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ABSTRACT

We present herein a level set approach to the X-ray tomography
problem with sparse projection data and study the impact of the pro-
jection operator on the binary reconstruction accuracy and compu-
tation time. The comparison is carried out on three projectors: the
Separable Footprint (Trapeze-Trapeze, SF-TT) [3], a classical Ray-
driven (RD) and a Simplified version of the Distance-Driven (SDD)
projector respectively. The performance, are evaluated for each op-
erator, on a binary 3D Shepp-Logan phantom by varying the number
of projections from 5 to 13, and considering noise free and noisy
cone beam projection data.

Index Terms— cone-beam geometry, projection operator, 3D it-
erative Reconstruction, object-based reconstruction, level set.

1. INTRODUCTION

Cone Beam Computed tomography is becoming more and more at-
tractive due its capability to integrate the intervention room and pro-
vide intraoperative imaging. The imaging system is composed of a
gantry that rotates around the patient and on which an X-ray source
and flat detector are fixed. During rotation, a sequence of image
projections can be obtained (between 100 and 200), which are then
exploited to get a 3-D reconstruction of the organs of interest. Many
studies have been conducted to reduce radiation dose and the ac-
quisition number [1]. We suggest here reducing the patient dose by
limiting the projection number during a scan. As a consequence,
the 3-D reconstruction from a few number of projections becomes
strongly ill-posed. Works reported in the literature makes use of it-
erative methods to solve this problem [1, 2].The latter relies on the
computation of forward and backward projections and the quality of
this reconstruction is highly dependent on the accuracy of the corre-
sponding system matrix. Basic operators include voxel [6, 7], splat-
ting [3], ray-driven (RD) [5], Separable Footprint (Trapeze-Trapeze,
SF-TT) [3] and distance driven (DD) [8, 4] approaches. Our con-
tributions concern two phases (presented in Section 2): Simplified
version of the Distance-Driven (SDD) and a level set approach to
perform the 3D binary tomographic reconstruction. Indeed, in bi-
nary case, object-based reconstruction approaches using the level set
method, have shown promising results compared to classical meth-
ods since this simultaneous segmentation and reconstruction leads to
improved results [9]. We studied in section 3 the binary reconstruc-
tion obtained from each projection operator (SF-TT, RD and SDD),
in varying the number of projections from 5 to 13, and considering
noise free and noisy cone beam projection data.

2. METHOD

2.1. Cone-Beam 3D System Model
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Fig. 1. Acquisition parameters of axial 3D cone-beam flat detector
geometry.

3D object f is located between the X-ray source S and the flat-
detector which is at a distance DSD from S. The source-detector
rotates around Z-axis on which the 3D object is fixed (Fig.1). In
order to perform the geometric calculation, we define a system of
three-dimensional Cartesian coordinates, (o,~i,~j,~k), such as

∥∥∥~i∥∥∥ =

∆x,
∥∥∥~j∥∥∥ = ∆y , and

∥∥∥~k∥∥∥ = ∆z , and another planar coordinate sys-
tem fixed on the detection grid, consisting of two orthogonal axes,
S and T , such as T is parallel to OZ. (∆x,∆y,∆z) and (∆s,∆t)
represent respectively the voxel and pixel sizes.
After the referential definition of rotational acquisition system, first
begin by determining the exact value of a projection point P (s, t; θ)
(eq.2), taking into account the cone-beam geometry, and the source
position ~P0:

~P0 =

 −DSO sin (θ)
DSO cos (θ)

0

 (1)

where, DSO denotes the source to rotation center, and θ denotes
angle of the source point counter-clockwise from the Y axis.



P (s, t; θ) =

∫
χ(s,t,θ)

f(x, y, z)dχ (2)

for which, the integral is along the line segment χ ( eq.3 ), and (s, t)
denote the detector coordinates.

χ(s, t, θ) = {~P0 + l~e : l ∈ [0, Lp]}
Lp =

√
D2
SD + s2 + t2

(3)

where ~e is the direction of the line χ(s, t, θ) connecting the source
S to the point P :

~e =
~P−~P0

‖~P−~P0‖ =

 sinϕ cosβ
− cosϕ cosβ

sinβ

 (4)

where β = −arctg( t√
s2+D2

SD

) and ϕ = arctg( s
DSD

)+θ denotes

respectively the azimuthal and polar angle of the ray from ~P0 to ~P .
After determining the mathematical expression of a detection point,
we identify the value detected by each pixellic surface ḡθ [sk, tl] as:

ḡθ [sk, tl] =

∫
∆s

∫
∆t

h(sk − s, tl − t)P (s, t; θ)dsdt (5)

where, (sk,tl) represents the centers of detector cell for:
k = 0, ..., Ns−1 , l = 0, ..., Nt−1 , s(k+1)−sk = ∆s, and t(l+1)−
sl = ∆t. h is the detector blur which depends only on coordinates
(s, t). Taking into consideration the continuous representation of
our 3D discrete object (eq. 6) (which will be defined as a weighted
sum of basis function b~∆), we can calculate cone-beam footprint
q(s, t; θ;~n) of the nth basis function:

f(~x) =
∑
~n

f [~n]b~∆ (~x− c [~n]) (6)

where c [~n] denotes the center of the nth basis function.

q(s, t; θ;~n) =

∫
χ(s,t;θ)

b~∆ (~x− ~c [~n]) dχ (7)

Finally, for a projection angle θ, the coefficient linking the nth basis
function with a pixel indexed by (sk, tl) is determined as:

aθ [sk, tl;~n] =

∫
∆s

∫
∆t

h(sk − s, tl − t)q(s, t; θ;~n)dsdt (8)

However, the exact calculation of aθ [sk, tl;~n] remains difficult and
computationally expensive, hence the necessity to make approxima-
tions. The two following sections explain the two different approxi-
mation methods.

2.2. Separable Footprint Projector : Trapeze-Trapeze (SF-TT)

For the SF-TT method proposed by Long et al. [3], we consider a
simple model for the basis function b~∆ :

b~∆(~x− c [~n]) = b0((~x− c [~n])∅~∆)

b0(~x) = Π(x)×Π(y)×Π(z)
(9)
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Fig. 2. Principle of the Separable Footprint method: Trapeze
Trapeze SF-TT

where ∅ represents element-wise division, ~∆ = (∆x,∆y,∆z) is
the grid-spacing, and Π represents the rectangular function. We also
propose a separable model for the detector blur h :

h(s, t) =
1

∆s∆t

(
Π

(
s

∆s

)
Π

(
t

∆t

))
(10)

Inspired by the shape of the true footprint q(s, t; θ;~n) of the basis
functions (eq.9) [3], with exploitation of the overlap area with the
surface of each pixel, Yong Long et al. [3] have established a robust
approximation of q (Fig.2) :

q(s, t; θ;~n) ≈ D × trap(s; s0, s1, s2, s3)× trap(t; t0, t1, t2, t3)
(11)

where trap(a; b0, b1, b2, b3) is trapezoid function with b0, b1, b3 and
b4 represent the vertices of the trapeze.
D is the voxel-ray-dependent amplitude [3] :

D =
∆x

|cos(β)| ×max(|cos(ϕ)| , |sin(ϕ)|) (12)

The combination of the equations eq.8, eq.10, and eq.11, allows the
computation of aθ [sk, tl;~n] :

aθ [sk, tl;~n] =
∫

∆s

∫
∆t

h(sk − s, tl − t)q(s, t; θ;~n)dsdt

= D × T (sk − ∆s
2
, sk + ∆s

2
)× T (tl − ∆t

2
, tl + ∆t

2
)

(13)
where T represents the overlap area with the pixel (the surface AS
and At in Fig.2).

2.3. Simplified Distance Driven Projector

The coefficient aθ [sk, tl;~n] can be defined as the likelihood that one
photon emitted by the voxel ~n will be detected by the pixel (sk, tl).
Inspired by this definition, and the Distance Driven method [4], we
proceed in three steps : 1) For each voxel ~n, we compute the conical
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Fig. 3. Principle of Simplified Distance-driven method.

projections of the eight cubic vertices (green dots in Fig.3).
2) We draw the smallest rectangle enclosing these projection points,
and we can assume that the probability that a photon emitted by this
voxel ~n will be detected in the rectangular surface (AT in Fig.3)
which is equal 1.
3) We calculate the overlap surface between each pixel and the rect-
angular area (AP in Fig.3), and the coefficients of the projection
matrix is inferred as a area ratio as : aθ [sk, tl;~n] = AP/AT

2.4. Model-Based Binary Reconstruction

To evaluate these computation methods of projection matrices and,
in particular, their impact on reconstruction, we chose methods
based only on minimizing a cost function which is a data attachment
term without regularization: Ed = 1

2
‖p−Af‖2 .

Object-oriented methods assume that the reconstruction consists of a
background region Ωout and a foreground region, Ωin, representing
the object [9]. Consequently, in the case of a binary reconstruction,
the data attachment term can be rewritten in as :

Ed =
1

2
‖p− finAδΩin − foutAδΩout‖ (14)

where fint and fout represent the intensity value of the background
and the object respectively, and δΩi is the characteristic function of
Ωi. To optimize Ed, we adopt deformable models (precisely the
level set methods), for which the velocity field Vd can be calculated
by applying derivation tools of the form :

Vd = (fout − fin)AT (p−Af) (15)

The use of level set function make easy the determination of differ-
ent regions Ωi and their characteristic functions δΩi . The evolution
equation is defined as : ∂ψ

∂t
= Vd |∇ψ| fout and fin depend of δΩi

and they are updated after each evolution of level-set function ψ [9].

3. RESULTS AND DISCUSSIONS

3.1. Projection Results

We simulated the X-ray cone-beam projections of a binary 3D
Shepp-Logan phantom, which includes a sphere, a rectangular
parallelepiped, and two ellipsoids (Fig.4.I). The digitization is per-
formed in NX × NY × NZ = 128 × 128 × 128 voxels of size
∆X = ∆Y = ∆Z = 1.2mm. The flat-detector is simulated with a
size of Ns ×Nt = 128 × 128 cells spaced by ∆s = ∆t = 2mm,
located at a distance Dsd = 1103mm from the X-ray source.
The whole ”source-detector” rotates around a fixed Z-axis, such as
Dso = 690mm.

AI II B C

Fig. 4. Projection results. (I): binary 3D digital phantom. (II): pro-
jection results for θ = 0◦, Line 1: using SF-TT matrix, Line 2:
using SDD matrix, column A: without noise, column B: with noise
SNRV AR=25 db, column C: with noise SNRV AR=20 db.

In accordance with these acquisition parameters, projections are
generated by implementing SF-TT, SDD and RD projectors, for dif-
ferent projection angles θ, such as θ ∈

[
−π

2
,+π

2

]
. In order to study

the noise influence on the reconstruction results, and have more
realistic projection images, an additive Gaussian noise is introduced
with different values of SNRV AR ( Fig.4.II).

3.2. Binary Reconstruction Results

The binary reconstruction is based on Object-oriented method, for
which we have chosen deformable models to minimize a cost func-
tion based on data attachment term (eq.14). To quantify the quality
of these reconstructions, we chose the criterion NMSE (Normalized
Mean Square Error).
Firstly, we studied the convergence speed of each reconstruction,
while varying projection operators (SF-TT, SDD and RD). For this
first test series, we plot the NMSE of reconstruction for the first 100
iterations, when using 13, 7 or 5 projections (respectively columns
A, B and C in Fig.5), and different noise levels SNRV AR, without
noise, 25dB, and 20dB (Lines 1, 2 and 3 in Fig.5). For each recon-
struction, we chose the same initial coarse object ( binary hollow
sphere), and we initialized fout and fin at 1 and 3.
In a second step, we evaluated the reconstruction accuracy by vary-
ing the noise level from SNRV AR =10 to 100 db, and the projec-
tion number (Fig.6.II). For this test series, we chose an initial object
(Fig.6.I.B) which presents a rough approximation of our object (bi-
narization of a Least Mean Square Error Reconstruction) after a few
iterations), to be sure to achieve the optimal reconstruction.

3.3. Discussion

By analyzing Fig.5, we can say that in the case of level set initializa-
tion with a coarse object, and in the absence of noise, our binary re-
construction converges faster when using SDD projector, compared
to SF-TT and RD projectors, and this speed appears faster when we
decrease the number of projections. The fact of adding noise re-
duces this speed difference. Should note here that one iteration is
defined as a reconstruction after having used whole projections (13,
7 or 5), and the jump that appears in NMSE curves (line 1) is due to
the reconstruction of small structure (rectangular parallelepiped and
sphere).
The results shown in Fig.6 prove that the reconstruction accuracy
decreases with the increase of noise level and the decrease of num-
ber of projections. However, regardless of the operator used (SF-
TT, SDD or RD), the reconstruction accuracy does not vary. Anal-
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Fig. 5. NMSE according to iterations. line 1: without noise, line
2: withe noise SNRV AR=25 db, line 3: withe noise SNRV AR=20
db, column A: using 13 projections, column B: using 7 projections,
column C: using 5 projections.
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Fig. 6. (I): Binary reconstruction from five projections using SDD
projector, visualization of the three central slices, column A: ref-
erence object, column B: initial object (obtained by LMSER re-
construction after few iterations), column C: reconstruction without
noise, column D: reconstruction with noise SNRV AR = 25db, col-
umn E: reconstruction with noise SNRV AR = 20db. (II): NMSE
according to SNR, A: reconstruction from 13 projections, B: recon-
struction from 7 projections, C: reconstruction from 5 projections.

ysis of Fig.6 enables us to divide the results of the reconstruction
in three groups: a first group for which the NMSE is less than 0.07
( SNRV AR ≥ 50db),where we can say that the reconstruction is
good, a second group for which NMSE ∈ [0.07, 0.25] (20db ≤
SNRV AR < 50db), where we have a weak reconstruction and we
can hope to improve these results with a simple contour regulariza-
tion, and finally, the last group for which NMSE is greater than 0.25

(SNRV AR < 20) where the reconstruction is very bad, so the ne-
cessity of introducing high-level constraints.

3.4. Conclusion and perspective

We proposed a 3D object-based binary reconstruction without reg-
ularization based on a new simplified Distance-driven (SDD) pro-
jector and a level set approach which acts as an implicit regularizer.
In this experiment, we studied the reconstruction quality using SF-
TT, RD and SDD projectors in the case of noisy and sparse data
from cone-beam acquisitions. A binary Shepp-Logan phantom was
used for performance evaluation in varying the number of projec-
tions and the gaussian noise level. Considering the limited number
of projections, there is no difference in the reconstruction accuracy
term and convergence speed between these three approaches. How-
ever, our reconstruction converge faster when using SDD projector
compared with the SF-TT and RD operators, in the absence of noise.
The results show also a proportional degradation of the binary recon-
struction with the increase of noise, and we have established prelim-
inary classification on the limits of such reconstruction in presence
of noise, and a limited number of projections. Future work will be
oriented to find the best a priori, to compensate the degradation in-
troduced by the noise, and to consider a gray-scale reconstruction.
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