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ABSTRACT 

 

Reducing patient radiation dose, while maintaining a high-

quality image, is a major challenge in Computed 

Tomography. The purpose of this work is to improve 

abdomen tumor low-dose CT (LDCT) image quality by 

using a two-step strategy: a first patch-wise non linear 

processing is first applied to remove the noise, that is based 

on a sparsity prior in term of a learned dictionary, then an 

unsharp filtering aims to enhance the contrast of tissues and 

compensate the contrast loss caused by the DL processing. 

Preliminary results show that the proposed method is 

effective in suppressing mottled noise as well as improving 

tumor detectability. 

 

Index Terms—Low-dose CT (LDCT), abdomen tumor, 

Gaussian kernel, preprocessing, learning dictionary 

 

1. INTRODUCTION 

 

CT imaging is increasingly incorporated into clinical 

decision making and despite rapid progresses in CT 

technology over the past decade, one major concern appears 

today related to the associated radiation rate rising [1-2].  A 

large number of researches in CT have been motivating by 

the need to reduce patient radiation dose. Among the 

possible solutions, one is to consider lowering the X-ray 

tube current. Nevertheless, low dose CT provides degraded 

images by mottled noise and different kinds of non 

stationary artifacts [3-4], which render the interpretation of 

these images particularly difficult. Tumor tissues often thus 

appear under the form of mosaic shapes within a low 

contrasted environment [5-6]. Two kinds of methods are 

applied to enhance image quality. They, either, directly 

proceed in the reconstruction domain or within a post-

processing denoising stage. In both cases, efficient noise 

suppression and tumor tissue preservation remains 

challenging. Neighborhood filters have shown interested 

properties for the restoration of noisy low dose CT images. 

Let cite for instance, adaptive filters [6] that allow to reduce 

the X-ray dose by 50% for the same image quality and 

without loss in low contrast detectability. Other filters such 

as multiscale penalized weighted least-squares [7], bilateral 

filters [8] and Non Local Mean (LNLM) [9] have also 

shown some efficiency in enhancing anatomical/ 

pathological features in Low dose CT images.  

Recent years have reported a growing interest in the study 

of sparse representation based dictionary learning (DL) [10-

14]. Compared to pixel-wise intensity update-based 

restoration methods, patch-wise DL processing are 

considered as being more robust to mottled noise and 

generally provides a more efficient representation of patch-

shaped features such as tumors or organs.  

We describe in this paper, a new patch-wise processing, 

based on a sparsity prior in terms of a learned dictionary to 

suppress mottled noises in abdomen tumor LDCT images 

and a contrast-enhancing unsharp filter whose role is to 

compensate the contrast loss induced by the DL process. 

This method referred as DL-unsharp algorithm, is 

described in section 2. The flowchart of the method is given 

in Fig. 1. Section 3 provides a comparative study between 

our algorithm and a LNLM restoration filter [9]. Preliminary 

results show that the proposed DL-unsharp algorithm 

provides a good restoration of structures in LDCT images 

with an image quality that is comparable with the original 

SDCT images.  

 

 

 

 

 

 

 

 

 

 

 

         Fig 1. Outline of the proposed DL-unsharp algorithm. 

 
Step 2 

 

Step 1 

 Original  LDCT image  y 

Patch based DL processing 

Enhancing the contrast of image x by applying unsharp filtering 

Output processed image xp 

 DL Processed LDCT image x 
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2. METHOD 

 

The core idea is to impose a sparsity prior patch-wise on the 

LDCT images in terms of a dictionary D. Assuming the 

patches in the LDCT image are sparsely representable, DL 

based patch processing is carried out by coding each patch 

as a linear combination of just a few patches in the 

dictionary i.e. each patch of the image can be approximated 

by a linear combination of just a few columns from D [11-

12]. This way to proceed leads to find the best global over-

complete dictionary. The coefficients of the linear 

combination can be estimated through the sparse coding 

process described in [13].  

 

The DL based patch processing aims to solve the following 

optimization problem [14]: 
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where, x and y denote the treated and original LDCT images, 

respectively. 
ij

R  is the operator that extracts the square 

patch ij
x  of size n n  (centered at point (i, j)) from the 

image x. This patch is encoded by Dij. D is a n K  matrix, 

which is composed by K  columns of n-vectors. Each n-

vector column corresponds to a patch of size n n .   

denotes the coefficient set  ij ij
  for the sparse 

representation of all patches.   denotes the standard 

deviation of the Gaussian kernel which assigns a large 

weight to points that are closer to the center of the patch. It 

is defined by ij
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l  norm that 

counts the nonzero entries of vector ij
 , and 

0
L  is the 

sparsity level that limits the maximum nonzero entry number 

in ij
 .  

The numerical solution of the optimization problem (1) is 

obtained by a weighted version of the K-SVD algorithm 

[14]. It consists of two main steps:  
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(2) aims to train the dictionary D and   from a set of image 

patches. It is solved with the K-means Singular Value 

Decomposition (K-SVD) after replacing x by the known 

observed image y. This operation is iteratively performed in 

two steps: (1) sparse coding of  (including all  ij ij
 ) using 

the orthogonal marching pursuit (OMP) algorithm; (2) 

dictionary update by minimizing (2) with D being a matrix 

with unit-norm columns in order to avoid scaling ambiguity 

[15]. Given the dictionary D, we compute for each training 

image, the patch-wise representations    using the OMP 

algorithm. Finally, given D and   , we compute the output 

image x by solving (3) according to a simple least squares 

approach:  
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Contrary to what was pointed out in the literature,  we 

found that the dictionary trained from a SDCT abdomen 

image always provided results that were visually close to 

LDCT images (when compared with the dictionary trained 

from the LDCT image itself). The reason is that most 

abdomen CT images have similar tissue compositions and 

the dictionary discrepancy often expresses a very few 

difference in the final sparsified features. In consequence, 

we decided to use a pre-computed general dictionary pD  (cf. 

Fig.2.a for illustration) that was preliminary trained from a 

high quality SDCT abdomen reference image (Fig.2.b). One 

interesting advantage of using this general dictionary is that 

the intensive computations, involved in the dictionary 

construction, are avoided. We also improved the original K-

SVD algorithm by associating a weighting to each pixel in 

the extracted patches, which is function of its distance to the 

center of the patch (a large weight is given to points that are 

close to the centre of the window and decreases as the 

distance of the point increases).  

 

        
        a)                                                     b) 
Fig. 2 (a) Dictionary example; (b) Abdomen SDCT image from which the 

dictionary has been trained.  

 

 We finally performed the optimization process using the 

dictionary pD  obtained from (2) and (3) and considering the 

following three steps: 
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 (S3), unsharpFilter ,     = p
x x                                            (7) 

 

The sparse coefficients   and DL treated image x are 

calculated using (5) and (6). The   in (5) denotes the 

tolerance parameter used in the computation of the   

coefficients. Step S3 (7) characterizes the final contrast 

enhancing unsharp filtering with the  -weight kernel [16]:  
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3. EXPERIMENT  

 

Approval of this study was granted by our institutional 

review board. A non-conflict of interest for this work was 

declared. SDCT images of abdomen were acquired on a 

multi-detector row Siemens Somatom Sensation 16 CT 

scanner with a current of 260mAs while LDCT images were 

obtained from a reduced current of 50 mAs. The scanning 

parameters were the following: kVp, 120; slice thickness, 5 

mm; Gantry rotation time, 0.5s; detector configuration 

(detector rows  section thickness), 16mm 1.5mm ; table 

feed per gantry rotation, 24 mm; pitch, 1:1; reconstruction 

method: FBP algorithm with convolution kernel “B31f” 

(“B31f” is the routine smoothing kernel used in abdomen 

scans for Siemens CT). The windows and level setting were 

chosen to optimize the visualization of these data (center, 

50HU; width, 350HU). For evaluation purpose, we 

compared the proposed method with the LNLM method in 

[9]. The LNLM method was accelerated using GPU 

(Graphics Processing Unit) techniques based on [9]. All the 

CT images were exported as DICOM files and then 

processed offline on a PC workstation (Intel Core™ 2 Quad 

CPU and 4096 Mb RAM, GPU (NVIDIA GTX465)) using 

Visual C++ as programming language (Visual Studio 2008 

software; Microsoft). 

For both algorithms, the parameter setting was 

completed applying a greedy algorithm to find the optimal 

parameter that provided the best qualitative results. This 

qualitative evaluation was carried out in collaboration with a 

radiologist (X. D.Y, 15 years clinical experience). These 

optimal parameters are listed in TABLE I with the 

computation time costs for each method.  

TABLE I. PARAMETER SETTING AND COMPUTATION COST (IN 

SECOND) FOR DIFFERENT METHODS 

 LNLM method DL-unsharp method 

Parameter 

setting 

h =2, Patch 

size =7 7pN  , 

Neighborhood size 
=81 81nN   

K=256, =8 8pN  , 
0
=3L , 

Iteration=20, T=21, =21, µ=21 

Unsharp filter:  =0.1,  

Computation 

Cost (in 

second) 

8.07 

K-step O-step I-step F-step 

979,53 2,28 0.96 0.12 

To specify the computation cost at each different stages of 

the proposed DL-unsharp processing, we used K-step, O-

step, I-step and F-step techniques to represent the K-SVD 

stage (2)-(3) (dictionary training), OMP step (5) (sparse 

coefficient estimation), the image update stage (6), and the 

unsharp filtering step (7), respectively. We see in Table I 

that the dictionary learning in the K-step method is 

computationally more time consuming than the O-step and I-

step techniques. Si if we remove the K-step and replace it by 

a pre-trained global dictionary (Fig.3(a)), the proposed 

implementation appears thus more efficient in computation 

time (2.28+ 0.96 +0.12 = 3.36 seconds)  than the LNLM 

method (8.07 seconds).  

 

Fig.3 and 4 illustrate the results for two patient datasets. 

Fig.3 (a) and Fig.4 (a) depict two abdomen LDCT images 

including tumors (pointed by red circles or arrows) of a 61 

years old female and 56 years old male patient respectively. 

Fig.3 and Fig.4 (b), (c) and (d) show the corresponding 

SDCT, LNLM processed LDCT and DL-unsharp processed 

LDCT images respectively. We observe that, under low dose 

scanning condition, mottled noise severely degrades the 

images and the tumor boundary appears fuzzy. Considering 

the SDCT images as references, we observe that the LNLM 

processed images (Fig. 3 (c) and Fig. 4 (c)) have been 

smoothed but still contain noise and stripe artifacts. The 

result appears more convincing with the DL-unsharp method 

since we can observe a more efficient noise reduction with a 

good preservation of tumor structures (Fig. 3 (d) and Fig. 4 

(d)). Their restoration provides a visual appearance of the 

texture that is close to those of the SDCT images. In the one 

including multiple hepatic metastases in Fig. 4, the DL-

unsharp algorithm allows enhancing the small structures as 

the small lesions which appears better discriminated than in 

the LNLM processed images (see arrows). 

 

  

  

Fig.3 Results for a dataset of a 61 years female patient having a liver tumor 

(red circles). (a): original LDCT image; (b):  SDCT image; (c): LNLM 

processed LDCT image; (d): DL-unsharp processed LDCT image.  
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Fig.4 Results for a dataset of one 56 years male patient having multiple 

hepatic metastases (red arrows) in the abdomen. (a): original LDCT image; 

(b): SDCT image; (c): LNLM processed LDCT image; (d): DL-unsharp 
processed LDCT image. 

 

4. CONCLUSION 

 

The algorithm described here and named DL-unsharp is 

employed for improving abdomen LDCT image quality, the 

objective being both to suppress the mottled noise and streak 

artifacts while enhancing the structure edges especially on 

tumors or lesions. This method makes use of a patch based 

DL processing followed by a contrast restoration unsharp 

filtering. Furthermore, the dictionary training has been built 

from a set of abdomen SDCT images to optimize the 

algorithm performance. We demonstrated the potential of 

the proposed approach on abdomen tumor LDCT datasets. 

Experiment results showed the proposed approach can 

greatly improve the quality of images acquired with a 

reduced X-Ray dose by 80%. 

However, some improvements are needed: First, the 

whole computation cost of the DL-unsharp processing still 

need to be accelerated to meet the clinical requirement (less 

than 0.5 second per image). Second some parameters are 

currently set empirically and need more experiments to 

validate their value. Thirdly, extensive experiments have to 

be led to confirm these preliminary results. In conclusion, 

future work will be devoted to all these points: 

parallelization of pair-wise operations, automatic estimation 

of the best parameters to optimize the tradeoff between data 

fidelity and priors and extensive evaluation.   
 

5.  ACKNOWLEDGEMENTS  

 

This research was jointly supported by National Basic 

Research Program of China under grant (2010CB732503), 

National Natural Science Foundation under grant 81000636, 

and the Natural Science Foundations of Jiangsu Province 

(BK2011593) and the French National Institute for Health 

(INSERM). 

 

6. REFERENCES 

 
[1] A. C. Kak and M. Slaney, Principles of Computerized 

Tomographic Imaging. Philadelphia, PA: SIAM, 2001. 

[2] D. J. Brenner and E. J. Hall, "Computed tomography-an 

increasing source of radiation exposure", New England 

Journal of Medicine, 357, 2277-2284, 2007. 

[3] K. Mannudeep and M.M. Michael, et al. "Strategies for CT 

Radiation Dose Optimization", Radiology, 230, 619-628, 

2004. 

[4] M. Yazdi, L. Beaulieu, “Artifacts in Spiral X-ray CT 

Scanners: Problems and Solutions", International Journal of 

Biological and Medical Sciences, 4, 135-139, 2008. 

[5] H. Watanabe, M. Kanematsu, T. Miyoshi, et al. "Improvement 

of image quality of low radiation dose abdominal CT by 

increasing contrast enhancement", AJR, 195, 986-992, 2010. 

[6] Y. Funama, K. Awai, O. Miyazaki, Y. Nakayama, T. Goto, Y. 

Omi, et al. "Improvement of low-contrast detectability in low-

dose hepatic multidetector computed tomography using a 

novel adaptive filter: evaluation with a computer-simulated 

liver including tumors",  Invest Radiol., 41, 1-7, 2006.  

[7] J. Wang, H. Lu, J. Wen, Z. Liang, “Multiscale penalized 

weighted least-squares sinogram restoration for low-dose X-

Ray computed tomography”, IEEE T-BME, 55(3), 1022-1031, 

2008. 

[8] E. Ehman, L. Guimarães, J. Fidler, N. Takahashi et al, "Noise 

reduction to decrease radiation dose and improve conspicuity 

of hepatic lesions at contrast-enhanced 80-kV hepatic CT 

using projection space denoising", AJR,198, 405-411, 2012. 

[9] Y. Chen, L. Luo, W. Chen, et al. “Improving Low-dose 

Abdominal CT Images by Weighted Intensity Averaging over 

Large-scale Neighborhoods”,European Journal of Radiology, 

80, e42-e49, 2011. 

[10] M. S. Lewic, B. A. Olshausen, D. J. Field, “Emergence of 

simple-cell receptive field properties by learning a sparse code 

for natural images", Nature, 381, 1996, 607-609. 

[11] M. S. Lewicki, “Learning overcomplete representations,” 

Neural Comput, 12, 2000, 337-365. 

[12] K. K. Delgado, J. F. Murray, et al. “Dictionary learning 

algorithms for sparse representation”,  Neural Comput, 15, 

349-396, 2003 

[13] D. L. Donoho and M. Elad, "Maximal sparsity representation 

via l1 minimization", Proc. Nat. Aca. Sci, 100, 2197-2202, 

2003.  

[14] M. Elad and M. Aharon, "Image denoising via sparse and 

redundant representations over learned dictionaries," IEEE T-

IP,15 ( 12) , 3736-3745, 2006. 

[15] S. Li, L. Fang, and H. Yin, "An efficient dictionary learning 

algorithm and its application to 3-D medical image denoisin

g", IEEE T-BME, 59(2), 417-427, 2012.  

[16] R. Haralick and L. Shapiro Computer and Robot Vision, 

Addison-Wesley Publishing Company, 1992. 

(a)  

 

 

in 

(b)  

 

 

in 

(c)  

 

 

in 

(d)  

 

 

in 


