Fabien Mézière 
  
Marie Muller 
  
Emmanuel Bossy 
  
Arnaud Derode 
  
Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models

Keywords: Cancellous bone, Fast and slow waves, Porous media, Multiple scattering, FDTD simulations, Biot's

This article quantitatively investigates ultrasound propagation in numerical anisotropic porous media with finite-difference simulations in 3D. The propagation media consist of clusters of ellipsoidal scatterers randomly distributed in water, mimicking the anisotropic structure of cancellous bone. Velocities and attenuation coefficients of the ensemble-averaged transmitted wave (also known as the coherent wave) are measured in various configurations. As in real cancellous bone, one or two longitudinal modes emerge, depending on the micro-structure. The results are confronted with two standard theoretical approaches: Biot's theory, usually invoked in porous media, and the Independent Scattering Approximation (ISA), a classical first-order approach of multiple scattering theory. On the one hand, when only one longitudinal wave is observed, it is found that at porosities higher than 90% the ISA successfully predicts the attenuation coefficient (unlike Biot's theory), as well as the existence of negative dispersion. On the other hand, the ISA is not well suited to study two-wave propagation, unlike Biot's model, at least as far as wave speeds are concerned. No free fitting parameters were used for the application of Biot's theory. Finally we investigate the phase-shift between waves in the fluid and the solid structure, and compare them to Biot's predictions of in-phase and out-of-phase motions.

Introduction

Cancellous bone is a random and porous material with structural anisotropy. Ultrasound transmission experiments revealed that in some cases two compressional waves propagating at different velocities were observed, as reported both in vitro [START_REF] Hosokawa | Ultrasonic wave propagation in bovine cancellous 547 bone[END_REF][START_REF] Fellah | Ultrasonic wave propagation in human cancellous bone: Application of Biot theory[END_REF][START_REF] Mizuno | Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary[END_REF] and in vivo [START_REF] Yamamoto | Measurement of human trabecular bone by novel ultrasonic bone densitometry based on fast and slow waves[END_REF]. Yet this phenomenon is not fully understood.

From a theoretical point of view, there are several ways to account for wave propagation in media as complex as cancellous bone. A very simple approach, which will be referred to as Wood's model [START_REF] Wood | A Textbook of Sound[END_REF], consists in considering bone as a homogeneous medium in which sound speed is determined from the averaged mass densities and compliances of the solid and fluid phases, weighted by their respective volumetric fractions. A more elaborate theoretical description is given by Biot [START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range[END_REF][START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range[END_REF].

Though it is out of the scope of this paper to give a full description of Biot's model, let us recall that it is an homogeneization theory, like Wood's model. Biot's theory is a reference model for wave propagation in porous media, particularly because it was shown to predict successfully the velocities of two longitudinal waves in various porous media, from sintered glass spheres [START_REF] Plona | Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[END_REF] to cortical [START_REF] Lakes | Slow compressional wave propagation in wet human and bovine cortical bone[END_REF] and cancellous bone [START_REF] Fellah | Ultrasonic wave propagation in human cancellous bone: Application of Biot theory[END_REF][START_REF] Fellah | Application of the biot model to ultrasound in bone: direct problem[END_REF]. However, the validity of Biot's model is limited to low frequencies. Biot [START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range[END_REF] himself wrote: "There remains however an upper bound for the frequency, namely, that at which the wavelength becomes of the order of the pore size. Such a case must, of course, be treated by a different method." Considering typical dimensions at stake, in the MHz domain, the ultrasonic wavelengths are of the same order of magnitude as the size of the trabecu-29 lae [11, chap.1]. An immediate consequence is that single and 30 even multiple scattering must be taken into account [START_REF] Derode | Dynamic coherent backscattering in a heterogeneous absorbing medium: Application to human trabecular bone characterization[END_REF]. Scat-31 tering induce loss, which is not predicted by Biot's theory: as 32 long as the fluid phase is free of absorption, Biot's fast and slow 33 waves do not show any attenuation. Moreover, scattering does 34 not only affect the wave amplitude, but also its velocity, though 35 to a lesser degree. An alternative approach to Biot's would be to 36 adopt a multiple scattering formalism for wave propagation in 37 cancellous bone. A given sample is treated as one realization of 38 a random process, whose typical physical parameters (density 39 ρ, elastic moduli C i jkl ) randomly depend on position r within 40 the medium. Assuming gaussian statistics, the microstructure 41 would be characterized by second-order moments i.e., corre-42 lation functions such as < ρ( r)ρ( r ) >, < C i jkl ( r)C mnop ( r ) > 43 etc. In the random multiple scattering approach, the wave field 44 s( r, t) resulting from the emission of a pulse through a slice of 45 bone is considered as a random variable. The basic quantities have carried out experiments showing that two-wave propagation could occur in dense suspensions of plastic spherical scatterers, and that the slower of the two waves resulted from resonant coupling between scatterers. Their theoretical approach was the multiple scattering theory, under the Coherent Potential Approximation [START_REF] Sheng | Introduction to Wave Scattering, Localization and Mesoscopic Phenomena[END_REF], assuming the wavelength was larger than the scatterers size.

Actually, none of the above-mentioned theories is perfectly suited to wave propagation in cancellous bone. Unlike polycrystals such as steel, cancellous bone has a solid and a fluid phase, showing strong variations for both density and elastic moduli. Moreover, the typical dimensions of the heterogeneities are not small compared to the wavelength, at least in the MHz range and above. One objective of this paper is to examine in what respect some typical results of Biot's, Wood's and multiple scattering theories can be useful to understand wave propagation in cancellous bone. For instance Wood's model is very simple and purely empirical but we will see that in some cases it may suffice to predict the velocity. As to Biot's theory, apart from its inadequacy to describe scattering, it requires many parameters that are difficult to measure in the case of cancellous bone, especially in vivo. As a consequence, multiparameter fitting of experimental results is required, which impairs the reliability of Biot's theory in the context of cancellous bone. To our knowledge Biot's theory was first developed for isotropic media and does not clearly explain why the two waves are observed for an ultrasound propagation along the main orientation of the cancellous bone and not when the propagation is orthogonal [START_REF] Hosokawa | Acoustic anisotropy in bovine cancellous bone[END_REF]. Yet again, even though it fails to describe the attenuation and anisotropy, the velocities predicted by Biot can be in fairly good agreement with experimental observations. As to multiple scattering theory, though it yields an exact equation for the coherent wave field, it is not ideal either because in order to derive practical results, at some stage an approximation has to be made, which necessarily limits the range of validity.

In this paper, we will use the simplest of all multiple scattering models, known as the ISA (Independent Scattering Approximation), and examine its applicability to predict scattering losses and dispersion in anisotropic porous structures.

For a better understanding of ultrasound propagation in cancellous bone, we have chosen to begin with a numerical study, which is particularly flexible. In the last ten years, numerical studies have been intensively used, both in real bone structures derived from X-ray computed tomography [START_REF] Bossy | Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography[END_REF][START_REF] Haïat | Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy[END_REF][START_REF] Nagatani | Numerical and experimental study on the wave attenuation in bone-FDTD simulation of ultrasound propagation in cancellous bone[END_REF] or in numerically synthesized media [START_REF] Hosokawa | Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods[END_REF]. Our approach here is based on the synthesis of numerical random and biphasic structures, previously described in [START_REF] Mézière | Simulations of ultrasound propagation in random arrangements of elliptic scatterers: Occurrence of two longitudinal waves[END_REF]: elliptic (2D) or ellipsoidal (3D) scatterers were randomly distributed in a fluid to form a slab of random medium. In this previous work, we had qualitatively studied the occurrence of the fast and slow waves depending on simple statistical medium parameters using a finite-difference time-domain (FDTD) tool 1 to simulate the propagation of elastic waves. We observed similar results, at least qualitatively, in 2D and in 3D. Four conditions were necessary to observe the two waves in our simple models: a FDTD software, SimSonic, developed by E. Bossy [START_REF] Bossy | Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models[END_REF] and 161 freely available for download on-line2 . Stresses and particle ve-162 locities can be obtained at each point of the medium. Perfectly The transmitted signal is integrated over the whole transverse plane, for estimation of the coherent wave, assuming ergodicity. Due to the reflecting walls, the resulting signal is analogous to what would be measured in an ideal experiment with an infinite planar transducer placed within a semi-infinite scattering slab. More details on both the numerical samples and the simulations are available in [START_REF] Mézière | Simulations of ultrasound propagation in random arrangements of elliptic scatterers: Occurrence of two longitudinal waves[END_REF]. In the rest of the present article, the simulation of propagation along the main direction in a binary medium made of bone and water with a 50% solid fraction (Fig. 1a) will be referred to as the "reference simulation".

Velocities and attenuation coefficients measurements

As the emitted signal is a pulse centered at 1 MHz with a -6 dB bandwidth of around 100%, we limited our study to the • by taking the unwrapped phase angle ϕ ω (z) of sω (z) we obtained:

ϕ ω (z) = arg( sω (z)) = ϕ ω (0) + kz (1) 
so ϕ ω (z) is linear, with a slope equal to k(ω) giving easy access to the phase velocity v(ω):

v(ω) = ω k(ω) (2) 
• by taking the modulus of sω (z) and assuming an exponential decrease of the signal, one obtains the following expression involving the attenuation coefficient γ(ω):

| sω (z)| = e -γ(ω)z (3) 
γ is then obtained by a linear fit of ln | sω (z)| with z. Note that we chose to represent the attenuation coefficient for the amplitude γ as it is usually used in the field of bone quantitative ultrasound [START_REF] Laugier | Bone Quantitative Ultrasound[END_REF]. In the multiple scattering community, one usually refers to the scattering mean free path l e , defined as the decay length for the intensity of the coherent field. The two parameters are simply related:

l e = 1 2γ (4) 
Frequency-resolved measurements of attenuation and veloci-214 ties were obtained for the reference simulation (as exposed in 215 Sec.3.2). However Eq.2 is inapplicable when the two wave- 
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Here, the numerical samples can be seen as a random arrangement of identical scatterers in a lossless fluid with velocity c 0 (wavenumber k 0 = ω/c 0 ). In that simple case, from a physical point of view the ISA amounts to considering that the scatterers positions are uncorrelated, and that the wave never loops back to a scatterer that has already been visited [START_REF] Derode | Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium[END_REF]. Under this assumption, the self-energy only depends on the scatterers concentration n and the scattering properties of one individual scatterer, particularly its angular directivity pattern f (θ). Then Dyson's equation has an analytical solution, and the coherent wavefield is characterized by a dispersion equation k e f f (ω), with k e f f the complex-valued "effective wave number". In other words, on average the effect of multiple scattering is to modify the speed as well as the attenuation of the medium, since k e f f is a complex number, unlike k 0 . Under the ISA, the effective wave number k e f f , and as a consequence velocity and attenuation, can be estimated from the density of scatterers n, the speed of sound in the surrounding fluid c 0 and the forward-scattered pressure ψscat , with

ψscat (θ = 0, r) = e ik 0 r r f (θ = 0) (5) 
This last parameter is obtained at a distance r in the direction of incidence (θ = 0) when one single scatterer immersed in the fluid is insonified by a plane wave. The resulting dispersion relation is:

k 2 e f f = k 2 0 + 4πn f (θ = 0) ( 6 
)
where n is the solid fraction Φ s divided by the volume of a single scatterer (a, b and c are the half axes defined in Sec. 2.1)

n = Φ s 4 3 πabc (7) 
The forward scattered pressure ψscat (θ = 0, r) and f (θ = 0) Biot's theory [START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range[END_REF][START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range[END_REF] was originally developed for the study of ultrasound propagation in porous, isotropic rocks, with a low frequency assumption. Various groups have used Biot's framework in other fields of application and with additional hypotheses, providing in some cases the assessment of wave velocities from only a few parameters. For example, in the limit where the porous frame is much stiffer than the fluid, Johnson [START_REF] Johnson | Equivalence between fourth sound in liquid He II at low 621 temperatures and the Biot slow wave in consolidated porous media[END_REF] gives simple relations (see Appendix A) from which we can derive the velocities of the fast and slow waves:

V f ast = V L dry 1 + Φ f ρ f Φ s ρ s 1 -1 α (8) V slow = V f luid √ α (9) 
where Φ f and Φ s are the fluid and solid fractions, ρ f and ρ s As expected, the performance of ISA strongly depends on the density of scatterers. For a low solid fraction (10%) both velocities and attenuation coefficients are well predicted by the ISA. The discrepancy increases with solid fraction. These results are in agreement with the fact that the ISA is a first-order approximation, which naturally fails as the solid fraction increases. Another interesting point is that a negative dispersion was observed for the three different bone fractions. In fact, the observed linear relationship between velocity and frequency, with a negative slope, was well predicted by the ISA. This negative dispersion is of particular interest because it has also been observed experimentally in cancellous bone [START_REF] Wear | Group velocity, phase velocity, and dispersion in human 624 calcaneus in vivo[END_REF]. The velocity increases, as expected, with the solid fraction. In the simple case of one wave propagation, Wood [START_REF] Wood | A Textbook of Sound[END_REF] theory could be used for estimating porosity based on velocity measurements. According to Wood, the compressional wavespeed of an effective medium depends on 5 parameters: the fluid and solid densities ρ f and ρ s , the fluid and solid bulk moduli K f and K s and the fluid and solid fractions Φ f and Φ s : 

V Wood = K f K s (Φ f K s + Φ s K f )(Φ s ρ s + Φ f ρ f ) (10) 
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There is a good agreement between the velocities measured 303 with the simulations and predicted by Wood, especially for a 304 low solid fraction. In fact as seen in Fig. 2 the higher the solid 305 fraction the higher the dispersion, so for higher solid fractions, reported in cancellous bone [START_REF] Chaffaï | In vitro measurement of 630 the frequency-dependent attenuation in cancellous bone between 0.2 and 631 2 MHz[END_REF][START_REF] Wear | Ultrasonic Attenuation in Human Calcaneus from 0 . 2 to 1[END_REF]. This indicates that our 325 model samples exhibit some, but not all of the features typical 326 of porous bone. For all three cases, ultrasound propagation was set perpendicular to the direction of anisotropy so that only one wave could be observed. The three velocity measurements exhibit a linear dependence of frequency with a negative dispersion (the slopes are -0.006 mm for the 10% solid fraction, -0.02 mm for the 30% one and -0.013 mm for the 50% one) quite well predicted by ISA (respectively -0.005 mm, -0.016 mm and -0.029 mm).

the bone fraction is far beyond the limit of use of this theory 3 as 355 already discussed in the previous subsection, but this is required 356 to observe two separable waves for our numerical samples [START_REF] Mézière | Simulations of ultrasound propagation in random arrangements of elliptic scatterers: Occurrence of two longitudinal waves[END_REF]. with Eq.9, as tortuosity is real and greater than unity. Let us now consider a different approach where a source 372 point is placed at the center of the map (to avoid a possible nu-373 merical issue, we made sure this point lied in the fluid phase).

374

Propagation can be studied along all directions simultaneously, 375 giving much more information than the previous plane wave 376 3 The ISA is valid as long as k 0 nσ, with σ the total scattering crosssection of a single scatterer. The high-frequency limit for σ is twice the geometric cross-section simulations. In the point-source configuration, the coherent 377 wave could not be estimated by spatial averaging anymore, and 378 ensemble averaging over 50 realizations of the random medium 379 was performed. As the computational cost is much higher, the 380 simulations were carried out only in 2D. It has previously been
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shown that qualitative results were similar in 2D and in 3D [START_REF] Mézière | Simulations of ultrasound propagation in random arrangements of elliptic scatterers: Occurrence of two longitudinal waves[END_REF]. . These values gives interesting information. First, V rigid < V f luid and V slow < V f luid which accounts for the tortuosity of propagation paths in water. However, as V rigid V slow the slow wave formula (Eq.9) described in Sec.2.4 does not seem to hold. This suggests that the mechanical properties of the skeleton influence the slow wave velocity, which invalidates the stiff frame hypothesis. If tortuosity were to be estimated from velocity measurements, one should use V rigid and Eq.9. Still, from an experimental and practical point of view, we could define an "apparent tortuosity" from Eq.9 using V slow , which, unlike V rigid , is accessible from real experiments. Figure 7 shows the tortuosity and "apparent tortuosity" obtained at various solid fractions, ranging from 30% to 70%. Tortuosity and "apparent tortuosity" are both confined between 1.03 and 1.56 and seem to converge to 1 at low solid fraction. The difference is at its highest for high solid fractions (low porosity). Hence, in the case of actual cancellous bones where porosity lies between 75% and 95%, the difference may not be so significant. This could open an interesting perspective: the possibility to measure tortuosity from the slow wave velocity in highly porous bones.

To conclude this subsection we confront the velocity measured in the reference simulation to the prediction of Eq.8.

To do so we extract V L dry from the simulation where the fluid is turned into vacuum (Fig. 6b) by a time-of-flight measurement. Then the only missing parameter is the geometric tortuosity α. As we have seen just before there are two different values for this parameter. The stiff frame assumption implies that (K dry K f and N dry K f ) with K dry and N dry the bulk and shear moduli of the dry sample [START_REF] Johnson | Equivalence between fourth sound in liquid He II at low 621 temperatures and the Biot slow wave in consolidated porous media[END_REF]. These two parameters can be retrieved from V L dry = 2.5 mm.µs -1 and to V T dry = 0.8 mm.µs -1 i.e., the transverse speed of sound in the dry sample (see Appendix A) that we can also calculate thanks to the propagation of a plane shear wave. We find K dry = 5.2 GPa 476 However, using the fast wave formula (Eq.8) and knowing that both values of tortuosity remain close to 1 and that ρ s is almost twice ρ f , one obtains:

Φ f ρ f Φ s ρ s 1 - 1 α 1 ( 11 
)
and as a consequence

V f ast = V L dry 1 + Φ f ρ f Φ s ρ s 1 -1 α ≈ V L dry = 2.5 mm.µs -1 (12) 
This explains the observations made from figure 6, and agrees with the calculation with either one or the other value for the tortuosity:

V tort f ast = 2.5 mm.µs -1 (13) 
V app tort f ast

= 2.3 mm.µs -1 (14) 
Both values are close to the actual measured fast wave velocity 477 (2.6 mm.µs -1 deduced from the value at 1 MHz in Fig. 4).

478

Although the stiff frame assumption might not hold here, it 479 appears that this does not affect the prediction of V f ast using also studied the phase shifts between the motion of the fluid and solid phase in a very simple waveguide: a bar immersed in water. This particular case also exhibits two waves (Fig. 8), with a guided wave in the bar re-radiating in water. Here too, the particle velocities are nearly in phase opposition for the slow wave (177 • shift). However the shift for the fast wave is around 131 • and so neither in nor out of phase. Though there is a discrepancy for the fast wave this result on a very simple case could be consistent with the fact that Biot's theory could be a particular, low frequency, case of a more general theory of the propagation of elastic waves in biphasic media involving guided waves.

Conclusion

The aim of this study was to compare quantitatively -in terms of velocities and attenuations -the results obtained from the simulation of elastic waves propagation in numerical anisotropic porous media with two theoretical approaches:

Biot's model and a first-order multiple scattering model known as the Independent Scattering Approximation (ISA). The ISA was shown to provide good predictions of both velocity and attenuation coefficient when only one longitudinal wave occurred, and for low solid fractions (less than 10%). It was however unsuccessful to predict the two compressional waves occurring from the propagation along the main orientation of the scatterers. On the other hand, homogenization theories such as Biot's or Wood's were found in good agreement with the numerical results, whether one or two waves were observed, but only for the velocities and not for the attenuations. This suggests that attenuation is probably better predicted based on multiple scattering theories. Yet at higher solid fractions, the ISA will have to be replaced by higher-order approximations. 

1

  http://www.simsonic.fr • a certain range of solid fraction (around 30% to 70 % for 113 our model) 114 • a propagation parallel to the main orientation (i.e. in the 115 direction of the long axis of the scatterers) 116 • the elastic nature of the solid phase 117 • enough connectivity of the solid matrix along the direction 118 of propagation 119 The first two points are consistent with previous observations 120 in real cancellous bone [11, chap.11], justifying a posteriori 121 the relevance of our simplified model as a first step to study 122 ultrasound propagation in trabecular bone. The last two points, 123 on the contrary, could only have been studied numerically, and 124 were consistent with the hypothesis that the fast wave results 125 from a guiding through the solid matrix, whereas the slow wave 126 is traveling predominantly through the fluid.
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  proach based on wave propagation from a pointlike source in 135 2D media, in order to observe the progressive transition from 136 one to two waves. Finally, Sec.4 investigates the nature of the 137 two waves by different methods. First, limit cases are studied 138 by observing the two waves when the fluid phase is replaced 139 by vacuum or when the solid matrix is perfectly rigid. In these 140 cases propagation occurs only in the solid (respectively fluid) 141 phase, giving interesting clues on the propagation paths for the 142 fast and slow waves. Finally, we compare the phase shifts be-143 tween the simulated fast and slow waves to Biot's theory.

144 2 .

 2 Material and Methods145 2.1. Numerical simulations 146 In a previous paper [23] we introduced numerical models 147 generated by a Monte Carlo method: ellipses (2D) or ellipsoids 148 (3D) of solid aligned along the same direction were added pro-149 gressively in water (overlap was allowed), in order to obtain 150 anisotropic and biphasic maps with given solid fractions. Ex-151 amples of 3D maps can be seen on figure 1. The half lengths 152 of the principal axes of the scatterers (i.e. the ellipsoids) were 153 a = 350 µm, b = c = 50 µm (note that c does not ex-154 ist in 2D). The material properties chosen for the solid part 155 were those of typical compact bone, compressional velocity 156 c L = 4 mm.µs -1 , shear velocity c T = 1.8 mm.µs -1 and mass 157 density ρ s = 1850 kg.m -3 . The background medium had the 158 properties of water, V f luid = 1.5 mm.µs -1 and mass density 159 ρ f = 1000 kg.m -3 . Ultrasound propagation was simulated by
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Figure 1 :

 1 Figure 1: Left: Two typical 3D maps, both with a 50% solid fraction (gray). The propagation direction is along the z axis. (a) Time-distance diagram and corresponding time trace (taken at a 6 mm propagation distance) obtained when the ultrasound propagation is along the main direction. Two wavefronts are clearly distinguished. This simulation will be referred to as the "reference simulation". (b) Time-distance diagram and corresponding time trace (taken at a 6 mm propagation distance) obtained when the ultrasound propagation is perpendicular the main direction. Only one wave is observed.
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 5 MHz -1.5 MHz frequency range. Theoretically the coher-ent wave is obtained through ensemble averaging of the signals 197 propagated through an infinite number of realizations, and is 198 therefore only estimated here. As a consequence there is still an 199 incoherent part remaining in the studied signal, mostly arriving 200 after the ballistic wave(s). In order to remove it, the fast and 201 slow waves were separated using a combination of rectangular 202 and Hann windows, to avoid as much as possible the creation 203 of disruptive frequencies brought by sharp cutting. 204 In a first step we focused on obtaining velocities and at-205 tenuation coefficients from the 3D numerical simulations. As 206 detailed above, transmitted signals for different propagation 207 distances were recorded and stored in a time-distance matrix 208 s(t, z). Performing Fast Fourier Transforms (FFT) of each col-209 umn provides s(ω, z), a matrix where each row corresponds to 210 sω (z) the signal as a function of propagation distance, at a given 211 angular frequency ω. Phase velocity and attenuation coefficient 212 were respectively obtained as follows:213
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  fronts are not clearly separated. In such cases, fast and slow 217 waves velocities were estimated through time-of-flight mea-218 surements, by tracking the first minimum of each wave in the 219 time-distance diagrams, thus losing the frequency-dependence.

220 2 . 3 .

 23 Independent Scattering Approximation (ISA) 221 In a random scattering medium the coherent field is the so-222 lution of Dyson's equation [13]. The key element in Dyson's 223 equation is the so-called "self-energy" which wraps up all pos-224 sible multiple scattering terms. The self-energy can be written 225 as a perturbative development of terms in 1/(k 0 l e ) [14]. The simplest approximation consists in keeping only the first-order 227 term of the development. This is known as the "Independent 228 Scattering Approximation" (ISA).

4 .

 4 230 are obtained numerically by a simple FDTD simulation where 231 a plane wave is emitted in a medium containing only one scat-232 terer surrounded by water. The medium is 8 mm thick in the 233 propagation direction and 16 mm × 16 mm large in the trans-234 verse directions. The center of the scatterer is just ahead of the 235 emitting boundary at a 500 µm depth, centered in each trans-236 verse direction. The signal is recorded at a 7.5 mm distance 237 ahead of the center of the scatterer. We chose the same grid 238 step size as for the random media simulations to account for the 239 discretization effects at the border of the ellipsoid. 240 For the single scatterer simulation, boundary conditions were 241 chosen strictly similar to those of the random media simulation 242 (PML in the direction of propagation, symmetry conditions in 243 transverse directions) to ensure a perfect incoming plane wave.244The forward scattered signal had to be windowed to limit the 245 contribution of image scatterers due to the symmetry condi-246 tions. As a reference, the same simulation was run with no 247 scatterer. The resulting field ψ 0 (θ = 0, r, t) was then subtracted 248 from the total field in order to obtain the forward scattered field 249 ψ scat (θ = 0, r, t). Finally, the Fourier transform of the scat-250 tered field was normalized by that of the incident wave to ob-251 tain ψscat (θ = 0, r) which comprises only the frequencies in the 252 bandwidth of the incident pulse i.e., from 0.5 MHz to 1.5 MHz.253It should be noted that Eq.6 implies that there is only one 254 effective number. Therefore intrinsically the ISA only predicts 255 the existence of one longitudinal mode, with a velocity and an 256 attenuation different from that of the fluid. However even when 257 two waves are observed, it may be interesting to compare the 258 velocity and attenuation predicted by the ISA with the simu-Some predictions of Biot's theory 261
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  the fluid and solid densities, V f luid the speed of sound in the 263 filling fluid. V L dry is the longitudinal speed of sound in the dry 264 sample, i.e. the velocity when the fluid is replaced by vacuum, 265 a situation which is easy to simulate numerically. Finally α is 266 the geometric tortuosity, which is particularly difficult to assess 267 in porous media and is by definition independent of material 268 properties but depends on the micro-architecture. 269 Note that there is no frequency dependence in Eq.8 and 9, 270 which is consistent with the use of time-of-flight measurements 271 to estimate velocities from experimental results. 272 Biot's framework is also used in this study to gain insight on 273 the origin of the fast and slow waves. One of the main con-274 clusions of Biot's theory is that the fluid and the solid move 275 either in phase (fast wave) or out of phase (slow wave) [6]. In 276 order to check this prediction, the transverse plane is divided in 277 two regions corresponding to solid and fluid zones respectively. 278 The particle velocity is integrated separately in the two areas, 279 as if the receiving transducer was only in contact with the fluid 280 or with the solid. Then we can examine whether the resulting 281 coherent waves in the fluid and in the solid exhibit a particular 282 phase shift. This peculiar prediction cannot be verified exper-283 imentally, unless we could have a point-like transducer deep 284 inside the sample measuring displacements in the fluid and in 285 the solid. But numerical simulations make that measurement 286 possible. Results are shown in Sec.4.2, for two different solid 287 fractions (50 % and 70%).
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3 .

 3 From one to two waves 289 3.1. One wave 290 In a first step, we compare the frequency-dependence of at-291 tenuation coefficient and velocity (measured as described in 292 Sec.2.2) to ISA predictions, in samples where only one com-293 pressional wave could be observed. As shown in [23] and Fig.1, 294 this occurs when the ultrasound propagation is perpendicular to 295 the main direction of the samples. The velocities and attenua-296 tion coefficients are plotted in Fig.2 for various solid fractions: 297 10%, 30% and 50%.
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Fig. 3

 3 Fig.3 compares the velocities obtained in our samples (simply 299
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  the time-of-flight methods for velocity measurements probably 307 become biased. However this result shows that in this configu-308 ration (propagation perpendicular to the main direction) micro-309 architecture parameters other than porosity do not seem to play 310 a role in the velocities. In some cases where only one com-311 pressional wave was observed, Wood and Biot theories were 312 found to yield similar values for the velocity[START_REF] Forest | Biot's theory of acoustic propagation in 627 porous media applied to aerogels and alcogels[END_REF]. As to the 313 attenuation coefficient, it is worth noticing that the observed at-314 tenuation coefficient shows a power-law dependency with fre-315 quency, with characteristic exponents of 3.4, 2.5 and 2.1 for 316 10%, 30% and 50% porosity. When increasing the solid frac-317 tion, the scatterers are more likely to overlap and create struc-318 tures significantly larger than the wavelength. The decay of 319 the characteristic exponent is therefore consistent with predic-320 tions from scattering theories, where the attenuation coefficient

Figure 3 :

 3 Figure 3: Speed of sound as a function of solid fraction (from 0 to 0.5) measured from time-of-flight measurements in the time-distance diagrams and predicted by Wood, using Eq.10

327 3 . 2 .Figure 2 :

 322 Figure 2: Velocities (top) and attenuation coefficients (bottom) measured in three different samples with a 10% (left), 30% (center) and 50% (right) solid fraction.For all three cases, ultrasound propagation was set perpendicular to the direction of anisotropy so that only one wave could be observed. The three velocity measurements exhibit a linear dependence of frequency with a negative dispersion (the slopes are -0.006 mm for the 10% solid fraction, -0.02 mm for the 30% one and -0.013 mm for the 50% one) quite well predicted by ISA (respectively -0.005 mm, -0.016 mm and -0.029 mm).
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 1 Still, it is interesting to notice that fast and slow waves attenua-358 tion coefficients seem of the same order of magnitude. It should 359 be pointed out that Biot's theory predicts no attenuation (loss-360 less fluid), whereas numerical results clearly show that both fast 361 and slow waves undergo a strong attenuation due to scattering. 362 The observed attenuation is significantly stronger than what the 363 ISA predicts. It is also interesting to notice that both waves 364 show a slight positive dispersion. This is consistent with previ-365 ous observations on cancellous bone, where no negative disper-366 sion was observed when the two waves were clearly separated 367 [11, chap.5]. Finally, note that the slow wave velocity is 368 slower than the speed of sound in water, which is in agreement 369
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 33 Source point371
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 55 Fig.5shows snapshots of the propagation after averaging over 387

Figure 4 :Figure 5 :

 45 Figure 4: Velocities (top) and attenuation coefficients (bottom) of the fast and slow waves, measured in a 50% solid fraction sample in the case of ultrasound propagation along the main direction. Confrontation with the ISA prediction

Figure 6 :

 6 Figure 6: Left: The same 3D arrangement (collection of solid ellipsoidal scatterers, with a 50% solid fraction, propagation along the main direction) was used for the three simulations. Grey: solid phase. Black: fluid. (a) Reference simulation (same as in Fig.1a), Solid: Bone. Fluid: Water. Two wavefronts are clearly distinguished. (b) Solid: Bone. Fluid: Vacuum. Only one wavefront is observed, with a velocity (around 2.5 mm.µs -1 ) close to that of the fast wave (around 2.6 mm.µs -1 ) in (a). (c) Solid: Infinite density. Fluid: Water. Only one wave is observed, with a velocity (around 1.45 mm.µs -1 ) close to that of the slow wave (around 1.3 mm.µs -1 ) in (a)

410 4 .

 4 Insights on the nature of the two waves 411 4.1. Limit cases 412 One great advantage of numerical simulations is the possi-413 bility to fully control the properties of the simulated medium. 414 Fluid or solid properties were modified in the reference simula-415 tion, where two waves could be observed. First, water was re-416 placed by vacuum (density and elastic constants were set equal 417 to zero). Ultrasound propagation could therefore only occur in 418 the solid frame. Second, in another simulation, the solid phase 419 (which had initially the properties of bulk bone) was turned 420 into a perfectly rigid frame, forcing the ultrasound propaga-421 tion to occur only through water. Those two cases, which can 422 be seen as limit cases when the density of the fluid (respec-423 tively solid) phase reaches zero (respectively infinity) would 424 have been nearly impossible to study experimentally. The re-425 sults are compared with that of the reference case in Figure 6. 426 When ultrasound propagation was only allowed in one of the 427 two phases, only one wavefront was observed, whereas there 428 were clearly two distinguishable wavefronts in the reference 429 simulation. Furthermore, the velocity of the wave when the 430 propagation occured only through the solid (respectively fluid) 431 was close to that of the fast (respectively slow) wave in the 432 reference case. This result suggests that the fast wave trav-433 els mostly through the solid frame, and the slow wave mostly 434 through the fluid, in accordance with previous results [23]. It
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Figure 7 :

 7 Figure 7: Tortuosity (deduced from rigid frame velocity) and apparent tortusoity (deduced from slow wave velocity) as a function of bone fraction

  472and N dry = 0.6 GPa, to be compared to K f = 2.25 GPa. This 473 confirms that the stiff frame assumption does not hold, and ex-474 plains why the apparent tortuosity differs from the actual tortu-475 osity.

480

  Biot's theory. Biot's theory therefore gives correct orders of 481 magnitude for the fast wave velocity in our anisotropic porous 482 models, even beyond the frequency limit of this theory. It does 483 not, however, predict the positive dispersion of the two waves, 484 or the negative dispersion of the single wave, and does not ac-485 count for scattering losses.

486 4 . 2 .Figure 8 :

 428 Figure 8: Left: particle velocity in the fluid and solid phases for a 70% (top) or a 50% (bottom) solid fraction sample taken at a 4mm propagation depth. Comparison with the particle velocity taken at a 8 mm propagation depth at each side of the interface of a solid bar in water (bottom right).
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Appendix A. Velocity of the fast wave 542 Under the stiff frame assumption, Johnson [START_REF] Johnson | Equivalence between fourth sound in liquid He II at low 621 temperatures and the Biot slow wave in consolidated porous media[END_REF] gives simple relations for fast, slow and transverse waves velocities. In particular the fast and transverse waves velocities can be written

where K dry and N dry are the bulk and shear moduli of the dry sample (no filling fluid). When fluid is present, the stiff frame hypothesis is fulfilled as long as K dry K f and N dry K f , with K f the bulk modulus of the fluid. In our case K dry and N dry were deduced from transverse V T dry and longitudinal V L dry velocities in the dry sample (ρ f = 0) as follows:

As a consequence

which means that Eq.A.1 can be advantageously simplified as in Sec.2.4

It is interesting to notice that according to this equation, the 543 fast wave velocity does not depend on the transverse wave ve-544 locity, which was not so clear while looking at Eq.A.1.