1,2,3 and Dominique Stoppa-Lyonnet1,2,3

Abstract

Background: Most currently known breast cancer predisposition genes play a role in DNA repair by homologous

recombination. Recent studies conducted on RAD51 paralogs, involved in the same DNA repair pathway, have

identified rare germline mutations conferring breast and/or ovarian cancer predisposition in the RAD51C, RAD51D

and XRCC2 genes. The present study analysed the five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) to

estimate their contribution to breast and ovarian cancer predisposition.

Methods: The study was conducted on 142 unrelated patients with breast and/or ovarian cancer either with early

onset or with a breast/ovarian cancer family history. Patients were referred to a French family cancer clinic and had

been previously tested negative for a BRCA1/2 mutation. Coding sequences of the five genes were analysed by EMMA

(Enhanced Mismatch Mutation Analysis). Detected variants were characterized by Sanger sequencing analysis.

Results: Three splicing mutations and two likely deleterious missense variants were identified: RAD51B c.452 + 3A > G,

RAD51C c.706-2A > G, RAD51C c.1026 + 5_1026 + 7del, RAD51B c.475C > T/p.Arg159Cys and XRCC3 c.448C > T/p.

Arg150Cys. No RAD51D and XRCC2 gene mutations were detected. These mutations and variants were detected in

families with both breast and ovarian cancers, except for the RAD51B c.475C > T/p.Arg159Cys variant that occurred in a

family with 3 breast cancer cases.

Conclusions: This study identified the first RAD51B mutation in a breast and ovarian cancer family and is the first

report of XRCC3 mutation analysis in breast and ovarian cancer. It confirms that RAD51 paralog mutations confer breast

and ovarian cancer predisposition and are rare events. In view of the low frequency of RAD51 paralog mutations,

international collaboration of family cancer clinics will be required to more accurately estimate their penetrance and

establish clinical guidelines in carrier individuals.
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Background
Breast cancer is currently the most common cancer and

the leading cause of cancer deaths in women worldwide

[1]. Abnormal familial aggregations fitting a model of

autosomal dominant breast cancer genetic predisposition

account for about 5% of cases [2]. BRCA1 and BRCA2

are the two major genes, but explain only about 20% of

inherited breast cancers [3-5]. About ten genes are

known to be involved in breast cancer predisposition, ei-

ther isolated or associated with other cancers, with vari-

able breast cancer risks. Approximately 50% of familial

breast cancers remain unresolved by any of these genes

after genetic testing [6].

Most currently known breast cancer predisposition genes

play a role in the repair of DNA double-strand breaks by

homologous recombination: BRCA1 and BRCA2, associ-

ated with a high risk of breast cancer, and BRIP1 and

PALB2, associated with a moderate risk [7-9]. While breast

cancer predisposition is conferred by mono-allelic germline

mutations in these genes, bi-allelic germline mutations in

BRCA2, BRIP1 and PALB2 result in Fanconi anaemia, an
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autosomal recessive inherited syndrome characterized by

multiple developmental abnormalities and predisposition to

various cancers [10-12].

Genetic studies were recently conducted on the RAD51

paralogs, involved in the same DNA repair pathway:

BRCA2 protein loads RAD51 monomers at DNA double-

strand break sites; RAD51 recruitment also depends on

the RAD51 paralog family [13]. Bi-allelic mutations

resulting in Fanconi anaemia were identified in RAD51C

and XRCC2 [14,15]. Mono-allelic germline mutations

conferring breast and ovarian cancer predisposition were

identified in RAD51C and RAD51D [16,17]. XRCC2 muta-

tions were then detected in breast cancer families but a

subsequent population-based study failed to confirm an

association between XRCC2 variants and breast cancer

risk [18,19]. Johnson et al. conducted a study on RAD51B

in breast cancer families and did not detect any mutations

[20]. The XRCC3 gene has not yet been studied.

In this study, we analysed the five RAD51 paralogs

(RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) in 142

unrelated patients with breast and/or ovarian cancer

to estimate their contribution to breast and ovarian

cancer predisposition.

Methods
Patients

The study was conducted on 142 unrelated patients with

breast and/or ovarian cancer either with early onset or

with a breast/ovarian cancer family history. Patients had

been previously tested negative for a BRCA1/2 mutation,

selected either for a predisposition probability higher than

70% according to the Claus model [2] or for enrichment

in ovarian cancer cases: 87 patients (61%) had a personal

or family history of both breast and ovarian cancer, 10 pa-

tients (7%) had a personal or family history of ovarian

cancer only and 45 patients (32%) had a personal or fam-

ily history of breast cancer only (Table 1). All patients

attended a visit with a geneticist and a genetic counsellor

in a family cancer clinic, mostly at the Institut Curie,

Paris, France. Patients gave their informed consent for

genetic testing. The study was approved by the local Eth-

ics Committee in Institut Curie.

Genomic DNA analysis

Genomic DNA was extracted from 2 mL whole-blood

samples collected on EDTA with the Quickgene 610-L au-

tomated system (Fujifilm) according to the manufacturer’s

instructions. RAD51 paralog mutation screening was

performed on coding exons and exon-intron junctions by

multiplex PCR and Enhanced Mismatch Mutation Ana-

lysis (EMMA) [21] except for 2 RAD51B exons which

were analysed by simplex PCR and direct sequencing

(Additional file 1: Table S1 and Additional file 2: Table

S2). PCR products showing abnormal EMMA profiles

were analysed by sequencing on an ABI PRISM 3130XL

Genetic analyzer (Applied Biosystems).

mRNA analysis for RAD51C splicing mutations

RNA was extracted from lymphoblastoid cell lines using

TRIzol reagent according to the manufacturer’s instruc-

tions (Invitrogen). 2 μg of total RNA from each sample

was used for reverse transcription in a 40 μL reaction

using the GeneAmp RNA PCR Core kit according to

the manufacturer’s instructions (Applied Biosystems).

cDNA was amplified with forward and reverse primers

GCATTCAGCACCTTCAGCTT and CTTTCGGTCCCAATGAAAGA for

RAD51C exon 5 skipping, TGACCTGTCTCTTCGTACTCG and

for RAD51C exon 8 skipping.

RAD51B immunohistochemistry

For RAD51B immunostaining, 4-μm-thick paraffin sec-

tions were cut and mounted on glass slides (Superfrost+,

Menzel Glazer). Preparations were dried for one hour at

58°C, then overnight at 37°C. Sections were deparaffined

with toluene and rehydrated with ethanol. Preparations

were pretreated with citrate buffer (0.01 M citric acid

pH 6.0), and a heat-based antigen retrieval method was

used prior to incubations. Endogenous peroxidase was

blocked using 3% hydrogen peroxidase solution for 5 mi-

nutes. The primary anti-RAD51B antibody used (clone

NBP1-66539, dilution 1/200) was from Novus Biologicals.

Sections were incubated for 15 minutes at 22°C with the

primary antibody followed by staining with anti-rabbit

HRP antibody (Leica Biosystems) for 10 minutes. Sections

were then revealed in a diaminobenzidine solution for

15 minutes and stained with hematoxylin for 7 minutes.

Missense variants pathogenic prediction

Three bioinformatics tools were used for missense vari-

ants pathogenic prediction: Align-GVGD [22,23], SIFT

[24,25] and Polyphen-2 [26,27]. Multiple sequence

Table 1 Patient personal and family history of breast/

ovarian cancer

Personal and family history n (%)

Personal history

Ovarian adenocarcinoma before the age of 70 4 (3)

Breast adenocarcinoma and ovarian cancer 6 (4)

Breast adenocarcinoma before the age of 36 1 (1)

Family history*

2 ovarian cancer cases 81 (57)

2 breast cancer cases 36 (25)

3 breast cancer cases 8 (6)

1 breast cancer case and 1 ovarian cancer case 6 (4)

*Family history was defined in first- or second-degree relatives in the

same lineage.
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alignment (MSA) for Align-GVGD and SIFT analysis

was an alignment of protein sequences of 11 species:

Human (Homo sapiens), Chimpanzee (Pan troglodytes),

Macaque (Macaca mulatta), Mouse (Mus musculus),

Rabbit (Oryctolagus cuniculus), Dog (Canis familiaris), Cat

(Felis catus), Bovine (Bos taurus), Opossum (Monodelphis

domestica), Platypus (Ornithorynchus anatinus), Chicken

(Gallus gallus) and Frog (Xenopus tropicalis). Missense

variants were interpreted as likely deleterious if they

were classified as deleterious or probably damaging by the

three tools.

Statistical analysis

Frequencies of mutations and likely deleterious variants

were compared between the cases and two control sam-

ples from online databases: European-American controls

from Exome Variant Server [28] and European controls

from 1000 Genomes project [29]. In a first step the two

control sample variant frequencies were compared using

Fisher’s exact test in order to check there was no signifi-

cant difference. In a second step the control samples were

pooled and the overall control variant frequency was com-

pared with the case sample one, using Fisher’s exact test.

All the tests were two-sided, with a p-value of 0.05 consid-

ered significant. Computations were performed using the

XLSTAT-2013 software.

Results
Three splicing mutations and two likely deleterious mis-

sense variants were identified in these 142 patients:

RAD51B c.452 + 3A >G, RAD51C c.706-2A >G, RAD51C

c.1026 + 5_1026 + 7del, RAD51B c.475C > T/p.Arg159Cys

and XRCC3 c.448C > T/p.Arg150Cys (Table 2). No muta-

tion was detected in the RAD51D and XRCC2 genes (See

Additional file 3: Table S3 for all variants and polymor-

phisms detected in this study).

All variants detected on DNA were tested by in silico

splicing effect prediction according to a previously pub-

lished pipeline [30]: a greater than 15% decrease of the

MaxEntScan score for donor/acceptor splice sites and a

greater than 5% decrease of the SpliceSiteFinder-like score

for donor/acceptor splice sites were considered to be sig-

nificant with 96% sensitivity and 83% specificity. Three

variants were likely to alter splicing according to this pipe-

line: RAD51C c.706-2A >G and c.1026 + 5_1026 + 7del,

and RAD51B c.452 + 3A >G. Exon skipping was con-

firmed by mRNA analysis for the two RAD51C mutations

(Figure 1). No RNA was available to study the impact of

the RAD51B c.452 + 3A >G mutation but, using immuno-

histochemistry with anti-RAD51B antibody, loss of ex-

pression of RAD51B protein was observed in breast

carcinoma cells from the patient bearing this mutation, as

compared with that detected in the nucleus of normal

duct cells (Figure 2).

Likely deleterious missense variants reported in this

study in the RAD51B and XRCC3 genes are located in

the ATP-binding domain of the proteins and result in

the replacement of highly conserved amino acids with

subsequent high Grantham score (Table 2).

Mutations and likely deleterious variants were de-

tected in families with both breast and ovarian cancers,

except for the RAD51B p.Arg159Cys variant that oc-

curred in a family with 3 breast cancer cases (Figure 3).

The RAD51C c.706-2A > G mutation co-segregated with

an ovarian cancer at the age of 67 years for a paternal

aunt of the index case. No other co-segregation studies

have been performed to date.

Discussion
This study reports RAD51 paralog analysis in breast and

ovarian cancer cases. To our knowledge, this is the first

report of a RAD51B mutation and evaluation of the con-

tribution of the XRCC3 gene to breast and ovarian can-

cer predisposition.

RAD51B gene

We identified a RAD51B mutation and a likely deleteri-

ous variant in two patients: the RAD51B c.452 + 3A > G

mutation was detected in a breast and ovarian cancer

family case and the RAD51B p.Arg159Cys variant was

detected in a family with 3 breast cancer cases.

RAD51B has been previously evaluated as a candidate

gene for breast cancer predisposition but no mutation

was detected in a study of 188 multiple breast cancer fam-

ily cases (Johnson et al. [20]). The low frequency of

RAD51B mutations may account for the differences ob-

served between our results and those reported by Johnson

et al., as previously described for RAD51C, RAD51D and

XRCC2 [16-18]. More generally concerning RAD51B in-

volvement in cancer, previous studies have identified

chromosomal rearrangements disrupting RAD51B in be-

nign tumours, particularly uterine leiomyomas [31,32].

Overall, haploinsufficiency of RAD51B was shown to in-

duce genomic instability in human cells, suggesting its in-

volvement in cancer predisposition [33]. In addition, our

findings must be interpreted in the context of two

genome-wide association studies (GWAS) that identified

the minor allele of single nucleotide polymorphisms

(SNPs) in RAD51B acting as low risk factors for breast

cancer: rs999737 [34] and rs1314913 [35], located in

RAD51B introns 10 and 7, respectively. Overall, these

findings might indicate that RAD51B acts as a susceptibil-

ity factor or as a major gene depending on the context. In-

deed, it cannot be excluded that the minor allele of these

SNPs indirectly reflects a major influence of RAD51B

[36], as a recent study showed that high risk rare muta-

tions can account for some synthetic associations identi-

fied by GWAS [37].
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Table 2 Mutations and likely deleterious variants, their effect on splicing or protein, cancer history of carriers

Gene Genetic
variation

Variant class Effect on splicing Predicted effect on protein
(Align-GVGD class†)

Personal cancer
history (age at
diagnosis)

Family cancer history (age at diagnosis) Controls‡

RAD51B c.452 + 3A > G Splicing
mutation

Exon 5 skipping by
in silico prediction*

Unstable or truncated protein,
confirmed by negative IHC

BC (34) Paternal aunt, BC (58); 3rd degree relative, OC (29) -

RAD51B c.475C > T, p.
Arg159Cys

Likely
deleterious
missense variant

No predicted effect ATP-binding domain, highly
conserved amino acid, Grantham
180 (Class C65)

BC (54) Sister, BC (45); Sister’s daughter BC (45) 2/4299

RAD51C c.706-2A > G Splicing
mutation

Exon 5 skipping
confirmed by mRNA
analysis

44 amino acids loss in ATP-binding
domain

BC (39) Paternal aunt§, OC (67) -

RAD51C c.1026 +
5_1026 + 7del

Splicing
mutation

Exon 8 skipping
confirmed by mRNA
analysis

Unstable or truncated protein BC (38), OC (51) Father, PC (69); Paternal grandmother, UC (66); Paternal
grandfather, SC (69)

-

XRCC3 c.448C > T, p.
Arg150Cys

Likely
deleterious
missense variant

No predicted effect ATP-binding domain, highly
conserved amino acid, Grantham 180
(Class C65)

BC (63) Mother, OC (61); Maternal aunt, BC (55); Maternal aunt, BC
(73); Maternal aunt, BC (76); Maternal aunt, BC (63, 79)

1/4276

BC: Breast cancer, OC: Ovarian cancer, PC: Pancreas cancer, UC: Uterine cancer, SC: Stomach cancer.

*See text for details.

†Align-Grantham Variation Grantham Deviation (Align-GVGD) classes range from C0 to C65; C65 class variants are the most likely to interfere with protein function [22,23].

§This paternal aunt also carried the RAD51C c.706-2A > G mutation.

‡Frequency in controls in online databases: Exome Variant Server [28], dbSNP [38], 1000 Genomes [29]. The three splicing mutations have never been described. The 2 missense variants were reported only in Exome

Variant Server, in European-American populations. Their frequencies in European-American populations are reported in this table.
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RAD51B c.452 + 3A >G is a novel mutation. Several ar-

guments strongly support its causality: this variation is ab-

sent in the thousands of controls tested in online databases

(Exome Variant Server [28], dbSNP [38], 1000 Genomes

[29]); in silico prediction concluded this variation was likely

to result in an out-of-frame exon skipping leading to a

truncated or unstable protein; RAD51B immunohisto-

chemistry in breast carcinoma cells of the patient bearing

this variation showed a loss of expression of RAD51B.

The RAD51B p.Arg159Cys variant is reported in Exome

Variant Server: this variant was detected in 2 out of 4,299

controls in European-American populations. We consider

this variant to be a likely deleterious variant because it

occurs in a functional domain and results in replacement

of a highly conserved amino acid with subsequent high

Grantham score and Align-Grantham Variation Grantham

Deviation (Align-GVGD) maximum score (C65), and very

low frequencies are reported in Exome Variant Server. Its

Exon 5: wild type mRNA

RAD51C c.706-2A>GControl

Exon 4 Exon 5

Exon 7 Exons 8&9

RAD51C c.1026+5_1026+7delControl

Exon 7 Exon 8

A

B

Exon 6: mRNA with exon 5 skipping

Exon 4 Exons 5&6

Exon 8: wild type mRNA
Exon 9: mRNA with exon 8 skipping

Figure 1 mRNA analysis for RAD51C splicing mutations showing exon skipping. (A) Electropherograms of Sanger sequencing analysis for a

control sample with wild type RAD51C mRNA only (left) and for RAD51C c.706-2A > G mutation with two types of mRNA: wild type mRNA and

mRNA with exon 5 skipping (right). (B) Electropherograms of Sanger sequencing analysis for a control sample with wild type RAD51C mRNA only

(left) and for RAD51C c.1026 + 5_1026 + 7del mutation with two types of mRNA: wild type mRNA and mRNA with exon 8 skipping (right).

Figure 2 RAD51B immunohistochemistry in breast tissue of patient carrying the RAD51B c.452 + 3A > G mutation. A brown staining of

moderate intensity is observed in the nucleus of non tumor epithelial cells located in normal duct (ND) of the breast tissue. In comparison, no

significant staining is detected in the nucleus of invasive carcinoma cells (ICC).
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occurrence in controls could be explained by an incom-

plete penetrance.

Overall, for the RAD51B gene, one truncating mu-

tation and one likely deleterious variant were detected

in 2 out of 142 patients selected for enrichment in

breast/ovarian cancer cases. In online databases, one

truncating mutation and two likely deleterious variants

were detected in 4 out of 4,678 controls (Additional file

4: Table S4). Frequency of RAD51B variants was sig-

nificantly higher in cases (p = 0.012), which suggests

RAD51B variants are associated with breast/ovarian

cancer risks.

XRCC3 gene

The XRCC3 p.Arg150Cys variant was detected in a family

with 1 ovarian cancer and 5 breast cancer cases. Like the

RAD51B missense variant reported in this study, the

XRCC3 p.Arg150Cys variant is reported with a very low

frequency in Exome Variant Server (1 out of 4,276 con-

trols in European-American populations). We consider

this variant to be a likely deleterious variant because it oc-

curs in a functional domain and results in replacement of

a highly conserved amino acid with subsequent high

Grantham score and Align-GVGD maximum score (C65).

This study is the first report of XRCC3 mutation screen-

ing in breast and ovarian cancer predisposition. Numer-

ous association studies have evaluated XRCC3 SNPs as

candidate risk factors for breast cancer, but the results of

these studies remain controversial. A recent meta-analysis

suggested that the minor allele of XRCC3 p.Thr241Met

SNP was a low risk factor and XRCC3 IVS5-14A >G SNP

a low protective factor for breast cancer [39].

RAD51C gene

Several studies have reported RAD51C causal mutations

in breast and ovarian cancer predisposition [16,40,41].

Two novel RAD51C splicing mutations are reported in

this study: RAD51C c.1026 + 5_1026 + 7del mutation is

truncating, resulting in an out-of-frame exon 8 skipping

and RAD51C c.706-2A > G mutation leads to the loss of

44 amino acids in a functional domain of the protein by

an in-frame exon 5 skipping. These two RAD51C muta-

tions were detected in families with both breast and

ovarian cancer cases, which is consistent with previous

studies. As this set of patients was enriched with ovarian

cancer cases and due to the low frequency of RAD51C

mutations, other studies must be conducted in larger

series to evaluate whether RAD51C confers predispos-

ition to ovarian cancer alone or to both breast and ovar-

ian cancer, which remains controversial [42].

Conclusions
This study identified the first RAD51B mutation in a

breast and ovarian cancer family and confirmed that

RAD51 paralog mutations confer breast and ovarian

cancer predisposition and are rare events. Identification

c.452+3A>G

RAD51B

c.475C>T/p.Arg159Cys

RAD51C

c.706-2A>G c.1026+5_1026+4del

c.448C>T/p.Arg150Cys

XRCC3

Figure 3 Pedigrees for RAD51 paralog mutation and likely causal variant carriers. Individuals with breast cancer (BC) are shown as red

circles, ovarian cancer (OC) as purple circles, and other cancers as blue circles. SC: stomach cancer; UC: uterine cancer; PC: pancreas cancer.

Disease and age in years at diagnosis are given underneath the symbol. The index case is indicated with an arrow. No co-segregation studies

have yet been performed, except for RAD51C c.706-2A > G: tested relative with OC carried the mutation, indicated by (+).
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of families with mutations in the RAD51B, RAD51C or

XRCC3 genes and genetic testing of family members

could be used to estimate the associated breast and ovar-

ian cancer risks. In view of the low frequency of RAD51

paralog mutations, international collaboration of family

cancer clinics will be required to more accurately esti-

mate their penetrance and establish clinical guidelines.

Such studies would be facilitated by the development of

Next Generation Sequencing allowing laboratories to

simultaneously analyse numerous genes.

Additional files

Additional file 1: Table S1. Multiplex PCR mixes.

Additional file 2: Table S2. Primers.

Additional file 3: Table S3. All variants and polymorphisms detected in

this study.

Additional file 4: Table S4. RAD51B variants in cases and controls.
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