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Coronary Vein Extraction in MSCT Volumes using

Minimum Cost Path and Geometrical Moments
M.-P. Garcia, J. Velut, D. Boulmier, C. Leclercq, M. Garreau, P. Haigron, C. Toumoulin

Abstract—This work deals with the extraction of patient-
specific coronary venous anatomy in pre-operative Multi-Slice
Computed Tomography (MSCT) volumes. A hybrid approach
has been specifically designed for low-contrast vascular structure
detection. It makes use of a minimum cost path technique with a
Fast-Marching front propagation to extract the vessel centerline.
A second procedure was applied to refine the position of the path
and estimate the local radius along the vessel. This was achieved
with an iterative multiscale algorithm based on geometrical
moments. Parameter tuning was performed using a dedicated
numerical phantom, then the algorithm was applied to extract
the coronary venous system. Results are provided on three MSCT
volume sequences acquired for patients selected for a Cardiac
Resynchronisation Therapy (CRT) procedure. A visibility study
was carried out by a medical expert who labelled venous segments
on a set of eighteen volumes. A comparison with two other Fast-
Marching techniques and a geometrical moment based tracking
method is also reported.

Index Terms—Coronary veins, MSCT, 3D vascular extraction,
Minimum cost path, Fast Marching, Geometrical moments

I. INTRODUCTION

Cardiac resynchronization therapy (CRT) is assessed as an

efficient therapeutic approach for patients who suffer from

severe heart failure, sinus rhythm and ventricular conduction

delay [1]. The procedure consists in pacing simultaneously or

with a small delay, both the right ventricle (RV) and the left

ventricle (LV). Daubert et al. proposed a totally transvenous

approach [2] using three pacing leads. Two are respectively

positioned in the right atrium (l3) and the RV (l2) through

the vena cava while the third one (l1) is inserted through

the coronary sinus into a venous branch that runs along the

free wall of the left ventricle (see Fig. 1). The major issue is

the placement of the LV lead. Indeed, the implantation of the

pacing devices is currently 2D venous X-Ray coronarography

guided and the implant success rate is limited to 85−92% [3].

The main reasons of failure are the difficulty of accessing the

candidate veins, incorrect or suboptimal pacing site selection

and possible electrode displacements, as well as the risk of

dissecting the coronary sinus. Thus, an adequate planning is

needed to improve and secure the implant procedure. Our work
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Fig. 1. Lead implantation for CRT and coronary venous anatomy on frontal
view of the heart.

deals with the description of patient-specific coronary venous

anatomy to define pre-operatively the target vein, plan the best

path to reach it and confirm its accessibility.

The study is carried out using contrast-enhanced Mutli-

Slice Computed Tomography (MSCT) data. This modality

is considered as a reliable technique to depict the cardiac

venous system [4]. Nevertheless, MSCT scans are tailored

for optimal visualization of the coronary arteries. Indeed, the

dye product passes first through the coronary arteries before

being gathered by the coronary venous tree, which lead to

suboptimal enhancement of the coronary veins, especially of

second and third degree side branches having a small diam-

eter. More generally, the dye product appears diluted when

reaching the venous network, resulting in a weak contrast and

variable appearance along the vessels with hypodense zones

and blurred contours. Another difficulty relates to the close

proximity of structures having similar contrast, i.e., cavities

and coronary arteries. In addition, the venous anatomy tends

to be highly variable from one patient to another [5], i.e.,

number of branches, location and length. Thus, a primary

goal towards planning is to provide an efficient method for

extracting coronary veins in MSCT volumes.

A lot of work has been devoted to the extraction of vascular

networks, but a large majority concerns coronary arteries in

Magnetic Resonance Imaging (MRI) and MSCT (see [6],

[7], [8] for the main surveys). The methods can be catego-

rized in different ways (the application [6], the mathematical

framework [7] or the extraction scheme [8]) according to the

issue to be highlighted. If we consider the extraction scheme,

three main families are reported in the literature: region-

growing-based approaches [9], active contour family [10], [11]
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and centerline extraction methods. The latter gathers direct

centerline tracking [12], [13], model-based [14] and minimum

cost path techniques [15], [16], [17], [18]. The performances

of these methods vary according to multiple factors: the pres-

ence of severe pathologies (acute stenosis, large aneurysm),

local complexity of vascular networks (complicated branching

situations) and the surrounding tissue environment. A first

standardized evaluation methodology and reference database

has been set up, within the 2008 MICCAI challenge, to

quantitatively evaluate the coronary artery centerline extraction

algorithms [19]. This evaluation does not include coronary

venous structures.

The method, which is described here, aims to take into

account the presence of nearby contrasted artery vessels and

strong contrast changes along the veins. It makes use of a

two-stage process. A minimal path technique is first applied

to extract vein centerlines [20]. A new cost function has been

designed that combines the multiscale Frangi’s filter response

with the direction of the front with respect to the vessel

orientation in order to constrain its propagation direction and

better handle contrast inhomogeneity and weakness inside the

veins as the presence of nearby blood vessels. The extracted

path does not always correspond to the vessel central axis. We

applied then an iterative multiscale recentering process to shift

it towards the central axis position and estimate the local radius

along the vascular branch. This stage was carried out using

geometrical moments under the hypothesis that the vessel can

be locally modeled by a cylinder. Section II describes this

algorithm. Parameter tuning was carried out on a numerical

phantom. The set of experiments are described in Section III.

Section IV finally provides some preliminary results on the

coronary vein extraction with a qualitative evaluation and a

comparison with three other methods dedicated to centerline

extraction.

II. METHOD

This section introduces our vessel extraction algorithm

designed for coronary veins into MSCT data sets.

A. Minimum Cost Path Computation

Minimum cost path techniques aim to find a curve from a

source point P0 to a final point PF that minimizes an energy

functional that is of the form:

E(γ) =

∫

γ

Λ(γ(s))ds (1)

where Λ is an image-based measure and γ is the path joining

the two points. The value Λ is given by a cost function

that is defined to provide low values on the desired features

(i.e. contour or centerline), the objective being to find a path

along which the integral of Λ is minimal. The solution of

this minimization problem goes through the computation of

an energy map U(P ) such as:

U(P ) = inf
CP0,P

E(γ) = inf
γ∈CP0,P

{

∫

γ

Λ(γ(s))ds} (2)

Fig. 2. The restricted and oriented front propagation and its combination with
the Freezing procedure in 2D space. The front is only allowed to propagate
into a restricted area defined by the angular value r. θ is the angle between
the direction of the normal to the front ~n at position (x, y, z) (red or green

arrow) and the local orientation ~Γ (black arrow).

where CP0,P is the set of all possible paths going from a

source point P0 to a given point P . To ensure that the map

U(P ) has got only one minimum, we assumed that Λ > 0.

Then the minimum cost path can be retrieved by applying a

gradient descent algorithm on the map U from PF to P0.

1) Fast Marching Algorithm: The computation of the en-

ergy map U(P ) is solved considering a Hamiltonian approach.

We aim at computing the travel time U that satisfies the

Eikonal equation:

‖ ▽ U‖ = Λ (3)

The Fast Marching algorithm [11] is an efficient way to

solve the previous equation. It consists in a front which

starts its propagation from the point P0 and progresses over

the image towards areas presenting low costs. Each time

the front passes over the point Px,y,z , its travel time Ux,y,z

is computed corresponding to the cumulative travel cost of

the minimum cost path from P0 to Px,y,z . In our approach,

to deal with low-contrast environment, we constrained the

front progression towards a privileged direction. We want the

front not to propagate beyond vessel boundaries. Therefore,

the computation of the energy map U was restricted to a

region assimilated to a narrow band around the front to fit

the following constraints (see Fig. 2): (1) the direction of

propagation was restricted into an area in the estimated local

direction, (2) and into vessel regions, given by Frangi’s filter

response [21], (3) a freezing distance was applied to freeze

the points located at the tail of the propagating front and

avoid the front flowing over the boundaries [22], [17]. In this

implementation, the bifurcations of the coronary venous tree

are not handled.

The algorithm is introduced in Table I and is referred as

method (VM + OC) later on.

2) Cost function definition: The front propagation is guided

by the following cost function which considers the reciprocal

of the normalized vesselness measure Fx,y,z weighted by
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orientation information ρ:

Λx,y,z =

{

( 1

Fx,y,z
· ρ)2 if θ < r and Fx,y,z > s

C, otherwise
(4)

with ρ = sin(θ)

Fx,y,z corresponds to the optimal response given by the

vesselness function F (x, y, z, σ) at the scale σ that copes with

the vessel radius:

Fx,y,z = max
σmin≤σ≤σmax

F (x, y, z, σ) (5)

with Fx,y,z,σ at a scale σ given by:

Fx,y,z =

{

0, if λ2 > 0 or λ3 > 0

(1− exp
(

−R2

A

2α2

)

)exp
(

−R2

B

2β2

)

(1− exp
(

−S2

2γ2

)

)

(6)

and:

with RA =

∣

∣

∣

∣

λ2

λ3

∣

∣

∣

∣

, RB =
|λ1|

√

|λ2λ3|
and S =

√

λ2

1
+ λ2

2
+ λ2

3

λ1, λ2, λ3 are the eigenvalues of the Hessian, ordered accord-

ing to their magnitude as |λ1| ≤ |λ2| ≤ |λ3|. The vessel local

orientation is given by the eigenvector corresponding to the

smallest eigenvalue λ1 at scale σ. The parameters α, β and

γ are used to control the sensitivity of the filter to deviations

from the cylindrical shape. The α parameter controls the ratio

RA which discriminates plate-like structure. The β parameter

controls the ratio RB which discriminates blob-like structure.

The γ parameter controls the measure S which influences

noise suppression.

In (4), θ is the angle between the direction of the normal

to the front ~n and the mean local vessel orientation ~Γ. ~n is

computed from the discrete approximation proposed by Parker

et al. in [23] and ~Γ is estimated from the previous n alive points

whose vesselness measure is high (threshold µ), to avoid noise

disturbance. C is a penalty cost given to voxels located outside

the propagation area and at non-vessel positions. This cost is

set to a high value to stop the front evolution at considered

locations (C = 10000). The variable s is a threshold on

the vesselness criterion, which is set to a very small value

(s = 0.01) to remove the background. Finally, the variable r is

an angular threshold that is used to orientate the propagation

of the front and prevent it from leaking through the vessel

boundaries. Its value will be studied later on in Section III.

3) Freezing distance: The cost function is efficient to

propagate the front around the vessel axis for points located

at the head of the front. However, in case of low contrast

with surrounding structures, the cost given to points close to

contours may not be high enough to definitively stop the front

propagation at those positions and the front may leak beyond

boundaries while advancing in the vessel. Thus, in order to

stop the eventual propagation of the front in segments already

considered, a Freezing process is applied, as in Deschamps

and Cohen [22], [17]. As schematized in Fig. 2, the points

having the label ‘Trial’ which are located far away from the

head of the front are labeled ‘Frozen’ according to a Freezing

distance d.

ALGORITHM Minimum Cost Path Computation

Notations:

• Alive Set: Nodes reached by the front whose U -value will not be
changed;

• Trial Set: Nodes having at least one Alive neighbour and their U -value
already estimated;

• Far Set: Nodes whose U -value has never been computed;
• Fx,y,z is the vesselness measure of the point Px,y,z .

Interactive Initialization: The user points a seed point P0 and a final point
PF in the branch of interest and gives the initial propagation direction ~v.

Fast Marching Front Propagation:

1) Initialization:

• Tag the point P0 as Alive and set U(P0) := 0;
• Tag Far, all other points P and set U(P ) := ∞;
• Tag Trial, each neighbour Px,y,z of the point P0 for which

the direction of the normal to the front is close to the initial
propagation direction ~v and set U(Px,y,z) := 1/Fx,y,z .

2) while PF is not reached and the Trial set is not empty

• Find Pmin, the Trial point with the lowest U -value;
• Tag Pmin as Alive

• For each neighbour point Px,y,z of Pmin, tagged as Far:

– Compute the cost ΛPx,y,z
(4);

– Compute U(Px,y,z) by solving the Eikonal equation (3)
– if Px,y,z is a Far point: Add it to the Trial set;
– if Px,y,z is a Trial point: Update U(Px,y,z) if the new value

is smaller

• Freeze Trial points whose distance to the front ‘head’ is greater
than the freezing distance d (Freezing process).

Path Extraction: Compute a path from P0 to PF by gradient descent on the
travel time map U .

TABLE I
MINIMUM COST PATH COMPUTATION USING A FAST-MARCHING FRONT

PROPAGATION.

4) Path extraction: Once the final point PF is reached by

the front, the path from P0 to PF is computed using the travel

time map U . A gradient descent is applied on the map U

from the point PF . Each new point Pi of the path is the

one amongst the neighbours of the point Pi−1 presenting the

smallest difference between Ui and Ui−1.

B. Path Centering and Radius Estimation

This second procedure aims at refining the path extracted at

the previous stage (see II-A) and estimating the local radius

at each centred position (see Fig. 3 for an overview of the

approach). Local vessel features can be estimated analytically

from geometrical moments computed in a spherical window

centered on the vessel central axis and that fit the vessel radius.

To achieve this goal, we use an iterative multiscale algorithm

[24] which alternatively moves the sphere towards its center of

gravity, estimates the vessel radius r and adjust the size of the

sphere R until convergence of the sphere radius to the vessel

size. The center of gravity and the local vessel radius was

estimated using the first order moments (analytical expressions

can be found in [24]).

This algorithm is described in Table II. The extracted path

from P0 to PF consists of successive neighbouring points

of the image. The path is subsampled to avoid the spherical

window (in the iterative multiscale algorithm) converging

towards identical positions for several neighbouring points.



4

Fig. 3. Overview scheme of the proposed method: (Left) The minimum
cost path computation yields a first estimation of the vessel centerline (algo-
rithm Table I). (Right) The second procedure refines the centerline position
and yields a radius estimation at each corrected position P ′

i
. The previous

path is subsampled and a spherical window centered on each position Pi

is moved towards the central axis and its size fits the local vessel radius
(algorithm Table II).

For each point of the subsampled path Pi, given an initial

spherical window size Ri
0

and a priori estimation of the

mean local vessel and background intensities, Ivi−1
and Ibi−1

respectively, geometrical moments allow estimating the local

center P ′
i and radius ri (see Fig. 3). For the first position P0,

the user has to specify the initial size of the spherical window

R0

0
, Iv0

and Ib0 . Then, for any point Pi, the initial size of

the spherical window R0

i is set with respect to the previous

local radius ri−1. Iv and Ib are estimated using an expectation

maximization (EM) algorithm. A histogram computed on an

extended region (including the vessel and the background)

around the point Pi−1 is modelized by two Gaussians. The

background intensity Ib (respectively the vessel intensity Iv)

is considered as the mean of the Gaussian corresponding to

the lowest intensities (respectively the highest).

III. PARAMETER TUNING

Several parameters of the algorithm must be tuned: the

vesselness filter parameters (α, β and γ) and the thresholds

controlling the orientation constraint of the front (µ, r and

the Freezing distance d). Experiments were performed on

synthetic data to study the influence of these parameters. The

following tests were executed on a 1.6 GHz Xeon PC, 2 GB

RAM. The algorithms were implemented in C++.

A. Numerical Phantom Description

An isotropic synthetic data set of size 110×90×90 voxels

has been designed from the VTK library which represents a

part of the coronary venous tree with typical nearby structures

such as cardiac cavities and coronary arteries. The contrast

features of coronary veins in data sets are simulated to have

the same density distribution as in real data. From here on

ALGORITHM Path Centering and Radius Estimation

Notations:

• Rk
i

is the spherical window size centered on the point Pi at the iteration
k of the iterative multiscale procedure;

• ri, Ivi , Ibi are respectively the vessel radius, the mean vessel intensity
and the mean background intensity at the point Pi.

Interactive Initialization:

• Set the values R0
0

, Iv0 and Ib0 ;
• Subsample the path from P0 to PF .

Iterative Multiscale Procedure:

for each point Pi of the subsampled path:

• Set k = 0;
• Center the spherical window of radius R0

i
on the point Pi;

• do :

– k := k + 1;
– Move the center of the spherical window towards its center of grav-

ity (use the centered geometric moments µ1,0,0, µ0,1,0, µ0,0,1)
[24];

– Compute the radius ri := f(Rk−1

i
, Ivi−1

, Ibi−1
, µ0,0,0) [24];

– Adjust the spherical window size Rk
i
:= f(ri).

while Rk
i
6= Rk−1

i
• P ′

i
is the corrected position on the central axis, corresponding to the

spherical window center;
• R0

i+1
= f(ri);

• Estimate Ivi and Ibi using an Expectation Maximization algorithm.

TABLE II
PATH CENTERING AND RADIUS ESTIMATION USING GEOMETRICAL

MOMENTS.

we will refer to this data set as ‘phantom’. Fig. 4 depicts

a surface representation of the phantom. For geometry sim-

plicity, the coronary venous tree model is based on coronary

vein centerlines extracted from real data (Coronary Sinus (CS),

Great Cardiac Vein (GCV), Antero Lateral Vein (ALV)). This

model that includes a bifurcation, consists of a tortuous tubular

structure of length similar to real veins (72, 8 mm). The main

vessel radius varies from 6 to 1 voxels (1voxel ≈ 0.4mm),

and the second branch from the bifurcation has a constant

radius of 1 voxel. Furthermore, a spherical structure represents

a nearby cardiac cavity and cylinders of constant radius (4

voxels) represent crossing coronary artery segments (typical

coronary radius varies from 1 to 4, 5 mm).

A curvilinear reconstruction along the main vessel axis

is shown in Fig. 5(a) to visualize the intensity grey value

distribution. As regards the densities laying inside the tube,

difficulties due to the dye product have been considered. A

succession of hypo-, hyper- and iso-dense areas was set in

the range [100− 300] Hounsfield Units (HU). The sphere and

cylinders density was set to 250 HU. As regards background

density, since coronary veins are directly in contact with the

adipose epicardic tissue, the value was set to -80 HU (mean

density of adipose epicardic tissue on Hounsfield scale). The

whole data set was finally smoothed using a Gaussian kernel

to make contours blurred, and thus to get a local intensity

profile similar to those on real data sets. Furthermore, to

cope with real data noise, we added Gaussian noise to the

data set. Thus, six data sets with different standard deviation

σnoise = [0, 10, 20, 30, 40, 50] are available for testing. Fig. 5

depicts the intensity distribution for the six configurations.
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(a) (b)

(c) (d)

Fig. 4. Surface rendering of the synthetic data set under three different views
(a)-(c): A tortuous tubular structure with a bifurcation representing a part of
the coronary venous tree and exhibiting a radius varying from 1 to 6 voxels,
a spherical structure representing a cardiac cavity and cylinders of constant
radius (4 voxels) representing crossing coronary artery segments.

(a) σnoise = 0 (b) σnoise = 10

(c) σnoise = 20 (d) σnoise = 30

(e) σnoise = 40 (f) σnoise = 50

Fig. 5. Curvilinear reconstruction along the main vessel axis of the model
for the six configurations of the numerical phantom with σnoise varying
from 0 to 50: Succession of hypo-, hyper- and iso-dense areas in the range
[100− 300] Hounsfield Units (HU).

B. Vesselness Filter Parameters

Frangi’s filter parameters are α, β and γ. Olabarriaga et

al. [25] evaluated the previous parameters effect on coronary

arteries axis enhancement from CT. They demonstrated the

quasi insensitivity of the parameters α and β on filter response,

whereas the background noise suppression term γ has a

strong impact on it. Furthermore, γ relies on the grey-value

distribution present in the image [21]. We set α and β both to

0.5 as in Frangi’s work [21] and performed series of test on

the parameter γ.

We applied the vesselness filter for a fixed scale σ = 4,

with varying values of γ, on each of the six configurations

of the phantom (σnoise = [0, 10, 20, 30, 40, 50]). In order

Fig. 6. Vesselness measure at different distances to center of the vessel for
σnoise = 50.

to only study the influence of the parameter γ, the tubular

structure radius was set to a constant value similar to σ (4
voxels). Fig. 6 displays the mean vesselness measure (along

the vessel) at different distances to center [0 − 5 voxels]

for γ = [0.1, 1, 50, 100, 200, 300, 400] and for σnoise = 50.

Similar curves were obtained for the other values of σnoise,

e.g., for γ = 50 at position 0, the mean vesselness measure

varies from 0.451 to 0.456. Indeed, the different noisy data

are based on the same noise-free data and the contrast with

the background along the vessel trajectory is similar. Thus, we

can say that the Frangi’s filter is very successful in removing

the background noise.

We are looking for values of γ which yield high response

close to axis (position 0) and an important slope between axis

and contours (position 4). This is the case for γ ∈ [0.1− 50]
(plots superimposed in the figure). We finally chose α = 0.5,

β = 0.5 and γ = 50 for the following part.

C. Orientation Constraint Parameters

The second experiment consists in studying the influence

of the parameters controlling the orientation constraint of the

Fast-Marching front propagation i.e., µ, r and the Freezing

distance d. We applied our minimum cost path algorithm with

the Fast-Marching front propagation (see II-A) to evaluate the

impact of each parameter on our six configurations of the

phantom (noise and noise free configurations). We made the

parameter µ vary within the interval [0.5 − 0.9] with a step

of 0.1, r within [65 − 90] degrees with a step of 5 and the

Freezing distance d within [6− 12] with a step of 2. For each

combination of these parameters, an OVerlap score OV was

computed to evaluate the extraction ability of the algorithm.

This metric measures a point-to-point correspondence between

the phantom centerline (ground truth) and the extracted cen-

terline and provides a score between 0 and 1 (more details

about the OV metric computation can be found in [19]). More

the extracted centerline follows the phantom centerline, closer

to 1 the score is. High OV scores (0.76−0.90) were obtained

for combinations of µ, r and d respectively lying in the range
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[0.7− 0.75], [80− 90] and [6− 12]. The Freezing distance d

was not found to be a sensitive parameter. Indeed, the cost

function guides the front propagation whereas the Freezing

procedure aims at blocking the propagation at the front tail

beyond a given distance. So based on these results, we chose

µ = 0.75 et r = 80 degrees and for the freezing distance, we

applied a value close to the vessel radius.

IV. EVALUATION AND RESULTS ON VENOUS DATA SETS

A. MSCT DATA Description

Experiments have been carried out on three MSCT se-

quences of patients candidates to CRT. Imaging was performed

with a General Electric LightSpeed VCT 64-slice Scanner.

The same protocol was used for all the acquisitions, that is

a contrast agent injection in the coronary tree and a prolonged

scan delay compared to coronary imaging in cardiac MSCT.

Each sequence included 20 volumes reconstructed from slices

acquired every 5% of the R-R interval from the cardiac cycle.

There are approximately 200 slices per volume, with 512×512

pixels per slice. The resolution is about 0.4 × 0.4mm2 per

pixel. Since the interslice space is higher than the pixel size, a

preliminary interpolation was performed to make the data sets

isotropic.

B. Coronary Vein Visibility

As explained in the introduction, scanning protocols are

tailored for optimal visualization of the coronary arteries. As

a consequence, the coronary venous system exhibits a weak

contrast is barely contrasted, vascular branches are located

within a noisy multi-object environment and their appearance

varies along the tree and over time. In addition, artifacts are

present in some volumes due to reconstruction problems. They

can be either caused by an irregular heart rate or by too

fast motions of structures related to the rotation speed of

the acquisition system. These artifacts mainly occur in early

systolic and end-diastolic phases, and can affect 50% of the

volumes of the sequence. Motion artifacts induce blurring

effects and a splitting or duplication of vessels, making their

extraction difficult, even impossible, in some cases.

Thus, we asked a medical expert (who is an interventional

cardiologist) to qualify the venous branches for each volume

of the considered sequences, according to their quality in

terms of contrast or visibility and provide for each, their

name and their location. He was able to only classify vessels

in volumes ranging from 45% to 85% of the R-R interval

from the cardiac cycle which approximately corresponds to

the diastolic phase (its duration varies from patient to patient).

He labelled thus the coronary venous branches on eighteen

volumes from the three sequences and classified 114 veins

according to their visibility (Table III). Four categories were

considered: High visibility (++), good visibility (+), medium

visibility (+–) and low visibility (––). High visible vessels

exhibit homogeneous high density with strong edges such as

in Fig. 7(a) and 7(b). In case of good visibility (Fig. 7(c) and

7(d)) and medium visibility (Fig. 7(e) and 7(f)), the contrast

filling is inhomogeneous with hypodense zones, attachment of

nearby structures and blurred contours. Finally, in Fig. 7(c) and

(a) CS (++) (b) PLV (++)

(c) CS (+) (d) MCV (+)

(e) GCV (+–) (f) PV (+–)

(g) CS (––) (h) PV (––)

Fig. 7. Exemples of coronary vein (white arrow) permeabilities on CT
slices: High visibility (++), good visibility (+), medium visibility (+–) and
low visibility (––). Crossing coronary arteries are indicated with an orange
arrow.

Vessel Visibility ++ + + – ––

Coronary Sinus (CS) 11 11 9 5

Middle Cardiac Vein (MCV) / 6 6 6

Posterior or Postero-Lateral Vein (PV/PLV) 2 4 9 8

Great Cardiac Vein (GCV) / 2 11 5

Antero or Antero-Lateral Vein (AV/ALV) / 2 7 10

TABLE III
PHYSICIAN EXPERTISE: CLASSIFICATION OF 114 CORONARY VEINS

ACCORDING TO THEIR NAME AND VISIBILITY INTO THE EIGHTEEN MSCT
VOLUMES. THESE VOLUMES ARE THOSE WHICH ARE NOT POLLUTED

WITH MOTION ARTIFACTS OVER THE SET OF THE THREE SEQUENCES.
EACH COLUMN DISPLAYS THE NUMBER OF SEGMENTS IN EACH

CATEGORY (FROM HIGH TO LOW VISIBILITY

7(d) we can observe low visible vessels with similar density

to that of adjacent tissues.

The Coronary Sinus (CS) is generally highly visible. The

Middle Cardiac Vein (MCV) may be well visible in some

volumes as well as poorly contrasted in other volumes. The

Posterior (PV) and Postero-Lateral (PLV) Veins more often

exhibit medium or low visibility, with a few cases of good

visibility. The Great Vein (GV) is mainly visible in most

cases. Finally, the Antero (AV) and Antero-Lateral (ALV)

Veins tend to be poorly visible. Those degrees of visibility are

also correlated with vessel caliber (measures of the CS and its
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tributaries can be found in [5]). Indeed, the CS exhibits a big

diameter along its trajectory, and becomes smaller to form the

Great Vein. Thinner calibers are observed for the Antero and

Antero-Lateral Veins.

C. Extraction Results

In order to stimulate the left ventricle, the target vein is

ideally located on the lateral wall. If any ALV cannot be

reached by the cardiologist, the second choice of implantation

is a PV or the MCV and the GV at last. In the context

of interventional planning, it is of interest to visualize in

3D space the possible implantation paths (see Fig. 8), but

also to observe accurately the extracted branches with their

caliber information and the nearby structures on curvilinear

reconstructions (see Fig. 9).

We applied thus the algorithm on the real data sets, using

the parameters designed in section III: α = 0.5, β = 0.5,

γ = 50 for Frangi’s filter and µ = 0.75, r = 80 degrees

and the freezing distance d = 12 for the Fast-Marching front

propagation. Frangi’s filter was applied at different scales

in order to cope with vessels of different calibers. Since

the coronary venous tree exhibits highly different diameters,

we made the scales vary from 1 to 4. Limiting the highest

scale to 4, prevented the filter from yielding false positive

response beyond contours, which is essential in low-contrast

environment.

Extraction results obtained on two patient data sets are

shown in Fig. 8 (identified as cases Patient 1 and Patient 2).

From user-defined points, the algorithm extracts first the

coronary sinus and the great cardiac vein in its continuity.

Then, each contributing branch is extracted in turn, which

yields immediately a tree shape with bifurcation positions. For

Patient 1, the whole coronary venous tree has been extracted

from four initialization points, into two consecutive volumes

(50% and 55%): the optimal path from CS to ALV and an

alternative path through the MCV (see Fig. 8(a)). During the

CRT procedure, the LV lead has been implanted in the distal

part of the MCV. For Patient 2, the whole coronary venous

tree has been extracted from four initialization points, into

three consecutive volumes (50%, 55% and 60%): the optimal

path from CS to ALV and an alternative path through the MCV

(see Fig. 8(b)). During the CRT procedure, the LV lead has

been implanted in the distal part of the ALV.

We can observe on the curvilinear reconstructions (Fig. 9),

the method ability to accurately extract tubular structures of

different calibers (1.0 to 9.3 mm) and structures presenting

contrast difficulties. In Fig. 9(a) and 9(c), we can observe

vessel segment whose densities overlap with those of nearby

structures (circled in red on the image). In Fig. 9(e), the CS

exhibits an abrupt change in diameter due to an area very thin

and poorly contrasted (circled in red on the image).

D. Qualitative Evaluation

We compared our minimum cost path algorithm (VM + OC)

with a tracking technique developed by [24]. Moreover for

our algorithm, we considered as a comparison, three different

cost functions to build the travel time map: (1) the intensity

(a) Patient 1: Volumes 50%-55%

(b) Patient 2: Volumes 50%-55%-60%

Fig. 8. 3D Extraction of the coronary veins of interest for LV lead
implantation.

information that makes the assumption that vessels are brighter

than surrounded structures (method I - was applied in [15]

to extract the trachea, brain vessels and an aorta), (2) the

hessian-based vesselness measure (method VM - was applied

in [26] to extract coronary arteries) in order to discriminate

tubular structures from blob- or plate-like structures, (3) the

combination of the multiscale Frangi’s filter response with the

direction of the front with respect to the vessel orientation (our

method VM + OC).

For method I, the cost function was defined as follows [15]:

Λ(x, y, z) = |Imean − Ix,y,z|
2

(7)

where Imean is the mean lumen intensity of the vessels of

interest and Ix,y,z the intensity at position (x, y, z).
The second one (method VM) was given by [26]:

Λ(x, y, z) =

{

1

Fx,y,z
if Fx,y,z > s

C, otherwise
(8)

where Fx,y,z is the Frangi’s vesselness measure at position

(x, y, z) and C is the cost given at non-vessel positions

(threshold s). C and s have similar values to those used in

method (VM + OC). The three methods (VM + OC), (VM) and

(I) are applied with the identical Freezing procedure (distance

d set to 12 voxels) and the same Frangi’s filter parameters

(α = 0.5, β = 0.5 and γ = 50).

The tracking algorithm (referred as method Mom) relies

on a local modelling of the vessel by a cylinder in a 3D

homogeneous space. The main advantage of this method is

to provide analytical expressions based on 3D geometrical

moments for the computation of the local cylinder parame-

ters (location of the center of gravity, local orientation and

diameter). The initialization step is performed interactively

by pointing the vascular branch of interest. The tracking is

then performed by shifting a spherical window according to

the estimated orientation and the exploration is carried out

in the two opposite directions. Nevertheless, the orientation

estimated at a given position does not guarantee an accurate
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(a) GCV (Patient 1 vol. 55%) (b) GCV + radius estimation

(c) ALV (Patient 2 vol. 50%) (d) ALV + radius estimation

(e) CS (Patient 2 vol. 50%) (f) CS + radius estimation

Fig. 9. Curvilinear representations from extracted centre lines (low contrast
areas circled in red).

Vessel Visibility ++ + + – ––

Method (VM + OC) 100% 88% 83.3% 47.1%

Method (VM) 100% 88% 71.4% 32.3%

Method Mom 84.6% 44% 35.7% 17.6%

TABLE IV
PERCENTAGE OF SUCCESSFUL PATH EXTRACTIONS FOR EACH METHOD

ACCORDING TO CORONARY VEIN VISIBILITY IN MSCT DATA SETS.

position of the next point on the central axis in particular

when highly curved vessels are tracked. An iterative centering

process (see Table II) is therefore achieved, using the first

order moments, to move the point towards the vessel center.

The incremental displacement between two tracked points is

adaptive and depends on the vessel size and curvature. In most

cases, and especially for coronaries, the tissue surrounding the

vessels is not homogeneous. The presence of different tissues

in the immediate neighbouring of the vessels is detected and

an EM algorithm is applied to estimate for each point the local

mean vessel and background intensities.

We studied the ability of each method to extract the vein

central axis from an initial point to a final point (without

interactive re-initialization). Each method has been applied to

the 114 veins classified according to their visibility in MSCT

volumes (see Table III).

The percentage of successful extracted path is given in

Table IV. An extraction error means that the algorithm did not

reach the final point of the branch. The method (I) based on

intensity information fails in the proximal part of each branch

(result are not reported in Table IV). The contrast inhomo-

geneities in the vessel lumen lead the front towards wrong

directions. The method Mom exhibits a quite good score for

images of good visibility. This score quickly decreases with

the image corruption. This is due to the fact that the multiscale

recentering process makes the center of the spherical window

move towards brightest structures. As the contrast inside the

veins is often weaker than its close environment (cardiac

cavities, myocardium, arteries), the tracking algorithm tends to

jump into these neighbouring structures. The methods based

on a vesselness measure (VM and VM + OC) appear globally

more successful. Indeed, we can notice the very high and

similar scores for veins of high and good visibility for the

methods (VM + OC) and (VM). Finally, the introduction of the

orientation constraint in the cost function (VM + OC) allow to

obtain the best results for veins of medium and low visibility.

V. CONCLUSION

An algorithm was proposed to deal with coronary vein

extraction in MSCT volumes. Difficulties are related to the

complexity of the scene that includes different structures such

as the myocardium, the cavities and the coronary venous and

arterial trees, which are very close to each other and have a

similar contrast. Moreover, due to the MSCT scan protocol,

the venous tree is not well contrasted and its appearance

can be highly variable. One more difficulty comes from the

cardiac beat that introduces in some volumes (especially those

associated with the systolic and early-diastole phases) motion

artifacts that blur the structures, making the extraction of the

veins in these volumes impossible. As regards the minimum

cost path method, we proposed a specific cost function, which

allows to constrain a front propagation in the local vessel

orientation. Parameter setting was performed on simulated data

to find the optimal values based on different criteria. The

qualitative analysis based on the vascular visibility and the

comparison to three other methods shows a good efficiency

of the algorithm in a low-contrast environment with a fairly

good accuracy in the venous branch extraction. In the context

of CRT, the method allows to describe the patient-specific

coronary venous tree with the optimal implantation path as

well as alternative ones. The proposed approach could be used

pre-operatively to actually plan the catheterization procedure

by mapping the possible 3D access paths. It could contribute

to optimize the CRT procedure. Further work is needed to

confirm the method robustness on more patient cases. In

future projects, those results could be used as input data

for catheterism simulation system and registered with intra-

operative data for interventional assistance.
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