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Introduction

Macrophages, first identified -and named -as large phagocytes, play a myriad of roles during innate and adaptive immunity. In addition, the last decade has seen the emergence of a multiple properties of macrophages, showing that they are more than immune cells [START_REF] Stefater | Metchnikoff's policemen: macrophages in development, homeostasis and regeneration[END_REF].

As the presence of macrophages is associated with most diseases, these cells were firstly thought to be deleterious, as was thought "inflammation" in the broad sense. However, macrophages are also present during the full process of tissue repair and/or regeneration [START_REF] Murray | Protective and pathogenic functions of macrophage subsets[END_REF][START_REF] Sica | Macrophage plasticity and polarization: in vivo veritas[END_REF]. This led to the identification of macrophages as key players in the orchestration of the resolution of inflammation and of the restoration of the tissue integrity/function. These beneficial effects of macrophages are mainly due to the trophic factors they release in the environment, and particularly on parenchymal cells. The wide range of active molecules secreted by macrophages likely explains their wide roles in tissue development, repair and homeostasis that have been demonstrated in various tissues [START_REF] Pollard | Trophic macrophages in development and disease[END_REF]. The development of techniques and tools including transgenic mouse strains to specifically deplete or trace macrophages or macrophage subpopulations, combined to flow cytometry analysis and cell sorting, allowed to investigate the diversity of functions of macrophages in several tissues and diseases [START_REF] Chow | Studying the mononuclear phagocyte system in the molecular age[END_REF]. Moreover, in vitro cocultures performed in parallel to the exploration in vivo led to the identification of specific cell interactions macrophages develop with other cells and particularly with stem and/or progenitor cells.

Referring to macrophages, one has to keep in mind that the term "macrophages" encompasses a variety of cells harbouring distinct functional phenotypes. Indeed, depending on the environmental cues they received, macrophages may adopt various phenotypes and functions [START_REF] Stout | Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences[END_REF][START_REF] Gratchev | Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals[END_REF]. This versatility makes macrophages efficient regulators of tissue homeostasis.

In an attempt to understand their roles and functions, macrophages have been classified into several subpopulations according to their activation (polarisation) state. These populations were defined in vitro, under well-defined stimuli and mainly used human monocyte-derived macrophages. Therefore, these phenotypes likely not correspond to what occurs in vivo, were concomitant cues may interfere, leading to a variety of intermediate phenotypes (review in [START_REF] Mosser | Exploring the full spectrum of macrophage activation[END_REF][START_REF] Mantovani | Macrophage plasticity and polarization in tissue repair and remodelling[END_REF]). Classically activated human M1 macrophages (induced in vitro by Interferon (IFN)γ or IFNγ plus lipolysaccharide (LPS) or tumour necrosis factor (TNF)α) secrete interleukin (IL)-12, IL-23, reactive oxygen and nitrogen intermediates, and inflammatory cytokines (IL-1β, TNFα, IL-6) and chemokines (CXCL9, CXCL10). M1 macrophages are associated with the first phases of acute inflammation. Mirroring Th1/Th2 immune response, M2 alternative activation state of macrophages (triggered by IL-4 and IL-13) was first described. M2 macrophages highly express YM1, arginase 1, CCL24 and CCL17 [START_REF] Gordon | Alternative activation of macrophages: mechanism and functions[END_REF][START_REF] Stein | Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation[END_REF]. Then, a series of in vitro stimuli, mimicking in vivo cues, has been found to induce an M2-like phenotype. Glucocorticoids, transforming growth factor (TGF)β, IL-10 or immune complexes plus LPS or IL-1 trigger M2 phenotypes. M2 phenotype is characterized by low levels of pro-inflammatory cytokines (IL-1, IL-12), elevated CD206 (mannose receptor), IL-1ra and IL-1 decoy type II receptor, IL-10 expression and secretion of CCL17, CCL22, CCL24 chemokines. However, depending on the stimulus which is used to polarise the cells, some differences are observed, notably in the capacity to produce inflammatory effectors. Other notable differences between M1 and M2 macrophages are related to metabolic regulation. M1-polarized macrophages present an anaerobic glycolytic pathway while M2 polarisation is characterized by oxidative glucose metabolism (fatty acid oxidation), which is believed to sustain their long-lasting functions such as tissue remodelling, repair and healing. Iron metabolism also differs according to the state of polarisation of macrophages. M1 macrophages store iron through high levels of ferritin while M2 cells express high level of ferroportin, the main iron exporter (review in [START_REF] Mantovani | Macrophage plasticity and polarization in tissue repair and remodelling[END_REF][START_REF] Biswas | Orchestration of metabolism by macrophages[END_REF][START_REF] O'neill | Metabolism of inflammation limited by AMPK and pseudo-starvation[END_REF][START_REF] Cairo | Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype[END_REF]. Some attempts have been made to further classify M2 macrophages into subfamilies such as M2a, M2b, and M2c, depending on the stimulus used for polarisation [START_REF] Martinez | Macrophage activation and polarization[END_REF]. However these subgroups, defined in vitro in human, only partially overlap with those that were described in in vivo murine models, and that were named wounding/healing/resolving macrophages, as opposed to classical proinflammatory M1 macrophages. Indeed, M2 macrophages cells take part in polarized Th2 responses, parasite clearance, the dampening of inflammation, the promotion of tissue remodelling, angiogenesis and tumour progression [START_REF] Mantovani | Macrophage plasticity and polarization in tissue repair and remodelling[END_REF].

To add complexity, it has been recently showed that tissue macrophages may come from different sources. In the mouse, most of the tissue resident macrophages have an embryonic origin while most of the macrophages infiltrating the tissues during inflammation come from blood-derived monocytes [START_REF] Schulz | A lineage of myeloid cells independent of Myb and hematopoietic stem cells[END_REF][START_REF] Hashimoto | Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes[END_REF][START_REF] Hoeffel | Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages[END_REF]. Two main populations of monocytes have been described in mouse circulation. Ly6C pos CCR2 pos CX3CR1 lo monocytes have a short half-life, migrate to inflamed tissues where they produce TNFα, IL-1 and nitric oxide. Ly6C neg CCR2 neg CX3CR1 hi cells are found in inflamed and resting tissues and their recruitment depends on the tissue and type of injury [START_REF] Geissmann | Blood monocytes consist of two principal subsets with distinct migratory properties[END_REF][START_REF] Shi | Monocyte recruitment during infection and inflammation[END_REF]. There is no strict matching between Ly6C pos monocytes and M1 macrophages and between Ly6C neg monocytes and M2 macrophages. In almost all tissues, damage or infection is followed by the rapid entry of LyC6 pos monocytes that become M1 macrophages. In some tissues, Ly6C neg monocytes have been shown to invade the repairing/regenerating tissue after the first Ly6C pos /M1 wave of infiltration [START_REF] Auffray | Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior[END_REF][START_REF] Tacke | Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques[END_REF][START_REF] Nahrendorf | The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions[END_REF]Shechter et al., 2013). In other tissues, at rest or after an injury, Ly6C pos monocytes can give rise to both M1 macrophages, which then switch (or skew) into M2 macrophages [START_REF] Rivollier | Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon[END_REF][START_REF] Bain | Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6C(hi) monocyte precursors[END_REF][START_REF] Lin | Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations[END_REF][START_REF] Arnold | Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[END_REF]. The relative contributions of blood-derived macrophages versus tissue resident macrophages during tissue repair or chronic inflammation have not been established yet.

The molecular regulation of macrophage polarisation is starting to be explored. Different regulation pathways have recently been associated with either the M1 or the M2 activation states.

They involve a variety of molecular machineries, at the genomic, transcriptomic and posttranscriptomic levels (reviewed in [START_REF] Lawrence | Transcriptional regulation of macrophage polarization: enabling diversity with identity[END_REF]). For instance, NFκB has both pro-and anti-inflammatory functions depending on the pathophysiological context. STAT signalling is involved in the M1 (STAT1) and M2 (STAT6) polarization [START_REF] Ohmori | IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1dependent transcription in mouse macrophages[END_REF][START_REF] Takeda | Essential role of Stat6 in IL-4 signalling[END_REF][START_REF] Varinou | Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gammadependent innate immunity[END_REF], whereas different Interferon Regulatory Factors (IRFs) are associated with M1 (IRF5) and M2 (IRF4) gene expression [START_REF] Krausgruber | IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses[END_REF][START_REF] Satoh | The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection[END_REF]. Several molecular systems have been shown to be associated with the expression of the M2 phenotype by macrophages, such as PPARs (particularly PPARγ) and the CREB-C/EBP axis [START_REF] Odegaard | Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance[END_REF][START_REF] Bouhlel | PPARgamma Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-inflammatory Properties[END_REF][START_REF] Ruffell | A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair[END_REF][START_REF] Marigo | Tumorinduced tolerance and immune suppression depend on the C/EBPbeta transcription factor[END_REF]. At the DNA level, promoters of some genes characterising macrophage inflammatory profile are specifically associated with histone demethylases or nucleosome remodelling complexes [START_REF] Lawrence | Transcriptional regulation of macrophage polarization: enabling diversity with identity[END_REF][START_REF] Satoh | The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection[END_REF].

Finally, by controlling the stability and translation of mRNAs, post-transcriptional regulons allow the coordinated expression of chemokines and cytokines involved in the initiation as well as the resolution phases of inflammation [START_REF] Anderson | Post-transcriptional regulons coordinate the initiation and resolution of inflammation[END_REF].

In vascularised tissues, damage is followed by an inflammatory response, which is characterised by the presence of M1 macrophages [START_REF] Chen | Sterile inflammation: sensing and reacting to damage[END_REF]. This response is necessary for limiting the area of tissue damage, for preventing leakage and for cleansing cell/tissue debris. The second phase is the tissue repair, or regeneration when the parenchyma is able to recover function. This process is possible thanks to the resolution of inflammation, where M2 macrophages play an important role. Beside the regulation of inflammation per se, M1 and M2 macrophages have been shown to exert specific effects on stem/precursor cells in various tissues. Their role in the coordination of the repair/regeneration process and the recovery of tissue homeostasis is emerging.

In this review, we will present few examples of tissue repair/regeneration after a sterile damage, in which macrophages have been shown to play important trophic roles. Although fine tuning of repair/regeneration in a given tissue likely requires specific and orchestrated signals, common features of the kinetics of macrophage polarisation and properties can be observed in various tissues. Macrophages are also involved in the homeostasis of tissues having permanent renewal; an example is given as the erythroblastic island.

Liver regeneration

Kupffer cells are the resident macrophages of the liver, which activate upon liver injury. Both Kupffer cells and monocyte-derived macrophages are involved in liver regeneration: macrophage depletion leads to a delayed regeneration associated with a decrease in the rate of mature hepatocyte proliferation and a down regulation of various pro-and anti-inflammatory cytokines [START_REF] Meijer | Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy[END_REF]. In 2005, Duffield et al. showed for the first time the existence of a biphasic curve of macrophage activation/function during liver regeneration by ablation of monocytes/macrophages at different time points after liver injury [START_REF] Duffield | Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair[END_REF]. To this purpose, they used the transgenic mouse CD11b-DTR (receptor for diphteria toxin expressed under the control of CD11b promoter) in which monocytes/macrophages can be selectively depleted upon diphteria toxin injection (granulocytes and lymphocytes are not targeted by the toxin). During the fibrogenic phase, macrophage depletion results in reduced scarring and fewer myofibroblasts.

Conversely, during the phase of recovery, macrophage depletion leads to a failure of matrix degradation and fibrosis. These data were pioneers in evidencing functionally distinct subpopulations of macrophages in the same tissue depending on the phase of tissue remodelling [START_REF] Duffield | Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair[END_REF]. Under conditions where proliferation of mature hepatocytes is inhibited, liver progenitor cells (LPCs), also known as oval cells, expand and differentiate into hepatocytes and biliary epithelial cells in order to regenerate liver after damage. Models of LPC expansion (e.g. choline-deficient ethioninesupplemented diet, 2-acetylaminofluorene (2-AAF) administration combined to partial hepatectomy) are characterized by the presence of huge number of macrophages. Several studies have explored the trophic functions of macrophages on LPCs, which are always located in close vicinity [START_REF] Lorenzini | Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver[END_REF]. Macrophage depletion is associated with an altered LPC fate, although absence of the evidence of direct interactions does not allow to conclude whether macrophage effects on LPCs are direct or indirect [START_REF] Thomas | Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function[END_REF]. Delivery of bone marrow-derived macrophages (BMDM) in injured liver triggers a decrease of myofibroblast number and an expansion of LPCs, which are associated with an increase of metalloproteinases (MMPs), of IL-10, and of the LPC mitogen TNF-like weak inducer of apoptosis (TWEAK), which is known to be secreted by macrophages [START_REF] Thomas | Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function[END_REF]. However, macrophage depletion has not been found to directly alter LPC proliferation rate, but to reduce their invasiveness into the parenchyma, which is necessary for their differentiation into hepatocytes. This effect may be due to either a direct chemotactic effect of macrophages on LPCs or an alteration of extracellular matrix (ECM) and of myofibroblasts by macrophages [START_REF] Van | Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury[END_REF].

Anyway, macrophage depletion induces a decrease in LPC number and impairment in their differentiation and maturation, as almost no formation of small hepatocyte-like cells being observed [START_REF] Xiang | Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat[END_REF]. Since LPC proliferation and apoptosis rates are not altered by macrophage depletion, this suggests that macrophages are required for the very early phase of LPC priming after acute injury to enter the cell cycle [START_REF] Xiang | Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat[END_REF]. This hypothesis was further confirmed by a very smart study which deciphers some early signalling pathways the environment, including macrophages, delivers to LPCs to induce them in the hepatocyte route. After a hepatic damage, macrophages are induced to secrete Wtn3a upon phagocytosis of liver debris. Macrophage-derived Wnt3a triggers the expression of the Notch signalling inhibitor Numb in LPCs to prevent their differentiation into biliary cells, while inducing their differentiation in hepatocytes by the activation of the Wnt-βcatenin pathway [START_REF] Boulter | Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease[END_REF]. Altogether, these studies show the importance of macrophages during liver repair and regeneration. Although the M1/M2 paradigm has not been investigated in this context, there is evidence for several functional populations of macrophages in the regenerating liver, specifically acting on both hepatocytes and progenitor cells to recover liver homeostasis.

Skeletal muscle regeneration

Contrary to many tissues which repair after an injury, skeletal muscle is capable of fully regeneration, with recovery of its function. This is due to the properties of satellite cells, the main adult muscle stem cells, which activate after damage and expand before differentiating and fusing to form new myofibres [START_REF] Wang | Satellite cells, the engines of muscle repair[END_REF]. Macrophages have always been observed during muscle regeneration. Specific depletion of circulating monocytes with diphteria toxin in the CD11b-DTR mouse (which spares all types of granulocytes [START_REF] Duffield | Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair[END_REF]) or with clodronateencapsulated liposomes shows a very severe impairment of muscle regeneration [START_REF] Bryer | Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration[END_REF][START_REF] Summan | Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study[END_REF][START_REF] Arnold | Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[END_REF], indicating the crucial involvement of these cells in muscle regeneration. The first studies have suggested that macrophages that are present during the first phases of muscle regeneration (time of necrosis and phagocytosis of muscle debris) differ from those that accompany the late phases of the process (formation and growth of the new myofibres) [START_REF] Mclennan | Resident macrophages (ED2-and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres[END_REF][START_REF] Mclennan | Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions[END_REF]. This sequence was recently confirmed, thanks to new immunological tools, together with cell sorting techniques and the use of lineage tracing mouse strains. Soon after injury, LyC6 pos CCR2 pos CX3CR1 lo blood-derived monocytes/macrophages infiltrate the injured muscle area. These macrophages switch their phenotype towards a M2 resolving/wounding phenotype (Ly6C neg CCR2 neg CX3CR1 hi ), likely upon phagocytosis of muscle debris [START_REF] Arnold | Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[END_REF]. Thus skeletal muscle regeneration is characterized by a sequence of M1 then M2 macrophages, which has been confirmed during human muscle regeneration (Saclier et al., 2013b). The phenotype of these populations evolves with time. Soon after injury, a majority of M1 cells are present, which express higher amounts of TNFα and IL-1β. Then M2 cells appear rapidly, expressing higher amounts of IL-10 and TGFβ and these cells predominate during several days. At the end of muscle regeneration, not only the number of macrophages decreases but the phenotype of both Ly6C pos F4/80 pos (F4/80 is a macrophagic marker) and LY6C neg F4/80 pos cells changes towards a dampening of all cytokine markers, suggesting a skewing into M2 resolving/silencing macrophages [START_REF] Perdiguero | p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair[END_REF]. Very importantly, perturbing this kinetics strongly alters muscle regeneration. Indeed, a too early anti-inflammatory signal (e.g. injection of IL-10 or blocking IFNγ few days after injury) as well as blocking later anti-inflammatory signals (injection of anti-IL-10 antibodies during the last phase of muscle regeneration) impedes muscle regeneration [START_REF] Cheng | ENDOGENOUS INTERFERON-{gamma} IS REQUIRED FOR EFFICIENT SKELETAL MUSCLE REGENERATION[END_REF][START_REF] Perdiguero | p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair[END_REF].

The pioneer studies on macrophages during muscle regeneration suggested various effects of macrophage subsets on myogenic cell populations. These have been confirmed through a series of in vitro and in vivo analyses. Macrophages stimulate myogenic precursor cell (MPC) chemotaxis, growth, and survival through the delivery of anti-apoptotic cues (Saclier et al., 2013b;[START_REF] Sonnet | Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems[END_REF]. In vitro cocultures experiments using M1 and M2 polarised macrophages helped to finely analyse their role on MPCs. Pro-inflammatory M1 macrophages stimulate MPC proliferation and inhibit their fusion. Conversely, M2 macrophages (both M2a and M2c) stimulate myogenesis by both promoting MPC commitment into terminal differentiation and the formation of large myotubes (Saclier et al., 2013b). Accordingly, in vivo depletion of intramuscular macrophages during the late phase of muscle regeneration leads to a decrease of the size of the newly formed myofibres [START_REF] Arnold | Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[END_REF], confirming the role of M2 macrophages in differentiation of myogenic precursors. The effectors that drive these multiple effects of macrophages on MPCs start to become known (review in (Saclier et al., 2013a)). Anti-apoptotic contacts between macrophages and myogenic cells involves at least four cell to cell molecular couples, VCAM-1(CD106)/VLA-4(CD49d), ICAM-1(CD54)/LFA-1(CD11a), CX3CL1/CX3CR1 and PECAM-1(CD31)/PECAM-1(CD31) [START_REF] Sonnet | Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems[END_REF]. Among molecules that stimulate myogenic cell proliferation, IL-6, TNFα, IL1-β, Granulocyte-colony stimulating factor (G-CSF) have been shown to be highly secreted by M1 macrophages; M2 macrophages secrete TGFβ, Insulin Growth Factor (IGF)-1 and low TNFα which stimulate the formation of myotubes and promote regeneration [START_REF] Hara | G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation[END_REF][START_REF] Lu | Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury[END_REF]Saclier et al., 2013b).

Skeletal muscle regeneration is sustained by the sequential presence of first M1, then M2 macrophages that deliver specific cues to promote expansion, than differentiation of muscle progenitors.

Kidney regeneration

After damage (experimentally, most of the studies uses the ischemia/reperfusion model injury), the renal parenchyma can regenerate. It has also been shown that just after injury, resident and recruited macrophages may directly damage the tissue through their M1 phenotype (they produce oxygen radicals, hydrogen peroxide, nitric oxide, IL-1, TNFα). Therefore, depletion of macrophages before or during the first steps after injury improves tissue repair [START_REF] Nelson | The renal mononuclear phagocytic system[END_REF][START_REF] Lee | Distinct macrophage phenotypes contribute to kidney injury and repair[END_REF]. In contrast, later phases of injury are associated with M2 macrophages, which depletion is associated with persistent kidney injury, increased apoptosis, impaired tubular cell proliferation and sustained inflammation [START_REF] Lee | Distinct macrophage phenotypes contribute to kidney injury and repair[END_REF][START_REF] Kim | Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury[END_REF]. In injured kidney, as in skeletal muscle, Ly6C pos bone marrow monocyte population is selectively recruited and gives rise to several macrophage populations, among them Ly6C neg cells that exhibit an M2 phenotype [START_REF] Lin | Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations[END_REF].

M2 macrophages (expressing arginase 1 and the mannose receptor) actively promote repair of injured renal tubules. They clear damage associated molecular patterns (DAMPs) and other cell and matrix debris, they stimulate proliferation of surviving cells through the elaboration of Wnt ligand, and they promote angiogenesis (review in [START_REF] Nelson | The renal mononuclear phagocytic system[END_REF]). During kidney repair, macrophage populations follow a biphasic response suggestive of the presence of subpopulations fulfilling disparate functions. Functional in vivo studies showed that infusion of IFN-stimulated BMDM worsens kidney damage [START_REF] Lee | Distinct macrophage phenotypes contribute to kidney injury and repair[END_REF] while IL-10-transduced macrophages modify the inflammatory milieu, induce tubular cell proliferation and protect them from apoptosis [START_REF] Jung | Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2[END_REF]. IL-4-stimulated (M2) macrophages, but not IFNγ-stimulated ones, promote renal tubular cell proliferation [START_REF] Lee | Distinct macrophage phenotypes contribute to kidney injury and repair[END_REF]. Molecular effectors involved in these effects are poorly known.

Macrophage-derived CSF-1 (M-CSF) treatment increases tubular epithelial cell proliferation and decreases their apoptosis [START_REF] Menke | CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice[END_REF]. Macrophages also secrete Wnt7b, which has been shown to promote regeneration in kidney by directing epithelial cell-cycle progression and basement membrane repair. Specific depletion of Wnt7b in macrophages (in Csf1R-iCRE;Wnt7 fl/fl mouse) induces a delay in regeneration, an increase in the expression of the epithelial cell injury-associated marker (injury molecule-1 Kim1), and a blockade of epithelial cell progression into G2/M phase of the cell cycle [START_REF] Lin | Macrophage Wnt7b is critical for kidney repair and regeneration[END_REF]. Anti-inflammatory (IL-10 stimulated) macrophages protects epithelial cells from apoptosis and stimulates their proliferation through the increase of intracellular iron pool and the increased expression of lipocalin-2, which is, in an iron-dependent way, a growth and differentiation factor [START_REF] Jung | Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2[END_REF]. The biphasic response of macrophages, from M1 to M2 during kidney regeneration is due to a switch of their phenotype. Tracking IFN-stimulated macrophages that have been adoptively transferred into injured recipient shows that these cells can switch to an M2 phenotype at the onset of kidney repair [START_REF] Lee | Distinct macrophage phenotypes contribute to kidney injury and repair[END_REF]. Taken together, these studies show that macrophages undergo a switch from a proinflammatory to a trophic phenotype that supports the transition from tubule injury to tubule repair during kidney regeneration.

Nerve regeneration

In the central nervous system (CNS), first evidence of a role of macrophages came from in vitro culture systems in which dorsal root ganglia neurons were cultured in conditioned media from peritoneal macrophages. The presence of macrophages more than doubles the proportion of surviving neurons and neurite extensions. When macrophages had phagocytosed a myelin fraction, macrophage efficiency is increased. Of interest, LPS-stimulated macrophages do not present this trophic effect [START_REF] Hikawa | Macrophage-enhanced neurite regeneration of adult dorsal root ganglia neurones in culture[END_REF][START_REF] Hikawa | Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture[END_REF]. A breakthrough in the understanding the supportive role of macrophages in CNS repair has been made by Michal Schwartz's team in 1998, in a study that opened the way of a long series of investigations. This study shows that transplantation of macrophages -that were previously activated with peripheral sciatic nerve debris -in the lesion after complete transection of spinal cord leads to partial functional recovery and regrowth and reconnexion of neural fibres. The phagocytic activity of macrophages during the in vitro phase of the experiment is crucial for their activation and their subsequent trophic activity in vivo [START_REF] Rapalino | Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats[END_REF]. Monocyte-derived macrophages are essential for recovery, as demonstrated by adoptive transfer experiments [START_REF] Shechter | Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice[END_REF]. Several experiments indicate the sequential presence of M1, then M2 microglial/macrophages at the lesion site, suggesting that, as in other tissues, post-injury CNS repair follows a "wound" process (Shechter and Schwartz, 2013;[START_REF] Kigerl | Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[END_REF]. A recent study explored the recruitment of blood-derived monocytes after spinal cord injury. Only M1 Ly6C pos CXRCR1 lo monocytes are recruited via the leptomeninges through CCR2 signalling at the site of the injury (Shechter et al., 2013). At the same time, M2 macrophages are recruited from blood at the level of the choroid plexus, which provides a M2 environment. Adoptive transfer experiments suggest that here again, only Ly6C pos CXRCR1 lo monocytes are recruited, but through VCAM-1 and CD73, they are rapidly educated into M2 cells. These cells then migrate from the choroid plexus through the cerebrospinal fluid to the injury site where they can promote axonal growth and tissue repair (Shechter et al., 2013). Some molecular mechanisms have been identified in the instruction of macrophagic cells into M2 cells, such as the glial scar matrix chondroitin sulphate proteoglycan (CSPG). It promotes IL-10 production by macrophages, which in turn produce MMP-13 that is essential for functional recovery [START_REF] Shechter | The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair[END_REF]. Similarly, substance P triggers and anti-inflammatory milieu in spinal cord injury, which induces IL-10 production by macrophages, and the reduction of inducible nitric oxide synthase and TNFα synthesis [START_REF] Jiang | Substance P induces M2-type macrophages after spinal cord injury[END_REF]. In the same way, introducing anti-IL-6 antibodies switches macrophages from a haematogenous phenotype to a resident-microglial-like phenotype, which is associated with a decrease of pro-inflammatory markers and an increase in axonal regeneration and sprouting [START_REF] Mukaino | Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation[END_REF]. Similarly, the overexpression or the injection of the anti-inflammatory molecule secretory leukocyte protease inhibitor (SLPI) triggers a protective effect after spinal cord injury with an improvement in locomotor control, associated with downregulation of the NFκB pathway and of TNFα [START_REF] Ghasemlou | Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury[END_REF].

The interactions between macrophages and neural progenitors have also been explored in vivo and in vitro. Transplanted neural stem/precursor cells establish contacts with phagocytes and skew the inflammatory cell infiltrate by reducing the proportion of M1 macrophages, thus promoting the healing of the injured cord [START_REF] Cusimano | Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord[END_REF]. Cocultures of macrophages (OX42 pos ) and neural progenitors (NG2 pos ) isolated from injured spinal cord showed that macrophages secrete factors inhibiting neural progenitor growth [START_REF] Wu | Interaction of NG2(+) glial progenitors and microglia/macrophages from the injured spinal cord[END_REF]. Indeed, M1 macrophages are neurotoxic or block both neurogenesis and oligodendrogenesis of adult neural progenitor cells. Inversely, M2 macrophages promote a regenerative growth response in adult sensory axons [START_REF] Kigerl | Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[END_REF].

Microglia activated by cytokines stimulates neurogenesis. The IL-4-activated microglia shows a bias towards oligodendrogenesis while the low level IFNγ-activated microglia shows a bias towards neurogenesis (Butovsky et al., 2006b). These properties were confirmed in in vivo experiments, in which injection of IL-4-activated microglia into the cerebrospinal fluid in an Experimental Auto Encephalitis (EAE) model results in an increased oligodendrogenesis in the spinal cord, associated with improved clinical symptoms (Butovsky et al., 2006a). Nevertheless, the molecular activity of macrophages on neural stem cells is poorly known. M1 neurotoxicity is likely due to their secretion of several cytokines, among which TNFα (Butovsky et al., 2006b), and thrombospondin-1, tissue inhibitor of MMP (TIMP)1 and MMP9, which are also expressed by microglial cells in vivo [START_REF] Wu | Interaction of NG2(+) glial progenitors and microglia/macrophages from the injured spinal cord[END_REF]. Beneficial effects of IL-4 activated microglia have been shown to involve IGF1 (Butovsky et al., 2006a). Ferritin, which is a macrophage-derived signal that promotes oligodendrogenesis, may be also involved in the trophic role of macrophages. Indeed, after transplantation of ferritin-loaded macrophages into intact spinal white, proliferating NG2 pos neural stem cells migrate into the macrophage transplants and accumulate fluorescently labelled ferritin [START_REF] Schonberg | Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo[END_REF].

Central nervous system repair is sustained by macrophages that in parallel to their classic inflammatory roles, delivery specific cues to neural progenitor cells to ensure both resolution of inflammation and tissue repair.

Erythropoiesis -the erythropoietic island 50 year ago, macrophages have been found associated with maturating erythroblasts in the bone marrow, thus forming the erythroblastic island (reviews in [START_REF] Manwani | The erythroblastic island[END_REF][START_REF] Chasis | Erythroblastic islands: niches for erythropoiesis[END_REF]). They form distinct anatomic structures composed of developing erythroblasts surrounding a central macrophage. Usually, islands include one or more synchronously maturing cohorts of erythroid cells undergoing four or five divisions between proerythroblast and normoblast stages. At the end of terminal differentiation, expelled nuclei of erythrocytes are phagocytosed by the central macrophage. Erythroblastic island provides a unique site for erythropoiesis, in which the central macrophage plays a crucial supportive role. Disrupting island integrity by disrupting links between maturating erythroblasts and macrophage leads to increased erythroblast apoptosis and to decreased proliferation, maturation and enucleation. Macrophage provide various interactions, including cell:cell binding and secreted factors to finely modulate erythropoiesis and erythroblast/cyte number through the control of proliferation, survival, terminal differentiation (promotion of enucleation and phagocytosis of extruded nucleus), iron transfer and nutrient supply (reviews in [START_REF] Manwani | The erythroblastic island[END_REF][START_REF] Chasis | Erythroblastic islands: niches for erythropoiesis[END_REF]). Erythroblast macrophage protein (EMP) has been shown, through homophilic interactions, to prevent apoptosis of maturating erythroblasts [START_REF] Hanspal | Molecular identification and functional characterization of a novel protein that mediates the attachment of erythroblasts to macrophages[END_REF]. Later during erythropoiesis, EMP, which plays a role in actin organization, is involved in nucleus partitioning and its recognition by engulfing macrophage at the time of enucleation, phagocytosis being driven by MFG-E8. α4β1/VCAM1 and ICAM4/αν bindings are also involved in island integrity. A soluble form of ICAM4 is secreted at terminal differentiation and may participate to mature erythrocyte detachment from the central macrophage [START_REF] Lee | Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation[END_REF].

Iron transfer to maturating erythroblast is believed to occur through the central macrophage, since ferritin is localized between the two cell types and macrophages bear ferroportin, responsible of the export of iron [START_REF] Manwani | The erythroblastic island[END_REF]. CD69, CD163 are also involved in the function of the erythroblastic island, as well as Ephrin2/EphB4 (in the proliferation of erythroblasts). Moreover, several locally secreted molecules positively and negatively regulate erythroblast maturation, such as IGF-1 (positive regulation), TGFβ, IL-6, TNFα, IFNγ (negative regulation). Indeed, macrophage may exert negative role on erythroblast survival. It has been shown that immature erythroblasts express the RCAS1 receptor (receptor binding cancer antigen expressed in Siso cells). Macrophages secrete soluble RCAS1, thus activating apoptosis in erythroblasts [START_REF] Matsushima | Receptor binding cancer antigen expressed on SiSo cells, a novel regulator of apoptosis of erythroid progenitor cells[END_REF]. This complexity of erythropoiesis regulation by macrophages in the island has been very recently highlighted by two in vivo studies aiming at specifically depleting macrophages under various conditions. Specific depletion of bone marrow macrophages (in the CD169-DTR mouse) triggers both a decrease in the number of erythrocytes/erythroblasts in the bone marrow and an increase of their lifespan. As a result, mice do not suffer from anaemia [START_REF] Chow | CD169 macrophages provide a niche promoting erythropoiesis under homeostasis and stress[END_REF]. In pathological conditions, the supportive role of macrophages has been clearly evidenced in vitro and in vivo. After an acute anaemia, macrophages are essential for recovery and erythrocyte development. Inversely, polycythemia, which is characterized by elevated erythropoiesis, is improved by macrophage depletion (in the CD169-DTR mouse or with clodronate-liposomes) [START_REF] Ramos | Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia[END_REF][START_REF] Chow | CD169 macrophages provide a niche promoting erythropoiesis under homeostasis and stress[END_REF]. The immune signature of macrophage in the erythroblastic island is very particular. These cells are very large (more than 15 µm diameter), do not express Mac1, and do express F4/80 and a series of markers, some of them not being usually expressed by macrophages in other tissues: CD16, CD32, CD64, CD4, CD31, CD11a, CD11c, CD18, and HLA-DR [START_REF] Manwani | The erythroblastic island[END_REF]. Further studies will indicate whether this signature is altered under different conditions of erythropoiesis homeostasis, or upon inflammation.

Concluding remarks

From the recent studies investigating the roles of macrophages after injury in various tissues, some common features arise that suggest that post-injury inflammation follows a "wounding" or "healing" kinetics with the sequential presence of pro-inflammatory M1 then M2 macrophages. After a sterile injury, so in the absence of immune challenge, the M1 pro-inflammatory phase is likely very short and resolution of inflammation quickly takes place. Then the proresolving/healing M2 macrophages sustain tissue repair and/or regeneration [START_REF] Lucas | Differential roles of macrophages in diverse phases of skin repair[END_REF]. The next challenges include the deciphering of both the molecular regulation of these macrophages subsets and their precise signalling on precursor cells in the tissues. This will be of importance for attempting of manipulation of the inflammatory compartment for the improvement of regeneration and of some diseases associated with chronic inflammation. In these contexts, both M1 pro-inflammatory and M2 resolving macrophages coexist and are not more able to promote tissue repair and homeostasis recovery.
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