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Levodopa effects on hand and speech movements in patients

 

Introduction

Studies on individuals with Parkinson's disease (PD) have notably involved the investigation of the effects of dopaminergic medication on cerebral blood flow at rest [START_REF] Brooks | Imaging approaches to Parkinson disease[END_REF]. Some studies reported no modifications of brain activation while others rather found a global increase [START_REF] Leenders | The effects of L-DOPA on regional cerebral blood flow and oxygen metabolism in patients with Parkinson's disease[END_REF][START_REF] Montastruc | Levodopa-induced regional cerebral blood flow changes in normal volunteers and patients with Parkinson's disease. Lack of correlation with clinical or neuropsychological improvements[END_REF] or decrease [START_REF] Berding | Resting regional cerebral glucose metabolism in advanced Parkinson's disease studied in the off and on conditions with [(18)F]FDG-PET[END_REF][START_REF] Gotham | Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa[END_REF] in cerebral activity when comparing on medication vs. off medication state. Both subthalamic nucleus (STN) stimulation and levodopa (L-dopa) have proven to reduce hypermetabolism in the lenticular nucleus and increase metabolism in the associative prefrontal cortex [START_REF] Hilker | Deep brain stimulation of the subthalamic nucleus versus levodopa challenge in Parkinson's disease: measuring the on-and off-conditions with FDG-PET[END_REF]. Interestingly, the response to L-dopa at rest depends on the duration of exposure to the medication: individuals with PD chronically treated by L-dopa have decreased regional cerebral blood flow in the ventrolateral prefrontal and sensorimotor cortices, but drug-naive patients display no levodopa-induced modification of cerebral activation [START_REF] Hershey | Long term treatment and disease severity change brain responses to levodopa in Parkinson's disease[END_REF]. The significance of these changes in response to L-dopa remains uncertain but could reflect a modification of the thalamocortical projections by long-term Ldopa treatment, at least at rest.

Using self-generated arm movements in untreated individuals with PD, early functional neuroimaging studies reported reduced regional cerebral blood flow (rCBF) within the main cortical output areas of the basal ganglia, including the supplementary motor area (SMA), dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACG) [START_REF] Jahanshahi | Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movementrelated potentials in normal and Parkinson's disease subjects[END_REF][START_REF] Jenkins | Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine[END_REF][START_REF] Playford | Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study[END_REF][START_REF] Rascol | Supplementary and primary sensory motor area activity in Parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine[END_REF]. These results were further extended in more recent studies that also revealed that the activation of some structures depends on the nature and complexity of the task. Thus, although the anterior SMA (pre-SMA) often appeared under-activated during hand movements, over-activations within the caudal SMA, premotor (PM), M1, inferior parietal and anterior cingulate cortices, as well as cerebellar hemispheres have also been reported, suggesting that these areas could be recruited to overcome the dysfunction of the cortex-basal-ganglia-cortex motor circuit [START_REF] Rascol | The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients[END_REF][START_REF] Sabatini | Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study[END_REF][START_REF] Samuel | Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study[END_REF][START_REF] Thobois | Overactivation of primary motor cortex is asymmetrical in hemiparkinsonian patients[END_REF]. In addition, the reduced activations reported within the SMA [START_REF] Jenkins | Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine[END_REF] and the lateral PM cortex [START_REF] Haslinger | Eventrelated functional magnetic resonance imaging in Parkinson's disease before and after levodopa[END_REF] appeared to be partly restored following dopaminergic administration. Regarding M1 activation, the evidence on the effect of medication is contradictory. While some authors reported the restoration of activation after apomorphine administration [START_REF] Jenkins | Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine[END_REF], others showed a reduction of the precentral gyrus activation [START_REF] Peters | Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients[END_REF]. These contradictory findings could result from the specific constraints of the task being performed, while inhibition of endogenous dopamine release by the exogenous contribution of the medication may further complicate the matter [START_REF] Buhmann | Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients[END_REF]. Finally, the putamen and thalamus have been shown to be most responsive to levodopa, as compared with less responsive motor cortical areas [START_REF] Kraft | Levodopainduced striatal activation in Parkinson's disease: a functional MRI study[END_REF]. Thus, these findings stressed the need to better understand the influence of dopaminergic treatments on the cortical and subcortical circuits [START_REF] Peters | Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients[END_REF][START_REF] Buhmann | Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients[END_REF][START_REF] Kraft | Levodopainduced striatal activation in Parkinson's disease: a functional MRI study[END_REF] underlying movement production.

Motor network activations during PD speech production have been studied using both positron emission tomography (PET) [START_REF] Liotti | Hypophonia in Parkinson's disease: neural correlates of voice treatment revealed by PET[END_REF][START_REF] Narayana | Neural correlates of efficacy of voice therapy in Parkinson's disease identified by performance-correlation analysis[END_REF][START_REF] Narayana | A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson's disease[END_REF][START_REF] Pinto | Subthalamic nucleus stimulation and dysarthria in Parkinson's disease: a PET study[END_REF] and functional magnetic resonance imaging (fMRI) [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF][START_REF] Rektorova | Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease[END_REF][START_REF] Rektorova | Functional neuroanatomy of vocalization in patients with Parkinson's disease[END_REF][START_REF] Sachin | Functional mapping in PD and PSP for sustained phonation and phoneme tasks[END_REF]. These neuroimaging studies have documented that Parkinsonian speech seemed to be related to an altered recruitment of the main brain motor regions underlying speech production (orofacial motor cortex, cerebellum) and an increased involvement of the premotor and prefrontal cortices (DLPFC, SMA, superior premotor cortex). Additional cerebral activation, such as the recruitment of temporal regions, have also been observed off medication [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF][START_REF] Sachin | Functional mapping in PD and PSP for sustained phonation and phoneme tasks[END_REF], suggesting that a specific reorganization underlies the altered activation pattern associated with PD speech. In most PET experiments examining speech production in individuals with PD off or on treatment, basal ganglia activation barely reached statistical significance. A reduced SMA activation [START_REF] Narayana | Neural correlates of efficacy of voice therapy in Parkinson's disease identified by performance-correlation analysis[END_REF][START_REF] Narayana | A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson's disease[END_REF][START_REF] Rektorova | Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease[END_REF] and a significantly greater activation in the right primary orofacial sensorimotor cortex, as compared to controls subjects, have also been reported following L-dopa intake. These changes were interpreted as a compensatory phenomenon to preserve speech in PD [START_REF] Rektorova | Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease[END_REF]. They also revealed increased connectivity between the periaqueductal grey matter and basal ganglia, posterior superior temporal gyrus, supramarginal and fusiform gyri and inferior parietal lobule on the right side [START_REF] Rektorova | Functional neuroanatomy of vocalization in patients with Parkinson's disease[END_REF]. These modifications could reflect either a specific compensatory phenomenon or a specific modification of the activation pattern underlying brain dysfunctions of PD speech. In either case, this pattern of modifications does not parallel the one associated with hand motor tasks. Dysarthria usually worsens with disease progression, which suggests that it is also linked to the progression of the pathological processes to non-dopaminergic brain circuits [START_REF] Agid | The efficacy of levodopa treatment declines in the course of Parkinson's disease: do nondopaminergic lesions play a role?[END_REF][START_REF] Braak | Nigral and extranigral pathology in Parkinson's disease[END_REF][START_REF] Halliday | Milestones in Parkinson's disease-clinical and pathologic features[END_REF][START_REF] Kosaka | Lewy body disease with and without dementia: a clinicopathological study of 35 cases[END_REF]. Specifically, one would expect neuronal losses of additional areas of motor control to be involved, such as the pre-supplementary cortex [START_REF] Macdonald | Selective loss of pyramidal neurons in the pre-supplementary motor cortex in Parkinson's disease[END_REF], the thalamus [START_REF] Henderson | Degeneration of the centre median-parafascicular complex in Parkinson's disease[END_REF] or the mesocortical system [START_REF] Mcritchie | Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson's disease[END_REF].

To date, no study has investigated the influence of dopaminergic treatment on the patterns of neural activation during hand and speech movements in the same group of individuals with PD. Furthermore, although in daily life speech is often accompanied by hand or other movements, very few studies have examined such dual tasking in PD [START_REF] Bunton | The Use of a Dual-Task Paradigm for Assessing Speech Intelligibility in Clients with Parkinson Disease[END_REF][START_REF] Dromey | Bidirectional interference between speech and postural stability in individuals with Parkinson's disease[END_REF][START_REF] Ho | The effect of a concurrent task on Parkinsonian speech[END_REF][START_REF] Lapointe | Talking while walking: Cognitive loading and injurious falls in Parkinson's disease[END_REF]. A few neuroimaging studies have examined the performance of simultaneous movements in PD, as it is well-known that individuals with PD have difficulties performing complex, simultaneous or sequential movements [START_REF] Benecke | Motor strategies involved in the performance of sequential movements[END_REF][START_REF] Benecke | Performance of simultaneous movements in patients with Parkinson's disease[END_REF][START_REF] Brown | An unusual enhancement of motor performance during bimanual movement in Parkinson's disease[END_REF][START_REF] Brown | The execution of bimanual movements in patients with Parkinson's, Huntington's and cerebellar disease[END_REF][START_REF] Horstink | Bimanual simultaneous motor performance and impaired ability to shift attention in Parkinson's disease[END_REF]. Most of these studies have used bimanual movements [START_REF] Palmer | Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson's disease[END_REF][START_REF] Wu | Effective connectivity of brain networks during self-initiated movement in Parkinson's disease[END_REF], or dual motor and cognitive tasks [START_REF] Wu | Neural correlates of dual task performance in patients with Parkinson's disease[END_REF], rather than simultaneous limb and speech movements. While some of important issues regarding the neural bases of hand and speech movements in PD have been addressed, the functional brain activations underlying the difficulty these patients have in simultaneously performing both together remain unclear. Therefore, using fMRI, we investigated the influence of dopamine treatment on the patterns of neural activation underlying hand movement (HM) and speech production (SP) performed both alone and simultaneously in individuals with PD. Even if the (HM+SP) movement combination movement is unnatural and experimental, it allows for the combination of the two HM and SP movements: it should be considered as a combined task, and not a proper dual-task comprising strictly independent tasks, as it did not involve any cognitive conflict in response selection between the HM and SP tasks. The motor programming was identical for the two modalities, (i.e., selection of the same response among four possibilities) and only the motor execution differed [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF]. Moreover, it cannot be considered as a co-speech gesture also as it is not unconsciously self-generated by the participants themselves. We hypothesized that the brain activation profiles for HM and SP tasks performed alone would both be modulated following L-dopa intake. In a previous study, we observed that the brain activations recorded during the HM+SP combined task were the sum of the activations obtained when each of the tasks was performed separately in healthy subjects, while this was not the case in untreated individuals with PD [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF]. Our second hypothesis was that L-dopa would restore such summation, as is the case for a bimanual simultaneous task [START_REF] Palmer | Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson's disease[END_REF].

Materials and Methods

Patients

Twelve right-handed (Edinburgh handedness questionnaire .80%) patients with PD were recruited in the Neurological wards of the Grenoble (n = 6) and Lyon (n = 6) University Hospitals. Demographic and clinical characteristics of the patients are summarized in Table 1. All patients fulfilled the UK Parkinson's disease Brain Bank Criteria [START_REF] Gibb | The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease[END_REF] for the diagnosis of idiopathic PD and presented with predominant akinetic-rigid symptoms.

All patients were studied first without (off), and then with (on) anti-Parkinsonian medication, during two consecutive fMRI sessions of one hour each. Off medication, patients were scanned after an overnight fast, i.e. at least 12 hours of PD treatment withdrawal. The on medication session was undertaken with patients in their best on motor state, 45 to 60 minutes after administration of a suprathreshold dose of L-dopa (120% of the usual morning dose; see Table 2). Unblinded evaluation of the patients' global motor disability was performed before each fMRI session using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS, part III) [START_REF] Fahn | Unified Parkinson's Disease Rating Scale[END_REF]. Only patients with mild to moderate mostly akineto-rigid symptoms (with no or little tremor off, and no or little dyskinesia on) were included to ensure that they could perform the tasks. The patients had moderate speech impairment and were able to produce intelligible speech allowing for the performance of the speech production task. The off and on medication UPDRS scores were statistically compared (paired Student t test, p,0.05; STATISTICA 7.1, Statsoft, Tulsa, USA) to appreciate the impact of the treatment.

Ethics Statement

The study (project nu 06-CHUG-6) was conducted in accordance with the Declaration of Helsinki [START_REF] Friston | Statistical parametric maps in functional imaging: A general linear approach[END_REF], approved by the local Ethics Committee Review Board (Comite ´de Protection des Personnes [CPP] pour la recherche biome ´dicale, Centre Hospitalier Universitaire de Grenoble [CHUG], France). The patients were included after providing written informed consent.

Experimental Paradigms

The experimental protocol included 3 motor tasks [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF]:

-Hand movement (HM) -a freely chosen sequence of movements performed with the right hand, moving a non-magnetic fMRIcompatible joystick (Current Designs, Philadelphia, USA) in 4 possible directions (forward, backward, right and left), starting from and returning to the neutral position; -Speech production (SP) -a freely chosen speech sequence, using 4 possible words (''Up'', ''Down'', ''Right'' and ''Left''); -Combined task ([HM+SP]) -a freely chosen sequence of joystick movements performed with the right hand together with the speech description of the associated directions (''Up'', for the forward direction; ''Down'', for the backward direction; ''Right''; and ''Left'').

They represented a particular version of externally-paced tasks, since an additional dimension was introduced by the choice among the 4 possibilities. Prior to the fMRI trials, patients had ample opportunity to practice the tasks, during which they were instructed to respond to each visual stimulus, i.e. the word ''action'' presented every two seconds for 500 milliseconds (ms). Patients were asked to avoid pre-established sequences of movement directions. They were allowed to use the same direction and/or produce the same word several times in a row. The joystick used for the HM and (HM+SP) tasks was connected to a control case enabling the synchronization of the visual stimulus with image acquisition. The setting also enabled a posteriori monitoring of performance, as well as analysis of the direction of the movements. During a rest condition (the word ''rest'' appeared repeatedly on the screen), patients were required to remain still, without making any movement or speaking. For technical reasons, including the noisy fMRI environment, we were not able to monitor the SP task performance. Nevertheless, a posteriori questioning of the patients ensured that the tasks had been performed according to the instructions.

Functional MRI Procedure

To ensure patients' comfort, a block-design was chosen, each motor task corresponding to an fMRI run of about 7 minutes' duration. Each run alternated 10 blocks of rest and 10 blocks of action (HM, SP or tasks HM+SP), each block including 10 trials, for a total of 100 trials. The order of the fMRI runs was counterbalanced between conditions and patients. fMRI data were obtained on a 3 Tesla (T) MRI scanner (Bruker Medspec S300 -IFR 1, Biomedical NMR and Neurosciences, Grenoble, France), equipped with an emitting/receiving head coil. For each fMRI run, 160 volumes covering the whole brain with 40 adjacent axial 3.2 mm thick slices were acquired using a BOLD-contrast multislice T2*-weighted single-shot echo-planar imaging (EPI) sequence (echo time (TE) = 30 ms, repetition time (TR) = 2500 ms, flip angle = 77u, field of view (FOV) = 2166216 mm 2 , matrix size 72672, voxel size = 36363.2 mm 3 ). T1-weighted 3D magnetization prepared rapid acquisition gradient echo (MP-RAGE) anatomical images of the whole brain were also acquired (TR = 2500 ms, TE = 3.89 ms, TI = 900 ms, flip angle = 8u, FOV = 25662246176 mm 3 , voxel size = 1.3361.7561.375 mm 3 ).

Behavioral Data Analysis

Direction and response times (RT) for the HM and (HM+SP) tasks were recorded during image acquisition and processed off line. RTs shorter than 150 ms or longer than 1500 ms were discarded. Mean RT and performance rate were computed for each patient. The influence of task (single vs. double) and medication (off vs. on) was analyzed using non-parametric Wilcoxon tests with a corrected p-value,0.025 for multiple comparisons.

fMRI Data Analysis

fMRI data analysis was performed using SPM5 software (Wellcome Department for Cognitive Neuroscience, London, UK) [START_REF] Friston | Statistical parametric maps in functional imaging: A general linear approach[END_REF]. First-level analyses were carried out for each patient, yielding parametric statistical maps generated for each motor task both off and on medication. Patient 4 was not able to perform the SP task off medication and patient 7 the HM task on medication. The first-level contrasts were introduced within second-level analyses, using a two-factor ANOVA model with the motor tasks (HM, SP and HM+SP) and treatment conditions (off or on medication) as repeated measures. Only cerebral areas whose statistical thresholds corresponded to probabilities p FWE-cor- rected ,0,05 at the voxel level and activation foci for which the number of voxels was equal or superior to k = 10 were retained (Zscores.5.20). When this statistical processing did not make it possible to detect any activation, a non-corrected statistical threshold of p uncorrected ,0,001 was applied at the voxel level (Zscores.3.10). The activation coordinates were transformed into All off and on medication motor scores were obtained using of the motor section of the UPDRS [START_REF] Fahn | Unified Parkinson's Disease Rating Scale[END_REF]. The UPDRS is a five-point scale, meaning that the scoring range for each item spans from ''0'' ( = normal) to ''4'' ( = maximal impairment). For example, speech can be assessed with item 18 using the following scores: ''0'' = normal; ''1'' = slight loss of expression, diction and/or volume; ''2'' = monotone, slurred but understandable (moderately impaired); ''3'' = marked impairment, difficult to understand; ''4'' = unintelligible. SD = Standard deviation. doi:10.1371/journal.pone.0046541.t002

a standard stereotactic space [START_REF] Talairach | Co-planar stereotaxic atlas of the human brain[END_REF]. Between-medication state and between-task comparisons allowed for further detailed analysis.

Uncorrected p-values,0.001 (Z-scores.3.10) were considered significant for these contrasts.

Results

Clinical and Behavioral Data

Group analysis confirmed that the total motor scores of the UPDRS and the Hoen and Yahr scale (Table 2) decreased significantly following the administration of L-dopa (75.2% of improvement for the UPDRS, p,0.001; 41.9% of improvement for the Hoen and Yahr, p,0.001). The improvement for rigidity, axial signs and akinesia sub-scores was 66.7%, 71.1% and 75.9% respectively (p,0.001). The improvement in speech production as assessed using item 18 of the UPDRS III was also significant, although more limited (38.5%, p,0.001).

The patients correctly performed the tasks under the two experimental conditions, although the number of movements was greater on medication than off (HM off: 62618; on: 78615; HM+SP off: 64618; on: 78612). The effect of medication on the number of trials was significant both for the HM task (z = 2.85; p,0.005) and for the combined task (z = 2.90; p,0.005). There was no effect of task on the number of movements. Regarding response time, there was no effect of either task or medication, although response times were slightly shorter under medication than off (HM off: 6596173 ms; on: 5566101 ms; HM+SP off: 6266145 ms; on: 5616116 ms). Neither task nor medication affected the distribution of the movements' direction. 3), the brain activation profile off L-dopa strongly involved the right cerebellum and left motor/premotor regions; recruitment of the anterior cingulate cortex and the superior and inferior parietal lobules were also noted, as well as that of the putamen (Fig. 1a). Administration of L-dopa led to a focalization of activations, revealing weak activations in the right posterior cingulate gyrus and the left inferior parietal lobule (Fig. 1b). Cerebral activations in the off vs. on L-dopa comparison involved significant right-lateralized regions in the anterior insula and the putamen; for the on vs. off L-dopa comparison, no suprathreshold clusters were found for the HM task (Table 4).

fMRI within-group Comparisons and between Medication State Comparisons

2.2. Speech production. No significant brain activations survived the p FWE-corrected ,0.05 statistical level. Values at p uncorrected ,0.001 (Table 5) revealed similar activations for the off and on L-dopa conditions, including the bilateral orofacial M1 and cerebellar hemispheres, as well as the left premotor, primary somatosensory, supramarginal and anterior cingulate cortices,. In terms of cluster sizes, the off L-dopa (Figure 2a) brain activation profile was larger than on L-dopa (Figure 2b) at the levels of premotor and anterior cingulate cortices, and cerebellum. For the SP task, no suprathreshold clusters were detected either for off vs. on L-dopa or on versus off L-dopa.

2.3. Combined task. Activations within the right cerebellum were seen off L-dopa (Fig. 3a). On L-dopa, comparable cerebellar activations were seen (Table 6), although there was a focalization of the areas recruited (Fig. 3b). Additional left-sided activations were seen in the medial premotor cortex, the post-central gyrus and the inferior parietal lobule. Off versus on L-dopa comparison for the (HM+SP) task revealed an activation within the right median temporal gyrus. No suprathreshold clusters were detected on versus off L-dopa (Table 7).

fMRI between-task Comparisons

Off L-dopa, no (HM+SP) vs. HM task activations were detected; on L-dopa, there was a right-sided M1 activation (Table 8). Off Ldopa, the (HM+SP) vs. SP contrast was associated with left activations within the cerebellum, premotor cortex, superior temporal gyrus, as well as superior and inferior parietal lobules. On L-dopa, analyses revealed no suprathreshold clusters (Table 9).

Discussion

Off medication, unilateral hand movements yielded brain activations in the right cerebellum, left motor/premotor regions, anterior cingulate cortex, superior and inferior parietal lobules, as well as in the putamen. Under L-dopa, the brain activation profile was globally reduced, restricted to activations in the right posterior cingulate gyrus and the left inferior parietal lobule. For the speech production task, brain activation patterns were similar with and without medication, including the bilateral orofacial M1 and cerebellar hemispheres, as well as the premotor, primary somatosensory, supramarginal and anterior cingulate cortices, all left-sided. The combined task yielded a right cerebellar activation, both without and under L-dopa. On L-dopa, there were additional left-sided activations in the medial premotor cortex, post-central gyrus and inferior parietal lobule.

Hand Movements in PD

Behavioral measurements showed an improvement in the ability to respond to commands and initiate the hand movement following L-dopa intake, as evidenced by the increased number of movements. The shortening in response time did not reach significance, which is not surprising as, unlike other studies that reported an effect of medication on reaction time [START_REF] Ballanger | Motor urgency is mediated by the contralateral cerebellum in Parkinson's disease[END_REF][START_REF] Thobois | Functional anatomy of motor urgency[END_REF], we did not use a reaction time protocol. The reduced performance of hand movements when off L-dopa could be related to the overactivation of the cortico-cerebello-cortical circuit and the loss of brain activation selectivity resulting from the effort to overcome the dopaminergic-denervation-dependent akinesia [START_REF] Rascol | The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients[END_REF][START_REF] Samuel | Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study[END_REF]. Several neuroimaging studies supported the hypothesis that an increased activation of the cortico-cerebello-cortical circuitry may compensate for the cortico-striato-cortical motor loop dysfunction [START_REF] Rascol | The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients[END_REF][START_REF] Sabatini | Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study[END_REF][START_REF] Samuel | Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study[END_REF][START_REF] Thobois | Overactivation of primary motor cortex is asymmetrical in hemiparkinsonian patients[END_REF][START_REF] Wu | A functional MRI study of automatic movements in patients with Parkinson's disease[END_REF][START_REF] Yu | Role of hyperactive cerebellum and motor cortex in Parkinson's disease[END_REF]. Despite the stronger recruitment of the cerebellum in the off medication brain profile and the reductions in brain activation following L-dopa intake, the between-medication state comparison did not reveal any cerebellar over-activation in the present study. Other authors also failed to observe this cerebellar over-activation in individuals with PD, off medication [START_REF] Asanuma | Network modulation in the treatment of Parkinson's disease[END_REF][START_REF] Trost | Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease[END_REF][START_REF] Turner | The functional anatomy of parkinsonian bradykinesia[END_REF], including one using the same experimental paradigms [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF]. Such discrepancies may depend on whether the brain activation profile of PD patients' off medication is compared with the on medication state or with controls subjects, highlighting the fact that medication does not restore a normalized pattern.

The strong fronto-parietal involvement off L-dopa included the inferior and superior parietal gyri (BA 40 and 7), with predominance in the left hemisphere. In contrast to earlier findings [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF], there was no associated visual activation, although the pacing stimuli were presented visually. Under medication, the brain activation profile, including the parietal network, was globally reduced, although a left-sided activation persisted within the inferior parietal lobule. It has been shown that improved movement performance is associated with a reduction of brain compensatory activations following L-dopa or subthalamic nucleus stimulation, that is, after restoration of the more efficient corticostriato-thalamo-cortical pathway [START_REF] Haslinger | Eventrelated functional magnetic resonance imaging in Parkinson's disease before and after levodopa[END_REF][START_REF] Buhmann | Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients[END_REF][START_REF] Payoux | Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease[END_REF][START_REF] Thobois | Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson's disease : a PET study[END_REF]. Our results suggest that although dopaminergic administration can improve motor performances in PD patients, it does so through a reorganized dopaminergic system: the cerebellar and parietal implications off medication were reduced following L-dopa administration. Nevertheless, the only regions surviving the between medication condition comparisons were found in the right anterior insula and putamen.

Preservation of Speech in PD

In both off and on medication conditions, we found premotor/ motor brain activations in the frontal cortex and cerebellum similar those previously reported [START_REF] Liotti | Hypophonia in Parkinson's disease: neural correlates of voice treatment revealed by PET[END_REF][START_REF] Narayana | Neural correlates of efficacy of voice therapy in Parkinson's disease identified by performance-correlation analysis[END_REF][START_REF] Narayana | A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson's disease[END_REF][START_REF] Pinto | Subthalamic nucleus stimulation and dysarthria in Parkinson's disease: a PET study[END_REF][START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF][START_REF] Rektorova | Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease[END_REF][START_REF] Rektorova | Functional neuroanatomy of vocalization in patients with Parkinson's disease[END_REF][START_REF] Sachin | Functional mapping in PD and PSP for sustained phonation and phoneme tasks[END_REF]; activations within the left anterior cingulate cortex and supramarginal gyrus were also observed. These regions could be part of a fronto-parietal compensatory mechanism enabling the preservation of speech in PD [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF][START_REF] Sachin | Functional mapping in PD and PSP for sustained phonation and phoneme tasks[END_REF]. Indeed, the speech production task was likely driven by the cognitive decision of the direction rather than internal vocalization, as no associative auditory activation was found. As observed for the HM single task, an overall reduction in brain activations was observed, being much more important in the cerebellum and the premotor, anterior cingulate and supramarginal cortices, than in the motor regions. Orofacial activity seemed to respond somewhat like hand activity, albeit to a lesser extent.

Others have reported a right orofacial sensorimotor cortex compensatory activation in PD patients on medication when compared to control subjects [START_REF] Rektorova | Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease[END_REF]. Lateralisation of basal ganglia dysfunction in PD has also to be taken into account, since evidence of ''a crucial role of the right basal ganglia in the maintenance of isochronous speech rhythms'' has been recently reported when comparing performances of two homogenous groups of PD patients, presenting with right and left-sided predominant symptoms [START_REF] Flasskamp | Acceleration of syllable repetition in Parkinson's disease is more prominent in the left-side dominant patients[END_REF].

A key connection between the basal ganglia and the cerebellar motor circuits seems to be altered in PD and a reduction of brain activation within both circuitries may participate in the development of dysarthria. Our data suggest that compensatory strategies could involve, amongst others, temporal regions which are known to play a role in SP mechanisms, the insula, and frontal areas including the lateral premotor cortex and the anterior cingulate gyrus (ACG). All these regions could be part of a surrogate network able to provide the functionality needed to support SP, even if SP is dysarthric. Among these regions, the ACG is one of the main basal ganglia circuit outputs (the limbic one). On the other hand, the cerebellum is tightly connected with frontal regions, including Broca's area and the lateral premotor cortex. The additional network activated in our patients could therefore be recruited as compensatory circuitry of dysarthric speech, enabling inter-circuit compensations, either in the frontostriatal or the cerebro-cerebellar circuitries. It is possible that in early PD, basal ganglia dysfunction primarily affects speech and leads to mild dysarthria, while with the disease progression severe dysarthria results from additional dysfunction of the cortexcerebellum circuitry. It is known that worsening of dysarthria with disease progression parallels an increasing severity of nondopaminergic cerebral lesions [START_REF] Agid | The efficacy of levodopa treatment declines in the course of Parkinson's disease: do nondopaminergic lesions play a role?[END_REF][START_REF] Braak | Nigral and extranigral pathology in Parkinson's disease[END_REF][START_REF] Kosaka | Lewy body disease with and without dementia: a clinicopathological study of 35 cases[END_REF]. One key structure could be the thalamus [START_REF] Henderson | Degeneration of the centre median-parafascicular complex in Parkinson's disease[END_REF], since it relays to the cortex information arising in both the cerebellum and the basal ganglia loops.

The key-role of the cerebellum [START_REF] Ackermann | Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives[END_REF][START_REF] Astrom | Patient-specific model-based investigation of speech intelligibility and movement during deep brain stimulation[END_REF][START_REF] Tripoliti | Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation[END_REF] and non-dopaminergic neural circuits in the anatomo-functional substrate of vocal communication could partly explain the resistance of Parkinsonian speech to L-dopa. Even if some studies pointed out beneficial effects of L-dopa on PD speech [START_REF] Letter | The effect of levodopa on respiration and word intelligibility in people with advanced Parkinson's disease[END_REF][START_REF] Letter | Levodopa-induced modifications of prosody and comprehensibility in advanced Parkinson's disease as perceived by professional listeners[END_REF], several studies that have explored speech parameters in PD have demonstrated the lack of significant change between the two medication condition [START_REF] Skodda | Short-and long-term dopaminergic effects on dysarthria in early Parkinson's disease[END_REF]. According to the classical cortico-subcortical circuit models first defined in the early nineties [START_REF] Albin | The functional anatomy of basal ganglia disorders[END_REF][START_REF] Alexander | Functional architecture of basal ganglia circuits: neural substrates of parallel processing[END_REF][START_REF] Alexander | Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ''prefrontal'' and ''limbic'' functions[END_REF], and further developed since [START_REF] Kopell | Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson's disease[END_REF][START_REF] Obeso | Pathophysiology of the basal ganglia in Parkinson's disease[END_REF], the circuits operate in a segregated and parallel fashion. The concept of closed and open circuits allows for crosscommunication between circuits [START_REF] Joel | The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated[END_REF]. Apart from the motor circuit, which connects the primary motor/lateral premotor cortices and the SMA via the putamen, parallel non-motor loops originate from various regions of the basal ganglia and terminate in the DLPFC (prefrontal loop), orbito-frontal cortex (lateral orbito-frontal loop) or even anterior cingulate cortex (limbic loop). It is therefore possible that the alteration of the motor loop be compensated for, albeit imperfectly, by the recruitment of a nonmotor circuit. The motor deficit of PD speech could depend on such a compensatory pathway: perceptual evaluation through the UPDRS speech item demonstrated that the patients presented with mild dysarthria, whether on or off medication. Indeed, clinical data revealed a significant improvement of the UPDRS motor scores under medication, but as already reported, improvement was lesser for speech production [START_REF] Klawans | Individual manifestations of Parkinson's disease after ten or more years of levodopa[END_REF][START_REF] Pinto | Treatments for dysarthria in Parkinson's disease[END_REF]. Our results regarding the speech production task in PD are thus consistent with the idea that the recruitment of non-dopamine dependent cerebral compensatory mechanisms allows for acceptable speech performance.

Combining Movements in PD

Studies using dual-task paradigms combining simultaneous but independent verbal and manual tasks are scarce [START_REF] Clarici | Effects of speaking speed on cerebral lateralization of speech assessed by a dual-task interference paradigm[END_REF][START_REF] Mcfarland | Lateralised dual-task performance: the effect of muscular-repositioning[END_REF][START_REF] Simon | The dual task paradigm: speech dominance or manual dominance?[END_REF], including in PD patients [START_REF] Bunton | The Use of a Dual-Task Paradigm for Assessing Speech Intelligibility in Clients with Parkinson Disease[END_REF][START_REF] Dromey | Bidirectional interference between speech and postural stability in individuals with Parkinson's disease[END_REF][START_REF] Ho | The effect of a concurrent task on Parkinsonian speech[END_REF][START_REF] Lapointe | Talking while walking: Cognitive loading and injurious falls in Parkinson's disease[END_REF]. Yet, such concurrent tasks are common in daily activities and their performance is often impaired in PD [START_REF] Rochester | Walking speed during single and dual tasks in Parkinson's disease: which characteristics are important?[END_REF]. The combined task was specifically formulated to avoid any cognitive conict; this was an advantage for assessing the neural correlates of simultaneous task performance, without cognitive overload, which is usually a confounding factor in dual-task paradigms. The combined task paradigm was not a classical dual task one, as it did not involve strictly independent tasks, that is, it did not induce cognitive conict in response selection between the HM and SP tasks. For both HM and SP, the motor processes yielded the selection and planning of the same response (left, right, up, down) among four possibilities (i.e. the four movement directions). Only the motor execution (hand and orofacial movements) differed in terms of the muscles involved in production. Thus, PD patients did not face any conflict, but rather facilitation, in response selection during the task. PD individuals have been shown to demonstrate trouble when performing complex dual tasks and exhibit greater activations in the cerebellum, premotor area, precuneus, parietal and prefrontal cortices [START_REF] Wu | Neural correlates of dual task performance in patients with Parkinson's disease[END_REF] than control subjects. In a previous study, in control subjects, but not in PD patients off medication, our combined task yielded the sum of the brain activations obtained during hand movement and speech production performed separately [START_REF] Pinto | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease[END_REF]. This was interpreted as the patients' functional prioritization of the HM, SP being therefore associated with sub-threshold cerebral activations. It could also have reflected the inability of PD patients to intrinsically engage in the motor coordination necessary to perform a combined task. Indeed, due to the additive nature of the two tasks, the combined task represented an easier task to generate.

In the present study, our data are in agreement with those observed previously in patients off medication. Moreover, the summation of the two networks was also absent when the patients were on medication. This is congruent with the fact that SP activations never reached the corrected statistical threshold, even during the performance of the single task. These results suggest that the loss of capacity-sharing in combined movements did not improve with L-dopa, contrary to our a priori hypothesis. In fact, weak activations, restricted to the single right cerebellum, were revealed off L-dopa; this lateralization suggested that it was related to the hand movement part of the combined task. Following Ldopa administration, left-sided regions were activated in a premotor fronto-parietal network. Activations of these regions were also seen during the single hand movements, and interpreted as possible compensatory recruitments. These regions, possibly involved in compensatory pathways, were highlighted by the between-task comparisons (Tables 8 and9). Thus, unlike what was seen for the single tasks performed separately, this activation pattern suggests that PD patients may rely on this network for simultaneous motor performance [START_REF] Samuel | Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study[END_REF][START_REF] Dagher | The role of the striatum and hippocampus in planning: a PET activation study in Parkinson's disease[END_REF][START_REF] Rowe | Attention to action in Parkinson's disease: impaired effective connectivity among frontal cortical regions[END_REF]. Palmer et al. [START_REF] Palmer | Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson's disease[END_REF] showed that during bimanual movements in PD, L-dopa partially normalized the effective connectivity and temporal patterns of activity. As already stressed by Brown [START_REF] Brown | Bad oscillations in Parkinson's disease[END_REF], the authors related the patients' inability to perform two movements simultaneously to the impaired capacity of binding the widespread cortical and subcortical areas underlying dual-task performance. They suggested that L-dopa restored effective communication between these areas, and/or reduced ''the excessive beta-band synchronization that permeates widespread areas in the cortex and basal ganglia'' (pages 701-702). Our results do not support the idea that L-dopa can restore coordinated cortical/sub-cortical recruitments in dualtasks, although limb motor function appeared to be more dopamine-driven (HM) than speech. 

Methodological Issues

Individuals with PD patients underwent the fMRI experiment without anti-Parkinsonian medication. Since the off medication state was evaluated in the morning of the experiment, and in order to minimize any differential effects across conditions, we counterbalanced the order of the experimental conditions across subjects. The patients who participated in this study represented a homogenous group of PD patients and may not reflect the range or variability of the disease. They were all relatively young patients, most of them in accordance with the required inclusion criteria for deep brain stimulation. Under the off medication condition, the patients did not have any tremor. They were predominantly akinetic-rigid, and one could wonder what would have been our findings with tremor predominant patients with PD. It is hard to anticipate whether the same findings would be obtained in such a sub-group of patients; to our knowledge, no distinction has been suggested so far regarding speech pathophysiology of akinetic-rigid vs. tremor PD patients. All patients were producing intelligible speech (cf. Table 2; mean UPDRS item 18 speech score = 1.360.5; the worst score being 4) and unfortunately, we were not able to record speech production either inside or outside the fMRI scanner: we acknowledge that another clinical measure for speech production should have provided a differentiated picture of the patients' potential deficit in this domain. Altogether, these methodological aspects have to be taken into account when interpreting the results, possibly restricting generalization.

Conclusions

Our results question both the role of the basal ganglia system in speech production and the modulation of task-dependent cerebral networks by dopaminergic treatment. Whereas the hand movement brain network is sensitive to dopaminergic medication, the brain activation patterns of speech production appear to undergo little changes following medication. Even if different compensatory circuits are activated in PD to try and overcome difficulties in performing hand and speech movements, notably temporal regions for speech production, recruitment of the associative parietal cortex seems to be an alternative in tasks sharing programming modalities. While conflicting dual task might result in preferential execution of one of the two tasks performed simultaneously, the combined task we used in this study did not lead to positive synergistic effect under the on medication state. Further experiments enabling the concomitant recording of speech and hand movement, both conflicting and synergistic, are required to confirm such finding.
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 1 Figure 1. Patterns of brain activation during the hand movement task in PD patients (a -off L-dopa; b -on L-dopa). Activation thresholds correspond to corrected (FWE) p-values,0.05. Without medication, brain activations were found in the right cerebellum, left motor/ premotor regions, anterior cingulate cortex, superior and inferior parietal lobules, and putamen; following L-dopa intake, the brain activation profile was globally reduced, restricted to weak activations in the right posterior cingulate gyrus and the left inferior parietal lobule. doi:10.1371/journal.pone.0046541.g001

Figure 2 .

 2 Figure 2. Patterns of brain activation during the speech production task in PD patients (a -off L-dopa; b -on L-dopa). Activation thresholds correspond to uncorrected p-values,0.001. Brain activation patterns were similar with or without medication, including the bilateral orofacial M1 and cerebellar hemispheres, as well as the left-sided premotor, primary somatosensory, supramarginal and anterior cingulate cortices. doi:10.1371/journal.pone.0046541.g002

Figure 3 .

 3 Figure 3. Patterns of brain activation during the [hand movement + speech production] task in PD patients (a -off L-dopa; b -on Ldopa). Activation thresholds correspond to corrected (FWE) p-values,0.05. Without L-dopa, the combined task yielded a right cerebellar activation. Under L-dopa, comparable cerebellar activations were seen, along with additional left-sided activations in the medial premotor cortex, post-central gyrus and inferior parietal lobule. doi:10.1371/journal.pone.0046541.g003

Table 1 .

 1 Demographic data of the patients.

	Patients	Sex	Symptom laterality predominance	Age (years)	Disease duration (years)
	1	M	R	64	8
	2	M	L	53	12
	3	M	R	61	6
	4	M	R	67	5
	5	M	R	52	12
	6	M	L	55	8
	7	M	L	58	8
	8	M	L	51	8
	9	M	L	69	14
	10	F	L	65	15
	11	M	L	58	9
	12	M	L	64	12
			Mean 6 SD	59.866.1	9.863.2

F = female; L = left; M = male; R = right; SD = Standard deviation. doi:10.1371/journal.pone.0046541.t001

Table 2 .

 2 Clinical data of the patients.

	L-dopa	equivalent	dose (mg)
		Akinesia, items 23-26,	score/32
	Axial signs, items 18,	22 (neck), 27-30,	score/40
		Rigidity, item 22,	score/20
		Tremor, items 20-21,	score/28
		Speech, item 18,	score/4
	Total UPDRS motor	score, items 18-31,	score/108
		Hoen & Yahr scale	(score/5)	off
				Patients

Table 3 .

 3 Cerebral sites of maximal hemodynamic responses during the hand movement (HM): Main effects (p FWE-corrected ,0.05, k$10) of L-dopa medication states.

				off L-dopa				on L-dopa			
	Cerebral area	BA	L/R	x	y	z	Z-score	k	x	y	z	Z-score	k
	Precentral gyrus	4	L	219	227	56	6.12	521u					
	Medial frontal gyrus	6	L	23	218	52	5.95	151 #					
	Frontal sub-gyral	6	R	2 3	26	52	5.51	29					
	Anterior cingulate gyrus	24	L	21	0	45	5.62	151 #					
	Posterior cingulate gyrus	31	R						18	248	224	5.26	20
	Superior parietal lobule	7	R	3 4	253	52	5.20	64 '					
	Inferior parietal lobule	40	L	240	253	47	6.77	521u	230	238	51	5.63	12
	Inferior parietal lobule	40	R	31	244	37	5.88	64 '					
	Inferior parietal lobule	40	R	47	230	38	5.56	28					
	Putamen		L	227	212	4	5.29	14					
	Cerebellum (dentate)		L	214	250	224	5.42	18					
	Cerebellum (dentate)		R	15	250	221	7.61	251*					
	Cerebellum (vermis)		R	2	262	214	6.19	251*					
	Cerebellum (hemisphere)		R	2 6	264	225	6.09	251					

*

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann's area; x, y, z: mediolateral, rostrocaudal and dorsoventral Talairach coordinates; k: cluster size (number of voxels); u/ # / ' /*: parts of the same cluster. doi:10.1371/journal.pone.0046541.t003

Table 4 .

 4 Cerebral sites of maximal hemodynamic responses during the hand movement (HM): Between medication state comparisons (p uncorrected ,0.001, k$10).

			off vs. on L-dopa			on vs. off L-dopa		
	Cerebral area	L/R	x	y	z	Z-score	k	x	y	z	Z-score	k
	Insula (anterior)	R	3 4	8	25	3.66	19	No suprathreshold clusters		
	Putamen	R	2 6	8	0	3 . 2 8	1 9					
	Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann's area; x, y, z: mediolateral, rostrocaudal and dorsoventral
	Talairach coordinates; k: cluster size (number of voxels).										
	doi:10.1371/journal.pone.0046541.t004											

Table 5 .

 5 Cerebral sites of maximal hemodynamic responses during speech production (SP): Main effects (p uncorrected ,0.001, k$10) of L-dopa medication states.

	off L-dopa	on L-dopa

Table 6 .

 6 Cerebral sites of maximal hemodynamic responses during the combined [HM+SP] task: Main effects (p FWE-corrected ,0.05, k$10) of L-dopa medication states.

				off L-dopa				on L-dopa			
	Cerebral area	BA	L/R	x	y	z	Z-score	k	x	y	z	Z-score	k
	Medial frontal gyrus	6	L						23	18	60	5.30	10
	Postcentral gyrus	3	L						230	232	43	5.27	43 #
	Postcentral gyrus	40	L						240	230	51	5.07	43 #
	Inferior parietal lobule	40	L						230	238	51	5.04	43 #
	Cerebellum (dentate)		R	1 2	256	219	5.87	94*	15	250	221	5.60	71
	Cerebellum (hemisphere)		L						227	262	227	5.68	11
	Cerebellum (hemisphere)		R	26	264	225	5.84	94*					
	Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann's area; x, y, z: mediolateral, rostrocaudal and dorsoventral
	Talairach coordinates; k: cluster size (number of voxels); *, # : parts of the same cluster.						
	doi:10.1371/journal.pone.0046541.t006												

Table 7 .

 7 Cerebral sites of maximal hemodynamic responses during the combined [HM+SP] task: Between medication condition comparisons (p uncorrected ,0.001, k$10).

				off vs. on L-dopa			on vs. off L-dopa		
	Cerebral area	BA	L/R	x	y	z	Z-score	k	x	y	z	Z-score	k
	Temporal sub-gyral	21	R	47	29	29	3.94	28	No suprathreshold clusters	
	Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann's area; x, y, z: mediolateral, rostrocaudal and dorsoventral
	Talairach coordinates; k: cluster size (number of voxels).										

doi:10.1371/journal.pone.0046541.t007

Table 8 .

 8 Cerebral sites of maximal hemodynamic responses highlighted by between-task comparisons under off and on L-dopa conditions: Combined (HM+SP) task vs. Hand movement (HM) task (p uncorrected ,0.001).

				off L-dopa				on L-dopa			
	Cerebral area	BA	L/R	x	y	z	Z-score	k	x	y	z	Z-score	k
	Precentral gyrus	4	R	No suprathreshold clusters		41	215	46	4.06	18
	Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann's area; x, y, z: mediolateral, rostrocaudal and dorsoventral
	Talairach coordinates; k: cluster size (number of voxels).										
	doi:10.1371/journal.pone.0046541.t008												

Table 9 .

 9 Cerebral sites of maximal hemodynamic responses highlighted by between-task comparisons under off and on L-dopa conditions: Combined (HM+SP) task vs. Speech production (SP) task (p uncorrected ,0.001).

				off L-dopa				on L-dopa			
	Cerebral area	BA	L/R	x	y	z	Z-score	k	x	y	z	Z-score	k
	Paracentral lobule	31	L	23	218	44	3.85	11	No suprathreshold clusters	
	Superior temporal gyrus	41	L	240	232	17	4.14	16					
	Superior parietal lobule	7	L	227	256	58	4.06	177*					
	Inferior parietal lobule	40	L	243	235	48	4.41	177*					
	Postcentral gyrus	40	R	52	224	17	3.64	11					
	Cerebellum (dentate)		R	1 8	250	224	4.54	67					

Cerebral activation locations refer to maximal hemodynamic response sites. L/R: left/right; BA: Brodmann's area; x, y, z: mediolateral, rostrocaudal and dorsoventral Talairach coordinates; k: cluster size (number of voxels); *parts of the same cluster. doi:10.1371/journal.pone.0046541.t009
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