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Abstract

Levodopa (L-dopa) effects on the cardinal and axial symptoms of Parkinson’s disease (PD) differ greatly, leading to
therapeutic challenges for managing the disabilities in this patient’s population. In this context, we studied the cerebral
networks associated with the production of a unilateral hand movement, speech production, and a task combining both
tasks in 12 individuals with PD, both off and on levodopa (L-dopa). Unilateral hand movements in the off medication state
elicited brain activations in motor regions (primary motor cortex, supplementary motor area, premotor cortex, cerebellum),
as well as additional areas (anterior cingulate, putamen, associative parietal areas); following L-dopa administration, the
brain activation profile was globally reduced, highlighting activations in the parietal and posterior cingulate cortices. For the
speech production task, brain activation patterns were similar with and without medication, including the orofacial primary
motor cortex (M1), the primary somatosensory cortex and the cerebellar hemispheres bilaterally, as well as the left-
premotor, anterior cingulate and supramarginal cortices. For the combined task off L-dopa, the cerebral activation profile
was restricted to the right cerebellum (hand movement), reflecting the difficulty in performing two movements
simultaneously in PD. Under L-dopa, the brain activation profile of the combined task involved a larger pattern, including
additional fronto-parietal activations, without reaching the sum of the areas activated during the simple hand and speech
tasks separately. Our results question both the role of the basal ganglia system in speech production and the modulation of
task-dependent cerebral networks by dopaminergic treatment.
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Introduction

Studies on individuals with Parkinson’s disease (PD) have

notably involved the investigation of the effects of dopaminergic

medication on cerebral blood flow at rest [1]. Some studies

reported no modifications of brain activation while others rather

found a global increase [2,3] or decrease [4,5] in cerebral activity

when comparing on medication vs. off medication state. Both

subthalamic nucleus (STN) stimulation and levodopa (L-dopa)

have proven to reduce hypermetabolism in the lenticular nucleus

and increase metabolism in the associative prefrontal cortex [6].

Interestingly, the response to L-dopa at rest depends on the

duration of exposure to the medication: individuals with PD

chronically treated by L-dopa have decreased regional cerebral

blood flow in the ventrolateral prefrontal and sensorimotor

cortices, but drug-naive patients display no levodopa-induced

modification of cerebral activation [7]. The significance of these

changes in response to L-dopa remains uncertain but could reflect

a modification of the thalamocortical projections by long-term L-

dopa treatment, at least at rest.

Using self-generated arm movements in untreated individuals

with PD, early functional neuroimaging studies reported reduced

regional cerebral blood flow (rCBF) within the main cortical

output areas of the basal ganglia, including the supplementary

motor area (SMA), dorsolateral prefrontal cortex (DLPFC) and

anterior cingulate cortex (ACG) [8–11]. These results were further

extended in more recent studies that also revealed that the

activation of some structures depends on the nature and

complexity of the task. Thus, although the anterior SMA (pre-

SMA) often appeared under-activated during hand movements,

over-activations within the caudal SMA, premotor (PM), M1,

inferior parietal and anterior cingulate cortices, as well as

cerebellar hemispheres have also been reported, suggesting that

these areas could be recruited to overcome the dysfunction of the

cortex-basal-ganglia-cortex motor circuit [12–15]. In addition, the

reduced activations reported within the SMA [9] and the lateral

PM cortex [16] appeared to be partly restored following

dopaminergic administration. Regarding M1 activation, the

evidence on the effect of medication is contradictory. While some

authors reported the restoration of activation after apomorphine

administration [9], others showed a reduction of the precentral

gyrus activation [17]. These contradictory findings could result

from the specific constraints of the task being performed, while
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inhibition of endogenous dopamine release by the exogenous

contribution of the medication may further complicate the matter

[18]. Finally, the putamen and thalamus have been shown to be

most responsive to levodopa, as compared with less responsive

motor cortical areas [19]. Thus, these findings stressed the need to

better understand the influence of dopaminergic treatments on the

cortical and subcortical circuits [17–19] underlying movement

production.

Motor network activations during PD speech production have

been studied using both positron emission tomography (PET) [20–

23] and functional magnetic resonance imaging (fMRI) [24–27].

These neuroimaging studies have documented that Parkinsonian

speech seemed to be related to an altered recruitment of the main

brain motor regions underlying speech production (orofacial

motor cortex, cerebellum) and an increased involvement of the

premotor and prefrontal cortices (DLPFC, SMA, superior

premotor cortex). Additional cerebral activation, such as the

recruitment of temporal regions, have also been observed off

medication [24,27], suggesting that a specific reorganization

underlies the altered activation pattern associated with PD speech.

In most PET experiments examining speech production in

individuals with PD off or on treatment, basal ganglia activation

barely reached statistical significance. A reduced SMA activation

[21,22,25] and a significantly greater activation in the right

primary orofacial sensorimotor cortex, as compared to controls

subjects, have also been reported following L-dopa intake. These

changes were interpreted as a compensatory phenomenon to

preserve speech in PD [25]. They also revealed increased

connectivity between the periaqueductal grey matter and basal

ganglia, posterior superior temporal gyrus, supramarginal and

fusiform gyri and inferior parietal lobule on the right side [26].

These modifications could reflect either a specific compensatory

phenomenon or a specific modification of the activation pattern

underlying brain dysfunctions of PD speech. In either case, this

pattern of modifications does not parallel the one associated with

hand motor tasks. Dysarthria usually worsens with disease

progression, which suggests that it is also linked to the progression

of the pathological processes to non-dopaminergic brain circuits

[28–31]. Specifically, one would expect neuronal losses of

additional areas of motor control to be involved, such as the

pre-supplementary cortex [32], the thalamus [33] or the

mesocortical system [34].

To date, no study has investigated the influence of dopaminer-

gic treatment on the patterns of neural activation during hand and

speech movements in the same group of individuals with PD.

Furthermore, although in daily life speech is often accompanied by

hand or other movements, very few studies have examined such

dual tasking in PD [35–38]. A few neuroimaging studies have

examined the performance of simultaneous movements in PD, as

it is well-known that individuals with PD have difficulties

performing complex, simultaneous or sequential movements

[39–43]. Most of these studies have used bimanual movements

[44,45], or dual motor and cognitive tasks [46], rather than

simultaneous limb and speech movements. While some of

important issues regarding the neural bases of hand and speech

movements in PD have been addressed, the functional brain

activations underlying the difficulty these patients have in

simultaneously performing both together remain unclear. There-

fore, using fMRI, we investigated the influence of dopamine

treatment on the patterns of neural activation underlying hand

movement (HM) and speech production (SP) performed both

alone and simultaneously in individuals with PD. Even if the

(HM+SP) movement combination movement is unnatural and

experimental, it allows for the combination of the two HM and SP

movements: it should be considered as a combined task, and not

a proper dual-task comprising strictly independent tasks, as it did

not involve any cognitive conflict in response selection between the

HM and SP tasks. The motor programming was identical for the

two modalities, (i.e., selection of the same response among four

possibilities) and only the motor execution differed [24]. More-

over, it cannot be considered as a co-speech gesture also as it is not

unconsciously self-generated by the participants themselves. We

hypothesized that the brain activation profiles for HM and SP

tasks performed alone would both be modulated following L-dopa

intake. In a previous study, we observed that the brain activations

recorded during the HM+SP combined task were the sum of the

activations obtained when each of the tasks was performed

separately in healthy subjects, while this was not the case in

untreated individuals with PD [24]. Our second hypothesis was

that L-dopa would restore such summation, as is the case for

a bimanual simultaneous task [44].

Materials and Methods

1. Patients
Twelve right-handed (Edinburgh handedness questionnaire

.80%) patients with PD were recruited in the Neurological

wards of the Grenoble (n = 6) and Lyon (n= 6) University

Hospitals. Demographic and clinical characteristics of the patients

are summarized in Table 1. All patients fulfilled the UK

Parkinson’s disease Brain Bank Criteria [47] for the diagnosis of

idiopathic PD and presented with predominant akinetic-rigid

symptoms.

All patients were studied first without (off), and then with (on)

anti-Parkinsonian medication, during two consecutive fMRI

sessions of one hour each. Off medication, patients were scanned

after an overnight fast, i.e. at least 12 hours of PD treatment

withdrawal. The on medication session was undertaken with

patients in their best on motor state, 45 to 60 minutes after

administration of a suprathreshold dose of L-dopa (120% of the

usual morning dose; see Table 2). Unblinded evaluation of the

patients’ global motor disability was performed before each fMRI

session using the motor section of the Unified Parkinson’s Disease

Rating Scale (UPDRS, part III) [48]. Only patients with mild to

moderate mostly akineto-rigid symptoms (with no or little tremor

off, and no or little dyskinesia on) were included to ensure that they

could perform the tasks. The patients had moderate speech

impairment and were able to produce intelligible speech allowing

for the performance of the speech production task. The off and on

medication UPDRS scores were statistically compared (paired

Student t test, p,0.05; STATISTICA 7.1, Statsoft, Tulsa, USA)

to appreciate the impact of the treatment.

2. Ethics Statement
The study (project nu 06-CHUG-6) was conducted in accor-

dance with the Declaration of Helsinki [49], approved by the local

Ethics Committee Review Board (Comité de Protection des

Personnes [CPP] pour la recherche biomédicale, Centre Hospi-

talier Universitaire de Grenoble [CHUG], France). The patients

were included after providing written informed consent.

3. Experimental Paradigms
The experimental protocol included 3 motor tasks [24]:

– Hand movement (HM) - a freely chosen sequence of movements

performed with the right hand, moving a non-magnetic fMRI-

compatible joystick (Current Designs, Philadelphia, USA) in 4
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possible directions (forward, backward, right and left), starting

from and returning to the neutral position;

– Speech production (SP) - a freely chosen speech sequence, using 4

possible words (‘‘Up’’, ‘‘Down’’, ‘‘Right’’ and ‘‘Left’’);

– Combined task ([HM+SP]) - a freely chosen sequence of joystick

movements performed with the right hand together with the

speech description of the associated directions (‘‘Up’’, for the

forward direction; ‘‘Down’’, for the backward direction;

‘‘Right’’; and ‘‘Left’’).

They represented a particular version of externally-paced tasks,

since an additional dimension was introduced by the choice

among the 4 possibilities. Prior to the fMRI trials, patients had

ample opportunity to practice the tasks, during which they were

instructed to respond to each visual stimulus, i.e. the word ‘‘action’’

presented every two seconds for 500 milliseconds (ms). Patients

were asked to avoid pre-established sequences of movement

directions. They were allowed to use the same direction and/or

produce the same word several times in a row. The joystick used

for the HM and (HM+SP) tasks was connected to a control case

enabling the synchronization of the visual stimulus with image

acquisition. The setting also enabled a posteriori monitoring of

performance, as well as analysis of the direction of the movements.

During a rest condition (the word ‘‘rest’’ appeared repeatedly on

the screen), patients were required to remain still, without making

any movement or speaking. For technical reasons, including the

noisy fMRI environment, we were not able to monitor the SP task

performance. Nevertheless, a posteriori questioning of the patients

ensured that the tasks had been performed according to the

instructions.

4. Functional MRI Procedure
To ensure patients’ comfort, a block-design was chosen, each

motor task corresponding to an fMRI run of about 7 minutes’

duration. Each run alternated 10 blocks of rest and 10 blocks of

action (HM, SP or tasks HM+SP), each block including 10 trials,

for a total of 100 trials. The order of the fMRI runs was

counterbalanced between conditions and patients. fMRI data were

obtained on a 3 Tesla (T) MRI scanner (Bruker Medspec S300 -

IFR 1, Biomedical NMR and Neurosciences, Grenoble, France),

equipped with an emitting/receiving head coil. For each fMRI

run, 160 volumes covering the whole brain with 40 adjacent axial

3.2 mm thick slices were acquired using a BOLD-contrast multi-

slice T2*-weighted single-shot echo-planar imaging (EPI) sequence

(echo time (TE) = 30 ms, repetition time (TR)= 2500 ms, flip

angle = 77u, field of view (FOV) = 2166216 mm2, matrix size

72672, voxel size = 36363.2 mm3). T1-weighted 3D magnetiza-

tion prepared rapid acquisition gradient echo (MP-RAGE)

anatomical images of the whole brain were also acquired

(TR=2500 ms, TE= 3.89 ms, TI = 900 ms, flip angle = 8u,
FOV=25662246176 mm3, voxel si-

ze = 1.3361.7561.375 mm3).

5. Behavioral Data Analysis
Direction and response times (RT) for the HM and (HM+SP)

tasks were recorded during image acquisition and processed off

line. RTs shorter than 150 ms or longer than 1500 ms were

discarded. Mean RT and performance rate were computed for

each patient. The influence of task (single vs. double) and

medication (off vs. on) was analyzed using non-parametric Wilcoxon

tests with a corrected p-value,0.025 for multiple comparisons.

6. fMRI Data Analysis
fMRI data analysis was performed using SPM5 software

(Wellcome Department for Cognitive Neuroscience, London,

UK) [49]. First-level analyses were carried out for each patient,

yielding parametric statistical maps generated for each motor task

both off and on medication. Patient 4 was not able to perform the

SP task off medication and patient 7 the HM task on medication.

The first-level contrasts were introduced within second-level

analyses, using a two-factor ANOVA model with the motor tasks

(HM, SP and HM+SP) and treatment conditions (off or on

medication) as repeated measures. Only cerebral areas whose

statistical thresholds corresponded to probabilities pFWE-cor-

rected,0,05 at the voxel level and activation foci for which the

number of voxels was equal or superior to k = 10 were retained (Z-

scores.5.20). When this statistical processing did not make it

possible to detect any activation, a non-corrected statistical

threshold of puncorrected,0,001 was applied at the voxel level (Z-

scores.3.10). The activation coordinates were transformed into

Table 1. Demographic data of the patients.

Patients Sex Symptom laterality predominance Age (years) Disease duration (years)

1 M R 64 8

2 M L 53 12

3 M R 61 6

4 M R 67 5

5 M R 52 12

6 M L 55 8

7 M L 58 8

8 M L 51 8

9 M L 69 14

10 F L 65 15

11 M L 58 9

12 M L 64 12

Mean 6 SD 59.866.1 9.863.2

F = female; L = left; M =male; R = right; SD = Standard deviation.
doi:10.1371/journal.pone.0046541.t001
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a standard stereotactic space [50]. Between-medication state and

between-task comparisons allowed for further detailed analysis.

Uncorrected p-values,0.001 (Z-scores.3.10) were considered

significant for these contrasts.

Results

1. Clinical and Behavioral Data
Group analysis confirmed that the total motor scores of the

UPDRS and the Hoen and Yahr scale (Table 2) decreased

significantly following the administration of L-dopa (75.2% of

improvement for the UPDRS, p,0.001; 41.9% of improvement

for the Hoen and Yahr, p,0.001). The improvement for rigidity,

axial signs and akinesia sub-scores was 66.7%, 71.1% and 75.9%

respectively (p,0.001). The improvement in speech production as

assessed using item 18 of the UPDRS III was also significant,

although more limited (38.5%, p,0.001).

The patients correctly performed the tasks under the two

experimental conditions, although the number of movements was

greater on medication than off (HM off: 62618; on: 78615;

HM+SP off: 64618; on: 78612). The effect of medication on the

number of trials was significant both for the HM task (z = 2.85;

p,0.005) and for the combined task (z = 2.90; p,0.005). There

was no effect of task on the number of movements. Regarding

response time, there was no effect of either task or medication,

although response times were slightly shorter under medication

than off (HM off: 6596173 ms; on: 5566101 ms; HM+SP off:

6266145 ms; on: 5616116 ms). Neither task nor medication

affected the distribution of the movements’ direction.

2. fMRI within-group Comparisons and between
Medication State Comparisons

2.1. Hand movement. At a comparable statistical level

(Table 3), the brain activation profile off L-dopa strongly involved

the right cerebellum and left motor/premotor regions; recruitment

of the anterior cingulate cortex and the superior and inferior

parietal lobules were also noted, as well as that of the putamen

(Fig. 1a). Administration of L-dopa led to a focalization of

activations, revealing weak activations in the right posterior

cingulate gyrus and the left inferior parietal lobule (Fig. 1b).

Cerebral activations in the off vs. on L-dopa comparison involved

significant right-lateralized regions in the anterior insula and the

putamen; for the on vs. off L-dopa comparison, no suprathreshold

clusters were found for the HM task (Table 4).

2.2. Speech production. No significant brain activations

survived the pFWE-corrected,0.05 statistical level. Values at

puncorrected,0.001 (Table 5) revealed similar activations for the

off and on L-dopa conditions, including the bilateral orofacial M1

and cerebellar hemispheres, as well as the left premotor, primary

somatosensory, supramarginal and anterior cingulate cortices,. In

terms of cluster sizes, the off L-dopa (Figure 2a) brain activation

profile was larger than on L-dopa (Figure 2b) at the levels of

premotor and anterior cingulate cortices, and cerebellum. For the

SP task, no suprathreshold clusters were detected either for off vs.

on L-dopa or on versus off L-dopa.

2.3. Combined task. Activations within the right cerebellum

were seen off L-dopa (Fig. 3a). On L-dopa, comparable cerebellar

activations were seen (Table 6), although there was a focalization

of the areas recruited (Fig. 3b). Additional left-sided activations

were seen in the medial premotor cortex, the post-central gyrus

and the inferior parietal lobule. Off versus on L-dopa comparison for

the (HM+SP) task revealed an activation within the right median

temporal gyrus. No suprathreshold clusters were detected on versus

off L-dopa (Table 7).

3. fMRI between-task Comparisons
Off L-dopa, no (HM+SP) vs. HM task activations were detected;

on L-dopa, there was a right-sided M1 activation (Table 8). Off L-

dopa, the (HM+SP) vs. SP contrast was associated with left

activations within the cerebellum, premotor cortex, superior

temporal gyrus, as well as superior and inferior parietal lobules.

On L-dopa, analyses revealed no suprathreshold clusters (Table 9).

Discussion

Off medication, unilateral hand movements yielded brain

activations in the right cerebellum, left motor/premotor regions,

anterior cingulate cortex, superior and inferior parietal lobules, as

well as in the putamen. Under L-dopa, the brain activation profile

was globally reduced, restricted to activations in the right posterior

cingulate gyrus and the left inferior parietal lobule. For the speech

production task, brain activation patterns were similar with and

without medication, including the bilateral orofacial M1 and

cerebellar hemispheres, as well as the premotor, primary

somatosensory, supramarginal and anterior cingulate cortices, all

left-sided. The combined task yielded a right cerebellar activation,

both without and under L-dopa. On L-dopa, there were additional

left-sided activations in the medial premotor cortex, post-central

gyrus and inferior parietal lobule.

1. Hand Movements in PD
Behavioral measurements showed an improvement in the ability

to respond to commands and initiate the hand movement

following L-dopa intake, as evidenced by the increased number

of movements. The shortening in response time did not reach

significance, which is not surprising as, unlike other studies that

reported an effect of medication on reaction time [51,52], we did

not use a reaction time protocol. The reduced performance of

hand movements when off L-dopa could be related to the

overactivation of the cortico-cerebello-cortical circuit and the loss

of brain activation selectivity resulting from the effort to overcome

the dopaminergic-denervation-dependent akinesia [12,14]. Sever-

al neuroimaging studies supported the hypothesis that an increased

activation of the cortico-cerebello-cortical circuitry may compen-

sate for the cortico-striato-cortical motor loop dysfunction [12–

15,53,54]. Despite the stronger recruitment of the cerebellum in

the off medication brain profile and the reductions in brain

activation following L-dopa intake, the between-medication state

comparison did not reveal any cerebellar over-activation in the

present study. Other authors also failed to observe this cerebellar

over-activation in individuals with PD, off medication [55–57],

including one using the same experimental paradigms [24]. Such

discrepancies may depend on whether the brain activation profile

of PD patients’ off medication is compared with the on medication

state or with controls subjects, highlighting the fact that

medication does not restore a normalized pattern.

The strong fronto-parietal involvement off L-dopa included the

inferior and superior parietal gyri (BA 40 and 7), with pre-

dominance in the left hemisphere. In contrast to earlier findings

[24], there was no associated visual activation, although the pacing

stimuli were presented visually. Under medication, the brain

activation profile, including the parietal network, was globally

reduced, although a left-sided activation persisted within the

inferior parietal lobule. It has been shown that improved

movement performance is associated with a reduction of brain

compensatory activations following L-dopa or subthalamic nucleus

stimulation, that is, after restoration of the more efficient cortico-

striato-thalamo-cortical pathway [16,18,58,59]. Our results sug-

gest that although dopaminergic administration can improve

fMRI, L-dopa, Hand and Speech Movements
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Figure 1. Patterns of brain activation during the hand movement task in PD patients (a – off L-dopa; b – on L-dopa). Activation
thresholds correspond to corrected (FWE) p-values,0.05. Without medication, brain activations were found in the right cerebellum, left motor/
premotor regions, anterior cingulate cortex, superior and inferior parietal lobules, and putamen; following L-dopa intake, the brain activation profile
was globally reduced, restricted to weak activations in the right posterior cingulate gyrus and the left inferior parietal lobule.
doi:10.1371/journal.pone.0046541.g001

Table 3. Cerebral sites of maximal hemodynamic responses during the hand movement (HM): Main effects (pFWE-corrected,0.05,
k$10) of L-dopa medication states.

off L-dopa on L-dopa

Cerebral area BA L/R x y z Z-score k x y z Z-score k

Precentral gyrus 4 L 219 227 56 6.12 521u

Medial frontal gyrus 6 L 23 218 52 5.95 151#

Frontal sub-gyral 6 R 23 26 52 5.51 29

Anterior cingulate gyrus 24 L 21 0 45 5.62 151#

Posterior cingulate gyrus 31 R 18 248 224 5.26 20

Superior parietal lobule 7 R 34 253 52 5.20 64‘

Inferior parietal lobule 40 L 240 253 47 6.77 521u 230 238 51 5.63 12

Inferior parietal lobule 40 R 31 244 37 5.88 64‘

Inferior parietal lobule 40 R 47 230 38 5.56 28

Putamen L 227 212 4 5.29 14

Cerebellum (dentate) L 214 250 224 5.42 18

Cerebellum (dentate) R 15 250 221 7.61 251*

Cerebellum (vermis) R 2 262 214 6.19 251*

Cerebellum (hemisphere) R 26 264 225 6.09 251*

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels); u/#/‘/*: parts of the same cluster.
doi:10.1371/journal.pone.0046541.t003
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motor performances in PD patients, it does so through

a reorganized dopaminergic system: the cerebellar and parietal

implications off medication were reduced following L-dopa

administration. Nevertheless, the only regions surviving the

between medication condition comparisons were found in the

right anterior insula and putamen.

2. Preservation of Speech in PD
In both off and on medication conditions, we found premotor/

motor brain activations in the frontal cortex and cerebellum

similar those previously reported [20–27]; activations within the

left anterior cingulate cortex and supramarginal gyrus were also

observed. These regions could be part of a fronto-parietal

compensatory mechanism enabling the preservation of speech in

PD [24,27]. Indeed, the speech production task was likely driven

Table 4. Cerebral sites of maximal hemodynamic responses during the hand movement (HM): Between medication state
comparisons (puncorrected,0.001, k$10).

off vs. on L-dopa on vs. off L-dopa

Cerebral area L/R x y z Z-score k x y z Z-score k

Insula (anterior) R 34 8 25 3.66 19 No suprathreshold clusters

Putamen R 26 8 0 3.28 19

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels).
doi:10.1371/journal.pone.0046541.t004

Figure 2. Patterns of brain activation during the speech production task in PD patients (a – off L-dopa; b – on L-dopa). Activation
thresholds correspond to uncorrected p-values,0.001. Brain activation patterns were similar with or without medication, including the bilateral
orofacial M1 and cerebellar hemispheres, as well as the left-sided premotor, primary somatosensory, supramarginal and anterior cingulate cortices.
doi:10.1371/journal.pone.0046541.g002

fMRI, L-dopa, Hand and Speech Movements

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e46541



by the cognitive decision of the direction rather than internal

vocalization, as no associative auditory activation was found. As

observed for the HM single task, an overall reduction in brain

activations was observed, being much more important in the

cerebellum and the premotor, anterior cingulate and supramar-

ginal cortices, than in the motor regions. Orofacial activity seemed

to respond somewhat like hand activity, albeit to a lesser extent.

Others have reported a right orofacial sensorimotor cortex

compensatory activation in PD patients on medication when

compared to control subjects [25]. Lateralisation of basal ganglia

dysfunction in PD has also to be taken into account, since evidence

of ‘‘a crucial role of the right basal ganglia in the maintenance of

Table 5. Cerebral sites of maximal hemodynamic responses during speech production (SP): Main effects (puncorrected,0.001, k$10)
of L-dopa medication states.

off L-dopa on L-dopa

Cerebral area BA L/R x y z Z-score k x y z Z-score k

Precentral gyrus 4 L 246 215 39 4.06 95u 246 215 39 4.29 94‘

Precentral gyrus 4 R 41 212 33 4.67 58 41 212 28 4.09 36*

Medial frontal gyrus 6 L 26 26 55 4.97 123# 23 215 57 3.97 27

Postcentral gyrus 2 L 235 221 33 4.40 95u 238 221 28 4.32 94‘

Postcentral gyrus 2 R 36 218 30 4.07 36*

Anterior cingulate gyrus 24 L 26 0 47 4.63 123# 26 5 42 3.94 33

Supramarginal gyrus 40 L 240 247 32 3.71 33 211 264 219 3.73 10

Cerebellum (dentate) L 211 264 219 3.73 10

Cerebellum (hemisphere) L 225 262 227 5.79 149 227 262 227 4.01 10

Cerebellum (hemisphere) R 26 264 225 5.25 118 26 264 225 4.07 17

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels); u/#/‘/* : parts of the same cluster.
doi:10.1371/journal.pone.0046541.t005

Figure 3. Patterns of brain activation during the [hand movement + speech production] task in PD patients (a – off L-dopa; b – on L-
dopa). Activation thresholds correspond to corrected (FWE) p-values,0.05. Without L-dopa, the combined task yielded a right cerebellar activation.
Under L-dopa, comparable cerebellar activations were seen, along with additional left-sided activations in the medial premotor cortex, post-central
gyrus and inferior parietal lobule.
doi:10.1371/journal.pone.0046541.g003
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isochronous speech rhythms’’ has been recently reported when

comparing performances of two homogenous groups of PD

patients, presenting with right and left-sided predominant

symptoms [60].

A key connection between the basal ganglia and the cerebellar

motor circuits seems to be altered in PD and a reduction of brain

activation within both circuitries may participate in the de-

velopment of dysarthria. Our data suggest that compensatory

strategies could involve, amongst others, temporal regions which

are known to play a role in SP mechanisms, the insula, and frontal

areas including the lateral premotor cortex and the anterior

cingulate gyrus (ACG). All these regions could be part of

a surrogate network able to provide the functionality needed to

support SP, even if SP is dysarthric. Among these regions, the

ACG is one of the main basal ganglia circuit outputs (the limbic

one). On the other hand, the cerebellum is tightly connected with

frontal regions, including Broca’s area and the lateral premotor

cortex. The additional network activated in our patients could

therefore be recruited as compensatory circuitry of dysarthric

speech, enabling inter-circuit compensations, either in the fronto-

striatal or the cerebro-cerebellar circuitries. It is possible that in

early PD, basal ganglia dysfunction primarily affects speech and

leads to mild dysarthria, while with the disease progression severe

dysarthria results from additional dysfunction of the cortex-

cerebellum circuitry. It is known that worsening of dysarthria with

disease progression parallels an increasing severity of non-

dopaminergic cerebral lesions [28,29,31]. One key structure could

be the thalamus [33], since it relays to the cortex information

arising in both the cerebellum and the basal ganglia loops.

The key-role of the cerebellum [61–63] and non-dopaminergic

neural circuits in the anatomo-functional substrate of vocal

communication could partly explain the resistance of Parkinsonian

speech to L-dopa. Even if some studies pointed out beneficial

effects of L-dopa on PD speech [64,65], several studies that have

explored speech parameters in PD have demonstrated the lack of

significant change between the two medication condition [66].

According to the classical cortico-subcortical circuit models first

defined in the early nineties [67–69], and further developed since

[70,71], the circuits operate in a segregated and parallel fashion.

The concept of closed and open circuits allows for cross-

communication between circuits [72]. Apart from the motor

circuit, which connects the primary motor/lateral premotor

cortices and the SMA via the putamen, parallel non-motor loops

originate from various regions of the basal ganglia and terminate

in the DLPFC (prefrontal loop), orbito-frontal cortex (lateral

orbito-frontal loop) or even anterior cingulate cortex (limbic loop).

It is therefore possible that the alteration of the motor loop be

compensated for, albeit imperfectly, by the recruitment of a non-

motor circuit. The motor deficit of PD speech could depend on

such a compensatory pathway: perceptual evaluation through the

UPDRS speech item demonstrated that the patients presented

with mild dysarthria, whether on or off medication. Indeed, clinical

data revealed a significant improvement of the UPDRS motor

scores under medication, but as already reported, improvement

was lesser for speech production [73,74]. Our results regarding the

speech production task in PD are thus consistent with the idea that

the recruitment of non-dopamine dependent cerebral compensa-

tory mechanisms allows for acceptable speech performance.

3. Combining Movements in PD
Studies using dual-task paradigms combining simultaneous but

independent verbal and manual tasks are scarce [75–77], in-

cluding in PD patients [35–38]. Yet, such concurrent tasks are

common in daily activities and their performance is often impaired

Table 6. Cerebral sites of maximal hemodynamic responses during the combined [HM+SP] task: Main effects (pFWE-corrected,0.05,
k$10) of L-dopa medication states.

off L-dopa on L-dopa

Cerebral area BA L/R x y z Z-score k x y z Z-score k

Medial frontal gyrus 6 L 23 18 60 5.30 10

Postcentral gyrus 3 L 230 232 43 5.27 43#

Postcentral gyrus 40 L 240 230 51 5.07 43#

Inferior parietal lobule 40 L 230 238 51 5.04 43#

Cerebellum (dentate) R 12 256 219 5.87 94* 15 250 221 5.60 71

Cerebellum (hemisphere) L 227 262 227 5.68 11

Cerebellum (hemisphere) R 26 264 225 5.84 94*

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels); *, #: parts of the same cluster.
doi:10.1371/journal.pone.0046541.t006

Table 7. Cerebral sites of maximal hemodynamic responses during the combined [HM+SP] task: Between medication condition
comparisons (puncorrected,0.001, k$10).

off vs. on L-dopa on vs. off L-dopa

Cerebral area BA L/R x y z Z-score k x y z Z-score k

Temporal sub-gyral 21 R 47 29 29 3.94 28 No suprathreshold clusters

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels).
doi:10.1371/journal.pone.0046541.t007
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in PD [78]. The combined task was specifically formulated to

avoid any cognitive conict; this was an advantage for assessing the

neural correlates of simultaneous task performance, without

cognitive overload, which is usually a confounding factor in

dual-task paradigms. The combined task paradigm was not

a classical dual task one, as it did not involve strictly independent

tasks, that is, it did not induce cognitive conict in response

selection between the HM and SP tasks. For both HM and SP, the

motor processes yielded the selection and planning of the same

response (left, right, up, down) among four possibilities (i.e. the four

movement directions). Only the motor execution (hand and

orofacial movements) differed in terms of the muscles involved in

production. Thus, PD patients did not face any conflict, but rather

facilitation, in response selection during the task. PD individuals

have been shown to demonstrate trouble when performing

complex dual tasks and exhibit greater activations in the

cerebellum, premotor area, precuneus, parietal and prefrontal

cortices [46] than control subjects. In a previous study, in control

subjects, but not in PD patients off medication, our combined task

yielded the sum of the brain activations obtained during hand

movement and speech production performed separately [24]. This

was interpreted as the patients’ functional prioritization of the

HM, SP being therefore associated with sub-threshold cerebral

activations. It could also have reflected the inability of PD patients

to intrinsically engage in the motor coordination necessary to

perform a combined task. Indeed, due to the additive nature of the

two tasks, the combined task represented an easier task to

generate.

In the present study, our data are in agreement with those

observed previously in patients off medication. Moreover, the

summation of the two networks was also absent when the patients

were on medication. This is congruent with the fact that SP

activations never reached the corrected statistical threshold, even

during the performance of the single task. These results suggest

that the loss of capacity-sharing in combined movements did not

improve with L-dopa, contrary to our a priori hypothesis. In fact,

weak activations, restricted to the single right cerebellum, were

revealed off L-dopa; this lateralization suggested that it was related

to the hand movement part of the combined task. Following L-

dopa administration, left-sided regions were activated in a pre-

motor fronto-parietal network. Activations of these regions were

also seen during the single hand movements, and interpreted as

possible compensatory recruitments. These regions, possibly

involved in compensatory pathways, were highlighted by the

between-task comparisons (Tables 8 and 9). Thus, unlike what was

seen for the single tasks performed separately, this activation

pattern suggests that PD patients may rely on this network for

simultaneous motor performance [14,79,80]. Palmer et al. [44]

showed that during bimanual movements in PD, L-dopa partially

normalized the effective connectivity and temporal patterns of

activity. As already stressed by Brown [81], the authors related the

patients’ inability to perform two movements simultaneously to the

impaired capacity of binding the widespread cortical and sub-

cortical areas underlying dual-task performance. They suggested

that L-dopa restored effective communication between these areas,

and/or reduced ‘‘the excessive beta-band synchronization that

permeates widespread areas in the cortex and basal ganglia’’

(pages 701–702). Our results do not support the idea that L-dopa

can restore coordinated cortical/sub-cortical recruitments in dual-

tasks, although limb motor function appeared to be more

dopamine-driven (HM) than speech.

Table 8. Cerebral sites of maximal hemodynamic responses highlighted by between-task comparisons under off and on L-dopa
conditions: Combined (HM+SP) task vs. Hand movement (HM) task (puncorrected,0.001).

off L-dopa on L-dopa

Cerebral area BA L/R x y z Z-score k x y z Z-score k

Precentral gyrus 4 R No suprathreshold clusters 41 215 46 4.06 18

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels).
doi:10.1371/journal.pone.0046541.t008

Table 9. Cerebral sites of maximal hemodynamic responses highlighted by between-task comparisons under off and on L-dopa
conditions: Combined (HM+SP) task vs. Speech production (SP) task (puncorrected,0.001).

off L-dopa on L-dopa

Cerebral area BA L/R x y z Z-score k x y z Z-score k

Paracentral lobule 31 L 23 218 44 3.85 11 No suprathreshold clusters

Superior temporal gyrus 41 L 240 232 17 4.14 16

Superior parietal lobule 7 L 227 256 58 4.06 177*

Inferior parietal lobule 40 L 243 235 48 4.41 177*

Postcentral gyrus 40 R 52 224 17 3.64 11

Cerebellum (dentate) R 18 250 224 4.54 67

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann’s area; x, y, z: mediolateral, rostrocaudal and dorsoventral
Talairach coordinates; k: cluster size (number of voxels);
*parts of the same cluster.
doi:10.1371/journal.pone.0046541.t009
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4. Methodological Issues
Individuals with PD patients underwent the fMRI experiment

without anti-Parkinsonian medication. Since the off medication

state was evaluated in the morning of the experiment, and in order

to minimize any differential effects across conditions, we counter-

balanced the order of the experimental conditions across subjects.

The patients who participated in this study represented a homog-

enous group of PD patients and may not reflect the range or

variability of the disease. They were all relatively young patients,

most of them in accordance with the required inclusion criteria for

deep brain stimulation. Under the off medication condition, the

patients did not have any tremor. They were predominantly

akinetic-rigid, and one could wonder what would have been our

findings with tremor predominant patients with PD. It is hard to

anticipate whether the same findings would be obtained in such

a sub-group of patients; to our knowledge, no distinction has been

suggested so far regarding speech pathophysiology of akinetic-rigid

vs. tremor PD patients. All patients were producing intelligible

speech (cf. Table 2; mean UPDRS item 18 speech

score = 1.360.5; the worst score being 4) and unfortunately, we

were not able to record speech production either inside or outside

the fMRI scanner: we acknowledge that another clinical measure

for speech production should have provided a differentiated

picture of the patients’ potential deficit in this domain. Altogether,

these methodological aspects have to be taken into account when

interpreting the results, possibly restricting generalization.

Conclusions
Our results question both the role of the basal ganglia system in

speech production and the modulation of task-dependent cerebral

networks by dopaminergic treatment. Whereas the hand move-

ment brain network is sensitive to dopaminergic medication, the

brain activation patterns of speech production appear to undergo

little changes following medication. Even if different compensatory

circuits are activated in PD to try and overcome difficulties in

performing hand and speech movements, notably temporal

regions for speech production, recruitment of the associative

parietal cortex seems to be an alternative in tasks sharing

programming modalities. While conflicting dual task might result

in preferential execution of one of the two tasks performed

simultaneously, the combined task we used in this study did not

lead to positive synergistic effect under the on medication state.

Further experiments enabling the concomitant recording of speech

and hand movement, both conflicting and synergistic, are required

to confirm such finding.
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