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Abstract

This article quantitatively investigates ultrasound propagation in numerical anisotropic porous media with finite-difference sim-
ulations in 3D. The propagation media consist of clusters of ellipsoidal scatterers randomly distributed in water, mimicking the
anisotropic structure of cancellous bone. Velocities and attenuation coefficients of the ensemble-averaged transmitted wave (also
known as the coherent wave) are measured in various configurations. As in real cancellous bone, one or two longitudinal modes
emerge, depending on the micro-structure. The results are confronted with two standard theoretical approaches: Biot’s theory,
usually invoked in porous media, and the Independent Scattering Approximation (ISA), a classical first-order approach of multiple
scattering theory. On the one hand, when only one longitudinal wave is observed, it is found that at porosities higher than 90%
the ISA successfully predicts the attenuation coefficient (unlike Biot’s theory), as well as the existence of negative dispersion. On
the other hand, the ISA is not well suited to study two-wave propagation, unlike Biot’s model, at least as far as wave speeds are
concerned. No free fitting parameters were used for the application of Biot’s theory. Finally we investigate the phase-shift between
waves in the fluid and the solid structure, and compare them to Biot’s predictions of in-phase and out-of-phase motions.
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1. Introduction1

Cancellous bone is a random and porous material with struc-2

tural anisotropy. Ultrasound transmission experiments revealed3

that in some cases two compressional waves propagating at4

different velocities were observed, as reported both in vitro5

[1, 2, 3] and in vivo [4]. Yet this phenomenon is not fully un-6

derstood.7

From a theoretical point of view, there are several ways to8

account for wave propagation in media as complex as cancel-9

lous bone. A very simple approach, which will be referred to10

as Wood’s model [5], consists in considering bone as a homo-11

geneous medium in which sound speed is determined from the12

averaged mass densities and compliances of the solid and fluid13

phases, weighted by their respective volumetric fractions. A14

more elaborate theoretical description is given by Biot [6, 7].15

Though it is out of the scope of this paper to give a full descrip-16

tion of Biot’s model, let us recall that it is an homogeneiza-17

tion theory, like Wood’s model. Biot’s theory is a reference18

model for wave propagation in porous media, particularly be-19

cause it was shown to predict successfully the velocities of two20

longitudinal waves in various porous media, from sintered glass21

spheres [8] to cortical [9] and cancellous bone [2, 10]. However,22

the validity of Biot’s model is limited to low frequencies. Biot23

[7] himself wrote: ”There remains however an upper bound for24

the frequency, namely, that at which the wavelength becomes25

of the order of the pore size. Such a case must, of course,26

be treated by a different method.” Considering typical dimen-27

sions at stake, in the MHz domain, the ultrasonic wavelengths28

are of the same order of magnitude as the size of the trabecu-29

lae [11, chap.1]. An immediate consequence is that single and30

even multiple scattering must be taken into account [12]. Scat-31

tering induce loss, which is not predicted by Biot’s theory: as32

long as the fluid phase is free of absorption, Biot’s fast and slow33

waves do not show any attenuation. Moreover, scattering does34

not only affect the wave amplitude, but also its velocity, though35

to a lesser degree. An alternative approach to Biot’s would be to36

adopt a multiple scattering formalism for wave propagation in37

cancellous bone. A given sample is treated as one realization of38

a random process, whose typical physical parameters (density39

ρ, elastic moduli Ci jkl) randomly depend on position ~r within40

the medium. Assuming gaussian statistics, the microstructure41

would be characterized by second-order moments i.e., corre-42

lation functions such as < ρ(~r)ρ(~r′) >, < Ci jkl(~r)Cmnop(~r′) >43

etc. In the random multiple scattering approach, the wave field44

s(~r, t) resulting from the emission of a pulse through a slice of45

bone is considered as a random variable. The basic quantities46

of interest are its statistical average < s(~r, t) > (also referred to47

in the literature as the ”coherent wave”) and variance. In par-48

ticular, one important result of multiple scattering theory is that49

< s(~r, t) > follows Dyson’s equation [13, 14]. If this equation50

can be solved, then the speed and attenuation can be inferred51

from a statistical description of the microstructure of any mate-52

rial. This was done for instance by Turner [15] in the framework53

of non-destructive characterization of polycrystals, where only54

one longitudinal mode was predicted and observed. The exis-55

tence of two longitudinal modes within the framework of mul-56

tiple scattering theory was reported by Cowan et al. [16]. They57
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have carried out experiments showing that two-wave propaga-58

tion could occur in dense suspensions of plastic spherical scat-59

terers, and that the slower of the two waves resulted from res-60

onant coupling between scatterers. Their theoretical approach61

was the multiple scattering theory, under the Coherent Potential62

Approximation [17], assuming the wavelength was larger than63

the scatterers size.64

Actually, none of the above-mentioned theories is perfectly65

suited to wave propagation in cancellous bone. Unlike poly-66

crystals such as steel, cancellous bone has a solid and a fluid67

phase, showing strong variations for both density and elas-68

tic moduli. Moreover, the typical dimensions of the hetero-69

geneities are not small compared to the wavelength, at least in70

the MHz range and above. One objective of this paper is to ex-71

amine in what respect some typical results of Biot’s, Wood’s72

and multiple scattering theories can be useful to understand73

wave propagation in cancellous bone. For instance Wood’s74

model is very simple and purely empirical but we will see that75

in some cases it may suffice to predict the velocity. As to Biot’s76

theory, apart from its inadequacy to describe scattering, it re-77

quires many parameters that are difficult to measure in the case78

of cancellous bone, especially in vivo. As a consequence, multi-79

parameter fitting of experimental results is required, which im-80

pairs the reliability of Biot’s theory in the context of cancellous81

bone. To our knowledge Biot’s theory was first developed for82

isotropic media and does not clearly explain why the two waves83

are observed for an ultrasound propagation along the main ori-84

entation of the cancellous bone and not when the propagation is85

orthogonal [18]. Yet again, even though it fails to describe the86

attenuation and anisotropy, the velocities predicted by Biot can87

be in fairly good agreement with experimental observations. As88

to multiple scattering theory, though it yields an exact equation89

for the coherent wave field, it is not ideal either because in or-90

der to derive practical results, at some stage an approximation91

has to be made, which necessarily limits the range of validity.92

In this paper, we will use the simplest of all multiple scattering93

models, known as the ISA (Independent Scattering Approxima-94

tion), and examine its applicability to predict scattering losses95

and dispersion in anisotropic porous structures.96

For a better understanding of ultrasound propagation in can-97

cellous bone, we have chosen to begin with a numerical study,98

which is particularly flexible. In the last ten years, numerical99

studies have been intensively used, both in real bone structures100

derived from X-ray computed tomography [19, 20, 21] or in nu-101

merically synthesized media [22]. Our approach here is based102

on the synthesis of numerical random and biphasic structures,103

previously described in [23]: elliptic (2D) or ellipsoidal (3D)104

scatterers were randomly distributed in a fluid to form a slab of105

random medium. In this previous work, we had qualitatively106

studied the occurrence of the fast and slow waves depending on107

simple statistical medium parameters using a finite-difference108

time-domain (FDTD) tool1 to simulate the propagation of elas-109

tic waves. We observed similar results, at least qualitatively, in110

2D and in 3D. Four conditions were necessary to observe the111

two waves in our simple models:112

1http://www.simsonic.fr

• a certain range of solid fraction (around 30% to 70 % for113

our model)114

• a propagation parallel to the main orientation (i.e. in the115

direction of the long axis of the scatterers)116

• the elastic nature of the solid phase117

• enough connectivity of the solid matrix along the direction118

of propagation119

The first two points are consistent with previous observations120

in real cancellous bone [11, chap.11], justifying a posteriori121

the relevance of our simplified model as a first step to study122

ultrasound propagation in trabecular bone. The last two points,123

on the contrary, could only have been studied numerically, and124

were consistent with the hypothesis that the fast wave results125

from a guiding through the solid matrix, whereas the slow wave126

is traveling predominantly through the fluid.127

In the present article, velocities and attenuation coefficients128

of the coherent waves are measured in 3D samples, whether129

one or two waves are observed. Measurements methods are de-130

tailed in Sec.2.2. FDTD simulation results are confronted to the131

Independent Scattering Approximation (see Sec.2.3) and Biot’s132

theory. Comparisons are presented in Sec.3, when one (3.1) or133

two waves (3.2) are observed. Sec.3.3 presents a different ap-134

proach based on wave propagation from a pointlike source in135

2D media, in order to observe the progressive transition from136

one to two waves. Finally, Sec.4 investigates the nature of the137

two waves by different methods. First, limit cases are studied138

by observing the two waves when the fluid phase is replaced139

by vacuum or when the solid matrix is perfectly rigid. In these140

cases propagation occurs only in the solid (respectively fluid)141

phase, giving interesting clues on the propagation paths for the142

fast and slow waves. Finally, we compare the phase shifts be-143

tween the simulated fast and slow waves to Biot’s theory.144

2. Material and Methods145

2.1. Numerical simulations146

In a previous paper [23] we introduced numerical models147

generated by a Monte Carlo method: ellipses (2D) or ellipsoids148

(3D) of solid aligned along the same direction were added pro-149

gressively in water (overlap was allowed), in order to obtain150

anisotropic and biphasic maps with given solid fractions. Ex-151

amples of 3D maps can be seen on figure 1. The half lengths152

of the principal axes of the scatterers (i.e. the ellipsoids) were153

a = 350 µm, b = c = 50 µm (note that c does not ex-154

ist in 2D). The material properties chosen for the solid part155

were those of typical compact bone, compressional velocity156

cL = 4 mm.µs−1, shear velocity cT = 1.8 mm.µs−1 and mass157

density ρs = 1850 kg.m−3. The background medium had the158

properties of water, V f luid = 1.5 mm.µs−1 and mass density159

ρ f = 1000 kg.m−3. Ultrasound propagation was simulated by160

a FDTD software, SimSonic, developed by E. Bossy [24] and161

freely available for download on-line2. Stresses and particle ve-162

locities can be obtained at each point of the medium. Perfectly163

2http://www.simsonic.fr
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Figure 1: Left: Two typical 3D maps, both with a 50% solid fraction (gray). The
propagation direction is along the z axis. (a) Time-distance diagram and corre-
sponding time trace (taken at a 6 mm propagation distance) obtained when the
ultrasound propagation is along the main direction. Two wavefronts are clearly
distinguished. This simulation will be referred to as the ”reference simulation”.
(b) Time-distance diagram and corresponding time trace (taken at a 6 mm prop-
agation distance) obtained when the ultrasound propagation is perpendicular the
main direction. Only one wave is observed.

matched layers (PML) were placed at the edges of the sam-164

ple in the direction of propagation, while perfectly reflecting165

walls were placed in the transverse direction, so that the sam-166

ples can be considered as semi-infinite slabs. The ultrasound167

pulses considered in the simulations had a central frequency of168

1 MHz. The grid size was 10 micrometers in every directions,169

which corresponds to 1/150th of the wavelength in the fluid.170

Taking advantage of the flexibility of numerical methods, we171

recorded the signals transmitted inside the samples for different172

depths within the propagation medium, in order to obtain full173

time-distance diagrams where the signal amplitude can be read174

as a function of time and propagation depth. This type of repre-175

sentation, not accessible experimentally where only time traces176

can be retrieved outside the sample, makes it easier to determine177

whether one or two waves are propagating. This is illustrated in178

Fig.1: in the case of a propagation along the main direction, two179

waves are clearly observed (top) whereas only one wavefront180

appears in the case of a propagation perpendicular to the main181

direction, i.e. along the long axis of the ellipsoids (bottom).182

The transmitted signal is integrated over the whole transverse183

plane, for estimation of the coherent wave, assuming ergodic-184

ity. Due to the reflecting walls, the resulting signal is analogous185

to what would be measured in an ideal experiment with an in-186

finite planar transducer placed within a semi-infinite scattering187

slab. More details on both the numerical samples and the sim-188

ulations are available in [23]. In the rest of the present article,189

the simulation of propagation along the main direction in a bi-190

nary medium made of bone and water with a 50% solid fraction191

(Fig.1a) will be referred to as the ”reference simulation”.192

2.2. Velocities and attenuation coefficients measurements193

As the emitted signal is a pulse centered at 1 MHz with a194

-6 dB bandwidth of around 100%, we limited our study to the195

0.5 MHz - 1.5 MHz frequency range. Theoretically the coher-196

ent wave is obtained through ensemble averaging of the signals197

propagated through an infinite number of realizations, and is198

therefore only estimated here. As a consequence there is still an199

incoherent part remaining in the studied signal, mostly arriving200

after the ballistic wave(s). In order to remove it, the fast and201

slow waves were separated using a combination of rectangular202

and Hann windows, to avoid as much as possible the creation203

of disruptive frequencies brought by sharp cutting.204

In a first step we focused on obtaining velocities and at-205

tenuation coefficients from the 3D numerical simulations. As206

detailed above, transmitted signals for different propagation207

distances were recorded and stored in a time-distance matrix208

s(t, z). Performing Fast Fourier Transforms (FFT) of each col-209

umn provides s̃(ω, z), a matrix where each row corresponds to210

s̃ω(z) the signal as a function of propagation distance, at a given211

angular frequency ω. Phase velocity and attenuation coefficient212

were respectively obtained as follows:213

• by taking the unwrapped phase angle ϕω(z) of s̃ω(z) we
obtained:

ϕω(z) = arg(s̃ω(z)) = ϕω(0) + kz (1)

so ϕω(z) is linear, with a slope equal to k(ω) giving easy
access to the phase velocity v(ω):

v(ω) =
ω

k(ω)
(2)

• by taking the modulus of s̃ω(z) and assuming an exponen-
tial decrease of the signal, one obtains the following ex-
pression involving the attenuation coefficient γ(ω):

|s̃ω(z)| = e−γ(ω)z (3)

γ is then obtained by a linear fit of ln |s̃ω(z)| with z. Note
that we chose to represent the attenuation coefficient for
the amplitude γ as it is usually used in the field of bone
quantitative ultrasound [11]. In the multiple scattering
community, one usually refers to the scattering mean free
path le, defined as the decay length for the intensity of the
coherent field. The two parameters are simply related:

le =
1

2γ
(4)

Frequency-resolved measurements of attenuation and veloci-214

ties were obtained for the reference simulation (as exposed in215

Sec.3.2). However Eq.2 is inapplicable when the two wave-216

fronts are not clearly separated. In such cases, fast and slow217

waves velocities were estimated through time-of-flight mea-218

surements, by tracking the first minimum of each wave in the219

time-distance diagrams, thus losing the frequency-dependence.220

2.3. Independent Scattering Approximation (ISA)221

In a random scattering medium the coherent field is the so-222

lution of Dyson’s equation [13]. The key element in Dyson’s223

equation is the so-called ”self-energy” which wraps up all pos-224

sible multiple scattering terms. The self-energy can be written225
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as a perturbative development of terms in 1/(k0le) [14]. The226

simplest approximation consists in keeping only the first-order227

term of the development. This is known as the ”Independent228

Scattering Approximation” (ISA).229

Here, the numerical samples can be seen as a random ar-
rangement of identical scatterers in a lossless fluid with velocity
c0 (wavenumber k0 = ω/c0). In that simple case, from a physi-
cal point of view the ISA amounts to considering that the scat-
terers positions are uncorrelated, and that the wave never loops
back to a scatterer that has already been visited [25]. Under
this assumption, the self-energy only depends on the scatterers
concentration n and the scattering properties of one individual
scatterer, particularly its angular directivity pattern f (θ). Then
Dyson’s equation has an analytical solution, and the coherent
wavefield is characterized by a dispersion equation ke f f (ω),
with ke f f the complex-valued ”effective wave number”. In other
words, on average the effect of multiple scattering is to modify
the speed as well as the attenuation of the medium, since ke f f

is a complex number, unlike k0. Under the ISA, the effective
wave number ke f f , and as a consequence velocity and attenua-
tion, can be estimated from the density of scatterers n, the speed
of sound in the surrounding fluid c0 and the forward-scattered
pressure ψ̃scat, with

ψ̃scat(θ = 0, r) =
eik0r

r
f (θ = 0) (5)

This last parameter is obtained at a distance r in the direction
of incidence (θ = 0) when one single scatterer immersed in the
fluid is insonified by a plane wave. The resulting dispersion
relation is:

k2
e f f = k2

0 + 4πn f (θ = 0) (6)

where n is the solid fraction Φs divided by the volume of a
single scatterer (a, b and c are the half axes defined in Sec. 2.1)

n =
Φs

4
3πabc

(7)

The forward scattered pressure ψ̃scat(θ = 0, r) and f (θ = 0)230

are obtained numerically by a simple FDTD simulation where231

a plane wave is emitted in a medium containing only one scat-232

terer surrounded by water. The medium is 8 mm thick in the233

propagation direction and 16 mm × 16 mm large in the trans-234

verse directions. The center of the scatterer is just ahead of the235

emitting boundary at a 500 µm depth, centered in each trans-236

verse direction. The signal is recorded at a 7.5 mm distance237

ahead of the center of the scatterer. We chose the same grid238

step size as for the random media simulations to account for the239

discretization effects at the border of the ellipsoid.240

For the single scatterer simulation, boundary conditions were241

chosen strictly similar to those of the random media simulation242

(PML in the direction of propagation, symmetry conditions in243

transverse directions) to ensure a perfect incoming plane wave.244

The forward scattered signal had to be windowed to limit the245

contribution of image scatterers due to the symmetry condi-246

tions. As a reference, the same simulation was run with no247

scatterer. The resulting field ψ0(θ = 0, r, t) was then subtracted248

from the total field in order to obtain the forward scattered field249

ψscat(θ = 0, r, t). Finally, the Fourier transform of the scat-250

tered field was normalized by that of the incident wave to ob-251

tain ψ̃scat(θ = 0, r) which comprises only the frequencies in the252

bandwidth of the incident pulse i.e., from 0.5 MHz to 1.5 MHz.253

It should be noted that Eq.6 implies that there is only one254

effective number. Therefore intrinsically the ISA only predicts255

the existence of one longitudinal mode, with a velocity and an256

attenuation different from that of the fluid. However even when257

two waves are observed, it may be interesting to compare the258

velocity and attenuation predicted by the ISA with the simu-259

lated results.260

2.4. Some predictions of Biot’s theory261

Biot’s theory [6, 7] was originally developed for the study of
ultrasound propagation in porous, isotropic rocks, with a low
frequency assumption. Various groups have used Biot’s frame-
work in other fields of application and with additional hypothe-
ses, providing in some cases the assessment of wave velocities
from only a few parameters. For example, in the limit where the
porous frame is much stiffer than the fluid, Johnson [26] gives
simple relations (see Appendix A) from which we can derive
the velocities of the fast and slow waves:

V f ast =
VL

dry√
1 +

Φ f ρ f

Φsρs

(
1 − 1

α

) (8)

Vslow =
V f luid
√
α

(9)

where Φ f and Φs are the fluid and solid fractions, ρ f and ρs262

the fluid and solid densities, V f luid the speed of sound in the263

filling fluid. VL
dry is the longitudinal speed of sound in the dry264

sample, i.e. the velocity when the fluid is replaced by vacuum,265

a situation which is easy to simulate numerically. Finally α is266

the geometric tortuosity, which is particularly difficult to assess267

in porous media and is by definition independent of material268

properties but depends on the micro-architecture.269

Note that there is no frequency dependence in Eq.8 and 9,270

which is consistent with the use of time-of-flight measurements271

to estimate velocities from experimental results.272

Biot’s framework is also used in this study to gain insight on273

the origin of the fast and slow waves. One of the main con-274

clusions of Biot’s theory is that the fluid and the solid move275

either in phase (fast wave) or out of phase (slow wave) [6]. In276

order to check this prediction, the transverse plane is divided in277

two regions corresponding to solid and fluid zones respectively.278

The particle velocity is integrated separately in the two areas,279

as if the receiving transducer was only in contact with the fluid280

or with the solid. Then we can examine whether the resulting281

coherent waves in the fluid and in the solid exhibit a particular282

phase shift. This peculiar prediction cannot be verified exper-283

imentally, unless we could have a point-like transducer deep284

inside the sample measuring displacements in the fluid and in285

the solid. But numerical simulations make that measurement286

possible. Results are shown in Sec.4.2, for two different solid287

fractions (50 % and 70%).288
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3. From one to two waves289

3.1. One wave290

In a first step, we compare the frequency-dependence of at-291

tenuation coefficient and velocity (measured as described in292

Sec.2.2) to ISA predictions, in samples where only one com-293

pressional wave could be observed. As shown in [23] and Fig.1,294

this occurs when the ultrasound propagation is perpendicular to295

the main direction of the samples. The velocities and attenua-296

tion coefficients are plotted in Fig.2 for various solid fractions:297

10%, 30% and 50%.298

As expected, the performance of ISA strongly depends on the
density of scatterers. For a low solid fraction (10%) both veloc-
ities and attenuation coefficients are well predicted by the ISA.
The discrepancy increases with solid fraction. These results are
in agreement with the fact that the ISA is a first-order approx-
imation, which naturally fails as the solid fraction increases.
Another interesting point is that a negative dispersion was ob-
served for the three different bone fractions. In fact, the ob-
served linear relationship between velocity and frequency, with
a negative slope, was well predicted by the ISA. This negative
dispersion is of particular interest because it has also been ob-
served experimentally in cancellous bone [27]. The velocity
increases, as expected, with the solid fraction. In the simple
case of one wave propagation, Wood [5] theory could be used
for estimating porosity based on velocity measurements. Ac-
cording to Wood, the compressional wavespeed of an effective
medium depends on 5 parameters: the fluid and solid densities
ρ f and ρs, the fluid and solid bulk moduli K f and Ks and the
fluid and solid fractions Φ f and Φs:

VWood =

√
K f Ks

(Φ f Ks + ΦsK f )(Φsρs + Φ fρ f )
(10)

Fig.3 compares the velocities obtained in our samples (simply299

deduced from time-of-flight measurements in the time-distance300

diagrams) with the one predicted by Wood in a range of solid301

fraction going from 0 to 0.5.302

There is a good agreement between the velocities measured303

with the simulations and predicted by Wood, especially for a304

low solid fraction. In fact as seen in Fig.2 the higher the solid305

fraction the higher the dispersion, so for higher solid fractions,306

the time-of-flight methods for velocity measurements probably307

become biased. However this result shows that in this configu-308

ration (propagation perpendicular to the main direction) micro-309

architecture parameters other than porosity do not seem to play310

a role in the velocities. In some cases where only one com-311

pressional wave was observed, Wood and Biot theories were312

found to yield similar values for the velocity [28]. As to the313

attenuation coefficient, it is worth noticing that the observed at-314

tenuation coefficient shows a power-law dependency with fre-315

quency, with characteristic exponents of 3.4, 2.5 and 2.1 for316

10%, 30% and 50% porosity. When increasing the solid frac-317

tion, the scatterers are more likely to overlap and create struc-318

tures significantly larger than the wavelength. The decay of319

the characteristic exponent is therefore consistent with predic-320

tions from scattering theories, where the attenuation coefficient321

Figure 3: Speed of sound as a function of solid fraction (from 0 to 0.5) measured
from time-of-flight measurements in the time-distance diagrams and predicted
by Wood, using Eq.10

varies as ω4 in the very low frequency regime and as ω2 in322

the high-frequency regime. But this is very different from the323

usual linear dependence with frequency which has often been324

reported in cancellous bone [29, 30]. This indicates that our325

model samples exhibit some, but not all of the features typical326

of porous bone.327

3.2. Two waves328

We now move to the case where two compressional waves329

propagate. Previous work by our group showed that the two330

waves could be observed in the case of an ultrasound propaga-331

tion along the main direction and for an appropriate range of332

solid fraction, from 30% to 70% [23] (Fig.1). The two-wave333

configuration is a little more difficult to study because it re-334

quires the two waves to be separated, in order to apply the rou-335

tine described in Sec.2.2. We therefore limited the study to the336

case of a 50% solid fraction, where the two waves were found337

to be best separated. In addition, the propagation depth was in-338

creased to 20 mm in order to facilitate the distinction between339

the slow and the fast wave. The simulation results show that340

the two waves were conveniently separated for depths ranging341

between 6.7mm and 11.7mm, without being too strongly attenu-342

ated by scattering or polluted by reflected waves from the sam-343

ple boundary. Hann windowing was used to isolate the slow344

wave. Fig.4 shows the resulting attenuation coefficients and ve-345

locities of the fast and slow waves, as well as the ISA predic-346

tions.347

ISA only predicts one wave, as discussed in Sec.2.3. Fur-348

thermore the velocity predicted by ISA (around 1.5 mm.µs−1)349

was far from the measured velocities for the fast (around350

2.6 mm.µs−1) and slow (around 1.3 mm.µs−1) waves. This can351

be explained by the fact that the Independent Scattering Ap-352

proximation sees the medium as a perturbation of the surround-353

ing fluid (water with a speed of sound of 1.5 mm.µs−1). Here,354
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Figure 2: Velocities (top) and attenuation coefficients (bottom) measured in three different samples with a 10% (left), 30% (center) and 50% (right) solid fraction.
For all three cases, ultrasound propagation was set perpendicular to the direction of anisotropy so that only one wave could be observed. The three velocity
measurements exhibit a linear dependence of frequency with a negative dispersion (the slopes are -0.006 mm for the 10% solid fraction, -0.02 mm for the 30% one
and -0.013 mm for the 50% one) quite well predicted by ISA (respectively -0.005 mm, -0.016 mm and -0.029 mm).

the bone fraction is far beyond the limit of use of this theory3 as355

already discussed in the previous subsection, but this is required356

to observe two separable waves for our numerical samples [23].357

Still, it is interesting to notice that fast and slow waves attenua-358

tion coefficients seem of the same order of magnitude. It should359

be pointed out that Biot’s theory predicts no attenuation (loss-360

less fluid), whereas numerical results clearly show that both fast361

and slow waves undergo a strong attenuation due to scattering.362

The observed attenuation is significantly stronger than what the363

ISA predicts. It is also interesting to notice that both waves364

show a slight positive dispersion. This is consistent with previ-365

ous observations on cancellous bone, where no negative disper-366

sion was observed when the two waves were clearly separated367

[1][11, chap.5]. Finally, note that the slow wave velocity is368

slower than the speed of sound in water, which is in agreement369

with Eq.9, as tortuosity is real and greater than unity.370

3.3. Source point371

Let us now consider a different approach where a source372

point is placed at the center of the map (to avoid a possible nu-373

merical issue, we made sure this point lied in the fluid phase).374

Propagation can be studied along all directions simultaneously,375

giving much more information than the previous plane wave376

3The ISA is valid as long as k0 � nσ, with σ the total scattering cross-
section of a single scatterer. The high-frequency limit for σ is twice the geo-
metric cross-section

simulations. In the point-source configuration, the coherent377

wave could not be estimated by spatial averaging anymore, and378

ensemble averaging over 50 realizations of the random medium379

was performed. As the computational cost is much higher, the380

simulations were carried out only in 2D. It has previously been381

shown that qualitative results were similar in 2D and in 3D [23].382

Each map is 15 mm by 15 mm with a 5− µm grid step. In order383

to account for the geometrical decay introduced by propagation384

from a source point, the signals were multiplied by
√

r, r being385

the distance from the point of observation to the source point.386

Fig.5 shows snapshots of the propagation after averaging over387

the 50 realizations. Clearly, the incoherent contribution has not388

yet been completely cancelled out.389

Fig.5 shows a strong anisotropy of the propagation through390

the random samples. In the main direction (horizontal) two391

wavefronts can be distinguished, even though the ratio of co-392

herent to incoherent wave amplitude would have benefited from393

averaging over a larger number of realizations. This result is394

in agreement with the previous observations. If we continu-395

ously rotate to the case where the propagation is perpendicular396

to the main axis, the fast and slow waves velocities are get-397

ting closer until only one wave can be distinguished. This ob-398

servation rules out the possibility that the velocity of the slow399

wave continuously drops to zero when the propagation direc-400

tion changes from parallel to perpendicular to the main axis.401

It also raises questions about the phenomenon actually taking402

place when only one wave can be observed: two waves could403
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Figure 4: Velocities (top) and attenuation coefficients (bottom) of the fast and
slow waves, measured in a 50% solid fraction sample in the case of ultrasound
propagation along the main direction. Confrontation with the ISA prediction

Figure 5: Estimation of the coherent wave propagation from a source point in
a 2D anisotropic porous media with a 50% solid fraction. Left: 4 snapshots,
taken at 1 µs, 2 µs, 3 µs and 4 µs. Top right: detail of one realization showing
the direction of the ellipses. Bottom right: A part of the fourth snapshot with a
saturated contrast to better observe the fast wave. Two waves are observed for a
propagation parallel to the main axis, only one is observed for a perpendicular
propagation.

Figure 6: Left: The same 3D arrangement (collection of solid ellipsoidal scat-
terers, with a 50% solid fraction, propagation along the main direction) was
used for the three simulations. Grey: solid phase. Black: fluid. (a) Reference
simulation (same as in Fig.1a), Solid: Bone. Fluid: Water. Two wavefronts are
clearly distinguished. (b) Solid: Bone. Fluid: Vacuum. Only one wavefront is
observed, with a velocity (around 2.5 mm.µs−1) close to that of the fast wave
(around 2.6 mm.µs−1) in (a). (c) Solid: Infinite density. Fluid: Water. Only one
wave is observed, with a velocity (around 1.45 mm.µs−1) close to that of the
slow wave (around 1.3 mm.µs−1) in (a)

actually be propagating with very close velocities. The nega-404

tive dispersion obtained from the propagation of a single wave,405

perpendicular to the main orientation of the scatterers could be406

re-interpreted in the light of this last result. If two waves are407

actually propagating with close velocities, the corresponding408

pulses could be interfering, leading to an apparent negative dis-409

persion, as observed by Anderson et al. [31].410

4. Insights on the nature of the two waves411

4.1. Limit cases412

One great advantage of numerical simulations is the possi-413

bility to fully control the properties of the simulated medium.414

Fluid or solid properties were modified in the reference simula-415

tion, where two waves could be observed. First, water was re-416

placed by vacuum (density and elastic constants were set equal417

to zero). Ultrasound propagation could therefore only occur in418

the solid frame. Second, in another simulation, the solid phase419

(which had initially the properties of bulk bone) was turned420

into a perfectly rigid frame, forcing the ultrasound propaga-421

tion to occur only through water. Those two cases, which can422

be seen as limit cases when the density of the fluid (respec-423

tively solid) phase reaches zero (respectively infinity) would424

have been nearly impossible to study experimentally. The re-425

sults are compared with that of the reference case in Figure 6.426

When ultrasound propagation was only allowed in one of the427

two phases, only one wavefront was observed, whereas there428

were clearly two distinguishable wavefronts in the reference429

simulation. Furthermore, the velocity of the wave when the430

propagation occured only through the solid (respectively fluid)431

was close to that of the fast (respectively slow) wave in the432

reference case. This result suggests that the fast wave trav-433

els mostly through the solid frame, and the slow wave mostly434

through the fluid, in accordance with previous results [23]. It435
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Figure 7: Tortuosity (deduced from rigid frame velocity) and apparent tortu-
soity (deduced from slow wave velocity) as a function of bone fraction

is interesting to notice that the speed Vrigid of the wave prop-436

agating only in water with a perfectly rigid frame (Fig.6c),437

around 1.45 mm ·µs−1, is lower than the speed of sound in water438

(V f luid = 1.5 mm · µs−1) but larger than Vslow in Sec.3.2, around439

1.3 mm ·µs−1. These values gives interesting information. First,440

Vrigid < V f luid and Vslow < V f luid which accounts for the tortuos-441

ity of propagation paths in water. However, as Vrigid , Vslow the442

slow wave formula (Eq.9) described in Sec.2.4 does not seem to443

hold. This suggests that the mechanical properties of the skele-444

ton influence the slow wave velocity, which invalidates the stiff445

frame hypothesis. If tortuosity were to be estimated from veloc-446

ity measurements, one should use Vrigid and Eq.9. Still, from447

an experimental and practical point of view, we could define448

an ”apparent tortuosity” from Eq.9 using Vslow, which, unlike449

Vrigid, is accessible from real experiments. Figure 7 shows the450

tortuosity and ”apparent tortuosity” obtained at various solid451

fractions, ranging from 30% to 70%. Tortuosity and ”apparent452

tortuosity” are both confined between 1.03 and 1.56 and seem to453

converge to 1 at low solid fraction. The difference is at its high-454

est for high solid fractions (low porosity). Hence, in the case of455

actual cancellous bones where porosity lies between 75% and456

95%, the difference may not be so significant. This could open457

an interesting perspective: the possibility to measure tortuosity458

from the slow wave velocity in highly porous bones.459

To conclude this subsection we confront the velocity mea-460

sured in the reference simulation to the prediction of Eq.8.461

To do so we extract VL
dry from the simulation where the fluid462

is turned into vacuum (Fig.6b) by a time-of-flight measure-463

ment. Then the only missing parameter is the geometric tor-464

tuosity α. As we have seen just before there are two differ-465

ent values for this parameter. The stiff frame assumption im-466

plies that (Kdry � K f and Ndry � K f ) with Kdry and Ndry467

the bulk and shear moduli of the dry sample [26]. These two468

parameters can be retrieved from VL
dry = 2.5 mm.µs−1 and to469

VT
dry = 0.8 mm.µs−1 i.e., the transverse speed of sound in the dry470

sample (see Appendix A) that we can also calculate thanks to471

the propagation of a plane shear wave. We find Kdry = 5.2 GPa472

and Ndry = 0.6 GPa, to be compared to K f = 2.25 GPa. This473

confirms that the stiff frame assumption does not hold, and ex-474

plains why the apparent tortuosity differs from the actual tortu-475

osity.476

However, using the fast wave formula (Eq.8) and knowing
that both values of tortuosity remain close to 1 and that ρs is
almost twice ρ f , one obtains:

Φ fρ f

Φsρs

(
1 −

1
α

)
� 1 (11)

and as a consequence

V f ast =
VL

dry√
1 +

Φ f ρ f

Φsρs

(
1 − 1

α

)
≈ VL

dry = 2.5 mm.µs−1 (12)

This explains the observations made from figure 6, and
agrees with the calculation with either one or the other value
for the tortuosity:

V tort
f ast = 2.5 mm.µs−1 (13)

Vapp tort
f ast = 2.3 mm.µs−1 (14)

Both values are close to the actual measured fast wave velocity477

(2.6 mm.µs−1 deduced from the value at 1 MHz in Fig.4).478

Although the stiff frame assumption might not hold here, it479

appears that this does not affect the prediction of V f ast using480

Biot’s theory. Biot’s theory therefore gives correct orders of481

magnitude for the fast wave velocity in our anisotropic porous482

models, even beyond the frequency limit of this theory. It does483

not, however, predict the positive dispersion of the two waves,484

or the negative dispersion of the single wave, and does not ac-485

count for scattering losses.486

4.2. Phase shift of the fast and slow waves487

One of the most striking results in Biot’s model is that the fast488

and slow waves are associated respectively to in-phase and out-489

of-phase displacements of the fluid and solid skeleton. Interest-490

ingly, numerical simulation gives us the possibility to check if491

the average motion within the medium follows this peculiar be-492

havior. As a last point of this paper, we studied the phase shifts493

between the displacements in each phase (solid or fluid) ac-494

cording to the method explained in Sec.2.4. Note that we have495

tested both to integrate particle velocities only at the interfaces496

or over the whole phases and it has shown very little difference,497

for both 70% and 50% solid fractions. As a consequence only498

the integrations over the whole phases are represented in Fig.8.499

In each case, the phase shift was close to but not exactly that500

predicted by Biot: the observed phase shifts are 10◦ (70% solid501

fraction) and 19◦ (50% solid fraction) for the fast wave and re-502

spectively 174◦ and 163◦ for the slow wave. In a previous work503

[23] it was suggested that the physical origin for the occurrence504

of two waves could be that the bone trabeculae (or the con-505

nected ellipsoids) act as waveguides. This is the reason why we506
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Figure 8: Left: particle velocity in the fluid and solid phases for a 70% (top)
or a 50% (bottom) solid fraction sample taken at a 4mm propagation depth.
Comparison with the particle velocity taken at a 8 mm propagation depth at
each side of the interface of a solid bar in water (bottom right).

also studied the phase shifts between the motion of the fluid and507

solid phase in a very simple waveguide: a bar immersed in wa-508

ter. This particular case also exhibits two waves (Fig.8), with a509

guided wave in the bar re-radiating in water. Here too, the par-510

ticle velocities are nearly in phase opposition for the slow wave511

(177◦ shift). However the shift for the fast wave is around 131◦512

and so neither in nor out of phase. Though there is a discrep-513

ancy for the fast wave this result on a very simple case could be514

consistent with the fact that Biot’s theory could be a particular,515

low frequency, case of a more general theory of the propagation516

of elastic waves in biphasic media involving guided waves.517

5. Conclusion518

The aim of this study was to compare quantitatively - in519

terms of velocities and attenuations - the results obtained520

from the simulation of elastic waves propagation in numeri-521

cal anisotropic porous media with two theoretical approaches:522

Biot’s model and a first-order multiple scattering model known523

as the Independent Scattering Approximation (ISA). The ISA524

was shown to provide good predictions of both velocity and525

attenuation coefficient when only one longitudinal wave oc-526

curred, and for low solid fractions (less than 10%). It was how-527

ever unsuccessful to predict the two compressional waves oc-528

curring from the propagation along the main orientation of the529

scatterers. On the other hand, homogenization theories such530

as Biot’s or Wood’s were found in good agreement with the531

numerical results, whether one or two waves were observed,532

but only for the velocities and not for the attenuations. This533

suggests that attenuation is probably better predicted based on534

multiple scattering theories. Yet at higher solid fractions, the535

ISA will have to be replaced by higher-order approximations.536
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Appendix A. Velocity of the fast wave542

Under the stiff frame assumption, Johnson [26] gives simple
relations for fast, slow and transverse waves velocities. In par-
ticular the fast and transverse waves velocities can be written

V f ast =

√√√
Kdry + 4

3 Ndry

Φsρs + Φ fρ f

(
1 − 1

α

) (A.1)

VT =

√
Ndry

Φsρs + Φ fρ f

(
1 − 1

α

) (A.2)

where Kdry and Ndry are the bulk and shear moduli of the dry
sample (no filling fluid). When fluid is present, the stiff frame
hypothesis is fulfilled as long as Kdry � K f and Ndry � K f ,
with K f the bulk modulus of the fluid. In our case Kdry and
Ndry were deduced from transverse VT

dry and longitudinal VL
dry

velocities in the dry sample (ρ f = 0) as follows:

VL
dry =

√
Kdry + 4

3 Ndry

Φsρs
(A.3)

VT
dry =

√
Ndry

Φsρs
(A.4)

As a consequence

Ndry = ΦsρsVT
dry

2 (A.5)

Kdry = Φsρs

(
VL

dry
2
−

4
3

VT
dry

2
)

(A.6)

which means that Eq.A.1 can be advantageously simplified as
in Sec.2.4

V f ast =

√√√√
ΦsρsVL

dry
2

Φsρs + Φ fρ f

(
1 − 1

α

) (A.7)

=
VL

dry√
1 +

Φ f ρ f

Φsρs

(
1 − 1

α

)
It is interesting to notice that according to this equation, the543

fast wave velocity does not depend on the transverse wave ve-544

locity, which was not so clear while looking at Eq.A.1.545
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