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We present herein a level set approach to the X-ray tomography problem with sparse projection data and study the impact of the projection operator on the binary reconstruction accuracy and computation time. The comparison is carried out on three projectors: the Separable Footprint (Trapeze-Trapeze, SF-TT) [3], a classical Raydriven (RD) and a Simplified version of the Distance-Driven (SDD) projector respectively. The performance, are evaluated for each operator, on a binary 3D Shepp-Logan phantom by varying the number of projections from 5 to 13, and considering noise free and noisy cone beam projection data.

INTRODUCTION

Cone Beam Computed tomography is becoming more and more attractive due its capability to integrate the intervention room and provide intraoperative imaging. The imaging system is composed of a gantry that rotates around the patient and on which an X-ray source and flat detector are fixed. During rotation, a sequence of image projections can be obtained (between 100 and 200), which are then exploited to get a 3-D reconstruction of the organs of interest. Many studies have been conducted to reduce radiation dose and the acquisition number [START_REF] Hu | L0 constrained sparse reconstruction for multi-slice helical CT reconstruction[END_REF]. We suggest here reducing the patient dose by limiting the projection number during a scan. As a consequence, the 3-D reconstruction from a few number of projections becomes strongly ill-posed. Works reported in the literature makes use of iterative methods to solve this problem [START_REF] Hu | L0 constrained sparse reconstruction for multi-slice helical CT reconstruction[END_REF][START_REF] Kim | Forward-projection architecture for fast iterative image reconstruction in X-ray CT[END_REF].The latter relies on the computation of forward and backward projections and the quality of this reconstruction is highly dependent on the accuracy of the corresponding system matrix. Basic operators include voxel [START_REF] Joseph | An Improved Algorithm for Reprojecting Rays Through Pixel Images[END_REF][START_REF] Zhuang | Numerical Evaluation of Methods for Computing Tomographic Projections[END_REF], splatting [START_REF] Long | 3D forward and backprojection for X-ray CT using separable footprints[END_REF], ray-driven (RD) [START_REF] Siddon | Fast calculation of the exact radiological path for a three-dimensional CT array[END_REF], Separable Footprint (Trapeze-Trapeze, SF-TT) [START_REF] Long | 3D forward and backprojection for X-ray CT using separable footprints[END_REF] and distance driven (DD) [START_REF] Zeng | A ray-driven backprojector for backprojection filtering and filtered backprojection algorithms[END_REF][START_REF] De Man | Distance-driven projection and backprojection in 3D[END_REF] approaches. Our contributions concern two phases (presented in Section 2): Simplified version of the Distance-Driven (SDD) and a level set approach to perform the 3D binary tomographic reconstruction. Indeed, in binary case, object-based reconstruction approaches using the level set method, have shown promising results compared to classical methods since this simultaneous segmentation and reconstruction leads to improved results [START_REF] Gaullier | Introducing shape priors in object-based tomographic reconstruction[END_REF]. We studied in section 3 the binary reconstruction obtained from each projection operator (SF-TT, RD and SDD), in varying the number of projections from 5 to 13, and considering noise free and noisy cone beam projection data. 3D object f is located between the X-ray source S and the flatdetector which is at a distance DSD from S. The source-detector rotates around Z-axis on which the 3D object is fixed (Fig. 1). In order to perform the geometric calculation, we define a system of three-dimensional Cartesian coordinates, (o, i, j, k), such as i = ∆x, j = ∆y, and k = ∆z, and another planar coordinate system fixed on the detection grid, consisting of two orthogonal axes, S and T , such as T is parallel to OZ. (∆x, ∆y, ∆z) and (∆s, ∆t) represent respectively the voxel and pixel sizes.

After the referential definition of rotational acquisition system, first begin by determining the exact value of a projection point P (s, t; θ) (eq.2), taking into account the cone-beam geometry, and the source position P0:

P0 =   -DSO sin (θ) DSO cos (θ) 0   (1) 
where, DSO denotes the source to rotation center, and θ denotes angle of the source point counter-clockwise from the Y axis.

P (s, t; θ) = χ(s,t,θ) f (x, y, z)dχ (2) 
for which, the integral is along the line segment χ ( eq.3 ), and (s, t) denote the detector coordinates.

χ(s, t, θ) = { P0 + l e : l ∈ [0, Lp]} Lp = D 2 SD + s 2 + t 2 (3)
where e is the direction of the line χ(s, t, θ) connecting the source S to the point P :

e = P -P 0 P -P 0 =   sin ϕ cos β -cos ϕ cos β sin β   ( 4 
)
where

β = -arctg( t √ s 2 +D 2

SD

) and ϕ = arctg( s D SD ) + θ denotes respectively the azimuthal and polar angle of the ray from P0 to P . After determining the mathematical expression of a detection point, we identify the value detected by each pixellic surface ḡθ [s k , t l ] as:

ḡθ [s k , t l ] = ∆s ∆ t h(s k -s, t l -t)P (s, t; θ)dsdt (5) 
where, (s k ,t l ) represents the centers of detector cell for: k = 0, ..., Ns-1 , l = 0, ..., Nt-1 , s (k+1) -s k = ∆s, and t (l+1)s l = ∆t. h is the detector blur which depends only on coordinates (s, t). Taking into consideration the continuous representation of our 3D discrete object (eq. 6) (which will be defined as a weighted sum of basis function b ∆ ), we can calculate cone-beam footprint q(s, t; θ; n) of the n th basis function:

f ( x) = n f [ n]b ∆ ( x -c [ n]) (6) 
where c [ n] denotes the center of the n th basis function.

q(s, t; θ; n) = χ(s,t;θ) b ∆ ( x -c [ n]) dχ (7) 
Finally, for a projection angle θ, the coefficient linking the n th basis function with a pixel indexed by (s k , t l ) is determined as:

a θ [s k , t l ; n] = ∆s ∆ t h(s k -s, t l -t)q(s, t; θ; n)dsdt (8)
However, the exact calculation of a θ [s k , t l ; n] remains difficult and computationally expensive, hence the necessity to make approximations. The two following sections explain the two different approximation methods.

Separable Footprint Projector : Trapeze-Trapeze (SF-TT)

For the SF-TT method proposed by Long et al. [START_REF] Long | 3D forward and backprojection for X-ray CT using separable footprints[END_REF], we consider a simple model for the basis function b ∆ : 

b ∆ ( x -c [ n]) = b0(( x -c [ n])∅ ∆) b0( x) = Π(x) × Π(y) × Π(z) (9) Z Y X s T Voxel n s0 tl X Y Z X S P(s k ,t l ) D V1 V 2 V 1 V 2 e Detector s1 s2 s3 S T t0 t1 t2 t3 sk A s A t = D A s A t
h(s, t) = 1 ∆s∆t Π s ∆s Π t ∆t (10) 
Inspired by the shape of the true footprint q(s, t; θ; n) of the basis functions (eq.9) [START_REF] Long | 3D forward and backprojection for X-ray CT using separable footprints[END_REF], with exploitation of the overlap area with the surface of each pixel, Yong Long et al. [START_REF] Long | 3D forward and backprojection for X-ray CT using separable footprints[END_REF] have established a robust approximation of q (Fig. 2) :

q(s, t; θ; n) ≈ D × trap(s; s0, s1, s2, s3) × trap(t; t0, t1, t2, t3) (11) where trap(a; b0, b1, b2, b3) is trapezoid function with b0, b1, b3 and b4 represent the vertices of the trapeze. D is the voxel-ray-dependent amplitude [START_REF] Long | 3D forward and backprojection for X-ray CT using separable footprints[END_REF] :

D = ∆x |cos(β)| × max(|cos(ϕ)| , |sin(ϕ)|) (12) 
The combination of the equations eq.8, eq.10, and eq.11, allows the computation of a θ [s k , t l ; n] :

a θ [s k , t l ; n] = ∆s ∆ t h(s k -s, t l -t)q(s, t; θ; n)dsdt = D × T (s k -∆s 2 , s k + ∆s 2 ) × T (t l -∆ t 2 , t l + ∆ t 2 )
(13) where T represents the overlap area with the pixel (the surface AS and At in Fig. 2).

Simplified Distance Driven Projector

The coefficient a θ [s k , t l ; n] can be defined as the likelihood that one photon emitted by the voxel n will be detected by the pixel (s k , t l ). Inspired by this definition, and the Distance Driven method [START_REF] De Man | Distance-driven projection and backprojection in 3D[END_REF], we proceed in three steps : 1) For each voxel n, we compute the conical projections of the eight cubic vertices (green dots in Fig. 3).

2) We draw the smallest rectangle enclosing these projection points, and we can assume that the probability that a photon emitted by this voxel n will be detected in the rectangular surface (AT in Fig. 3) which is equal 1.

3) We calculate the overlap surface between each pixel and the rectangular area (AP in Fig. 3), and the coefficients of the projection matrix is inferred as a area ratio as : a θ [s k , t l ; n] = AP / AT

Model-Based Binary Reconstruction

To evaluate these computation methods of projection matrices and, in particular, their impact on reconstruction, we chose methods based only on minimizing a cost function which is a data attachment term without regularization:

E d = 1 2 p -Af 2 .
Object-oriented methods assume that the reconstruction consists of a background region Ωout and a foreground region, Ωin, representing the object [START_REF] Gaullier | Introducing shape priors in object-based tomographic reconstruction[END_REF]. Consequently, in the case of a binary reconstruction, the data attachment term can be rewritten in as :

E d = 1 2 p -finAδΩ in -foutAδΩout (14) 
where fint and fout represent the intensity value of the background and the object respectively, and δΩ i is the characteristic function of Ωi.

To optimize E d , we adopt deformable models (precisely the level set methods), for which the velocity field V d can be calculated by applying derivation tools of the form :

V d = (fout -fin)A T (p -Af ) (15) 
The use of level set function make easy the determination of different regions Ωi and their characteristic functions δΩ i . The evolution equation is defined as : ∂ψ ∂t = V d |∇ψ| fout and fin depend of δΩ i and they are updated after each evolution of level-set function ψ [START_REF] Gaullier | Introducing shape priors in object-based tomographic reconstruction[END_REF].

RESULTS AND DISCUSSIONS

Projection Results

We simulated the X-ray cone-beam projections of a binary 3D Shepp-Logan phantom, which includes a sphere, a rectangular parallelepiped, and two ellipsoids (Fig. In accordance with these acquisition parameters, projections are generated by implementing SF-TT, SDD and RD projectors, for different projection angles θ, such as θ ∈ -π 2 , + π 2 . In order to study the noise influence on the reconstruction results, and have more realistic projection images, an additive Gaussian noise is introduced with different values of SN RV AR ( Fig. 4.II).

Binary Reconstruction Results

The binary reconstruction is based on Object-oriented method, for which we have chosen deformable models to minimize a cost function based on data attachment term (eq.14). To quantify the quality of these reconstructions, we chose the criterion NMSE (Normalized Mean Square Error). Firstly, we studied the convergence speed of each reconstruction, while varying projection operators (SF-TT, SDD and RD). For this first test series, we plot the NMSE of reconstruction for the first 100 iterations, when using 13, 7 or 5 projections (respectively columns A, B and C in Fig. 5), and different noise levels SN RV AR, without noise, 25dB, and 20dB (Lines 1, 2 and 3 in Fig. 5). For each reconstruction, we chose the same initial coarse object ( binary hollow sphere), and we initialized fout and fin at 1 and 3. In a second step, we evaluated the reconstruction accuracy by varying the noise level from SN RV AR =10 to 100 db, and the projection number (Fig. 6.II). For this test series, we chose an initial object (Fig. 6.I.B) which presents a rough approximation of our object (binarization of a Least Mean Square Error Reconstruction) after a few iterations), to be sure to achieve the optimal reconstruction.

Discussion

By analyzing Fig. 5, we can say that in the case of level set initialization with a coarse object, and in the absence of noise, our binary reconstruction converges faster when using SDD projector, compared to SF-TT and RD projectors, and this speed appears faster when we decrease the number of projections. The fact of adding noise reduces this speed difference. Should note here that one iteration is defined as a reconstruction after having used whole projections (13, 7 or 5), and the jump that appears in NMSE curves (line 1) is due to the reconstruction of small structure (rectangular parallelepiped and sphere). The results shown in Fig. 6 prove that the reconstruction accuracy decreases with the increase of noise level and the decrease of number of projections. However, regardless of the operator used (SF-TT, SDD or RD), the reconstruction accuracy does not vary. Anal- ysis of Fig. 6 enables us to divide the results of the reconstruction in three groups: a first group for which the NMSE is less than 0.07 ( SN RV AR ≥ 50db),where we can say that the reconstruction is good, a second group for which NMSE ∈ [0.07, 0.25] (20db ≤ SN RV AR < 50db), where we have a weak reconstruction and we can hope to improve these results with a simple contour regularization, and finally, the last group for which NMSE is greater than 0.25 (SN RV AR < 20) where the reconstruction is very bad, so the necessity of introducing high-level constraints.

Conclusion and perspective

We proposed a 3D object-based binary reconstruction without regularization based on a new simplified Distance-driven (SDD) projector and a level set approach which acts as an implicit regularizer.

In this experiment, we studied the reconstruction quality using SF-TT, RD and SDD projectors in the case of noisy and sparse data from cone-beam acquisitions. A binary Shepp-Logan phantom was used for performance evaluation in varying the number of projections and the gaussian noise level. Considering the limited number of projections, there is no difference in the reconstruction accuracy term and convergence speed between these three approaches. However, our reconstruction converge faster when using SDD projector compared with the SF-TT and RD operators, in the absence of noise.

The results show also a proportional degradation of the binary reconstruction with the increase of noise, and we have established preliminary classification on the limits of such reconstruction in presence of noise, and a limited number of projections. Future work will be oriented to find the best a priori, to compensate the degradation introduced by the noise, and to consider a gray-scale reconstruction.
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 1 Fig. 1. Acquisition parameters of axial 3D cone-beam flat detector geometry.

Fig. 2 .

 2 Fig. 2. Principle of the Separable Footprint method: Trapeze Trapeze SF-TT
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 3 Fig. 3. Principle of Simplified Distance-driven method.

  4.I). The digitization is performed in NX × NY × NZ = 128 × 128 × 128 voxels of size ∆X = ∆Y = ∆Z = 1.2mm. The flat-detector is simulated with a size of Ns × Nt = 128 × 128 cells spaced by ∆s = ∆t = 2mm, located at a distance D sd = 1103mm from the X-ray source.The whole "source-detector" rotates around a fixed Z-axis, such as Dso = 690mm.

Fig. 4 .

 4 Fig. 4. Projection results. (I): binary 3D digital phantom. (II): projection results for θ = 0 • , Line 1: using SF-TT matrix, Line 2: using SDD matrix, column A: without noise, column B: with noise SN RV AR=25 db, column C: with noise SN RV AR=20 db.

Fig. 5 .Fig. 6 .

 56 Fig. 5. NMSE according to iterations. line 1: without noise, line 2: withe noise SN RV AR=25 db, line 3: withe noise SN RV AR=20 db, column A: using 13 projections, column B: using 7 projections, column C: using 5 projections.
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