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ABSTRACT: Because many biological processes related to the dynamics of infectious diseases are 

caused by complex interactions between the environment, the host(s) and the agent(s), the necessity 

to address the methodological implications of this inherent complexity has recently emerged in 

epidemiology. Most epidemiologists now acknowledge that most human infectious diseases are 

likely to have complex dynamics. However, this knowledge still percolates with difficulty in their 

statistical “modus operandi”. Indeed, for the study of complex systems, the traditional first-line 

statistical toolbox of epidemiologists (mainly built around the Generalized Linear Model family), 

despite its undeniable practicality and robustness, has structural limitations deprecating its 

usefulness. Three major sources of complexity neglected or not taken into account by this first-line 

statistical toolbox and having deep statistical implications are the multi-level organization of data, 

the non-linear relationships between variables and the complex interactions between variables. 

Three promising candidates to incorporate along with traditional tools for a new first-line statistical 

toolbox more suitable to apprehend these sources of complexity are the generalized linear mixed 

models, the generalized additive models, and the structural equation models. The aforementioned 

methodologies have the advantage to be generalizations of GLM models and are relatively easy to 

implement. Their assimilation and implementation would thus be greatly facilitated for 

epidemiologists. More globally, this text underlines that an improved use of other methods as such 

described here compared to traditional ones has to be performed to better understand the 

complexity challenging epidemiologists every day. This is particularly true in the field of infectious 

diseases for which major public health challenges will have to be addressed in the coming decades. 

 

KEYWORDS: infectious diseases; complexity; statistics; multi-level organization; nonlinearity; 

interactions; 

 

HIGHLIGHTS 

 Most epidemiologists now acknowledge that infectious diseases have complex dynamics. 

 Multilevel organization of data, non-linear behaviors and interactions are three major sources of 

complexity 

 The epidemiologist first-line statistical toolbox has structural limitations limiting its ability to 

capture complexity. 

 3 models more able to deal with these sources of complexity are the GLMM, the GAM and the 

SEM models. 

 An improved use of this kind of methods has to be performed to elucidate the complexity of 

infectious diseases. 
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Introduction 

It is now well admitted that the emergence and reemergence of infectious diseases and their 

rapid dissemination worldwide are actually major challenges for national and international 

epidemiological researches (Jones et al., 2008; McMichael, 2004; Smith and Guégan, 2010). Until 

now, expectations in new vaccines or drugs and global surveillance to reverse the observed trends 

have been frustrated by the extreme complexity of the dynamics of infectious diseases (Plowright et 

al., 2008). Various individual or global determinants, such as genetics, extreme poverty, risky 

behaviors, urbanization, land-use changes e.g. deforestation, agricultural practices, or climate and its 

perturbations, acting at different spatio-temporal scales, may favor the emergence and resurgence 

of many infectious diseases and increase their epidemiological complexity (Harrus and Baneth, 2005; 

Morse, 2004, 1995; Weiss and McMichael, 2004; Woolhouse and Gowtage-Sequeria, 2005). In 

addition, the huge diversity of viruses, bacteria, fungi and parasites (Woolhouse et al., 2008) entails 

that it is also not unusual for people to be co-infected with various pathogens that circulate within 

the global environment (Smith et al., 2007). The resulting symptoms and severity may be due to 

multi-species co-infections and often cannot be predicted by the simple sum of the effects of each 

pathogen, as notably revealed by the 2008-2009 H1N1v pandemic for which mortality was mostly 

due to opportunistic bacterial infections (MMWR, 2009; Palacios et al., 2009). Traditional approaches 

for the study of cause and effect relationships are often not possible when studying emerging 

infections because study units are large and complex and risk factors have non-linear, hierarchical 

effects (Karesh et al., 2012; Plowright et al., 2008). Systematic, interdisciplinary approaches are 

clearly needed for understanding disease outbreaks and spread (Harrus and Baneth, 2005; Kilpatrick 

and Randolph, 2012; Morse, 2004, 1995; Weiss and McMichael, 2004; Woolhouse and Gowtage-

Sequeria, 2005).  

Thus, the elucidation of “complexity” is now at the heart of current epidemiological issues 

(Leport et al., 2012). Because many biological processes related to the emergence and dynamics of 

infectious diseases are caused by complex interactions between the natural and socio-economical 

environment, the host(s) and the agent(s), the necessity to address the methodological implications 

of such inherent complexity in epidemiology has emerged during the last decade (Karesh et al., 2012; 

Kilpatrick and Randolph, 2012). This has led to a call for a new paradigm “the theory of complexity” 

to understand the different mechanisms and drivers underlying pathogen emergence and improve 

disease prevention (Jayasinghe, 2011; Materia and Baglio, 2005; Morabia, 2007; Pearce and Merletti, 

2006). Epidemiologists now acknowledge that most human infectious diseases are likely to have 

complex, non-linear dynamics, and for some chronic diseases it is now demonstrated that some can 

have a microbial or an infectious origin, like for Crohn’s disease (Bouskra et al., 2008) or several 

neurologic diseases (Olival and Daszak, 2005). However, to move forward epidemiologists must not 

only acknowledge but also directly confront the numerous multi-scale factors that can be involved in 
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complex infectious disease dynamics (Karesh et al., 2012). The traditional first-line statistical toolbox 

of epidemiologists, mainly built around the Generalized Linear Models (GLMs) and the general use of 

risk factors epidemiology (Susser, 1998), have structural limitations limiting its ability to accomplish 

this task. Significant statistical challenges are thus now facing epidemiologists. Unfortunately, the 

methodological implications of complexity theory still percolate with difficulty in the field and have 

difficulties to be routinely applied “statistically” despite the fact that analyses based on this theory 

are nowadays facilitated by the combined use of relatively new analytical methods and statistical 

softwares that combine complexity and usability. Our aim in the present paper is thus to explain 1) 

three major sources of complexity having deep statistical implications in epidemiology of infectious 

diseases, and 2) why these last ones are neglected or not taken into account by traditional statistical 

tools for epidemiologists when they are largely used by other fields of research, notably in ecology 

and evolution of infectious diseases (Plowright et al., 2008).  Here, we outline some of the barriers to 

advancing our understanding of statistical modeling in medical epidemiology. Together with this 

presentation, three statistical models, relatively easy to implement, and more suitable to apprehend 

these sources of complexity, are described. The usefulness of these models is also illustrated with 

recent examples from the literature. 

 

Multilevel analysis with Generalized Linear mixed modeling (GLMM): a well suited tool to 

apprehend the hierarchical structure of infectious disease dynamics 

A first key concept of the complexity theory is that determinants of an infectious disease cannot 

be conceptualized only as an attribute of a particular level of organization (molecular, cellular, 

individual or population ones for example). In epidemiology, population and group factors as well as 

individual factors are all important in understanding the causes of diseases (Pearce and Merletti, 

2006; Pearce, 2004, 1999, 1996). Discussions on group and individual factors are often reduced to 

the idea that on one side, group characteristics are important in understanding the differences 

between groups and that on another side, individual characteristics are important in understanding 

differences between individuals. Complexity theory underlines that a set of factors or drivers defined 

on several levels of organization may be important for understanding the causes of variability within 

a single level of organization (Pearce and Merletti, 2006). In infectious disease epidemiology, it has 

long been recognized that factors "independent" of individuals, defined at the population level 

(Morgenstern, 1995; Rose, 1985; Susser, 1994), influence health. A well known example is the 

concept of "herd immunity" which implies that the probability of a person to contract an infectious 

disease agent depends partly on the immunity level of the population to which it belongs (Fine, 

1993). It is now acknowledged that this concept of multiple levels of organization can be found in 

every epidemiological study because they always involve some sort of population (including 

countries, regions, villages, community, extended families, etc…)(Pearce, 1999). Complexity theory 
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thus underlines that all levels of organization are of value and that it is particularly valuable to follow 

an integrative approach which incorporates the various levels whatever the level at which the 

research is made (Plowright et al., 2008). Interestingly, this approach is called in medicine and public 

health as ecological studies - which are not used exactly in the same way ecologists are defining this -

, and it is criticized by health scientists as being pervasive even fallacious correlation studies only 

(Pearce, 2000). 

A particularly illustrative example is given by the social determinants of HIV/AIDS incidence in 

populations (Poundstone et al., 2004) (figure 1). The latter are distributed on several levels of 

organization (individual, community and national) and all of these factors have to be put together to 

apprehend the dynamic of HIV/AIDS in populations. 

Unfortunately, over the past few decades, most epidemiological studies in infectious diseases 

have taken into account only individual-level risk factors for disease (McMichael, 1999; Susser and 

Susser, 1996). This approach has led to the intensive use of statistical models developed on a “one 

level data” spirit. Furthermore, during the same period, epidemiologists acknowledging the 

hierarchical organization of data were often inhibited from applying the ‘multilevel perspective’ by a 

lack of understanding of how to analyze such data and by the lack of dedicated statistical tools 

leading to utilize traditional one-level statistical tools, even when their data and hypotheses were 

multilevel in nature. 

These practices are confronted to at least two problems. First, all of the unmodeled group level 

or contextual information ends up pooled into the single individual error term of the model (Duncan 

et al., 1996; Luke, 2004). This is problematic because individuals belonging to the same context will 

presumably have correlated errors, which violates one of the basic assumptions of classical 

regression models. The second problem is that by ignoring the context under investigation, the 

model assumes that the regression coefficients apply equally to all contexts, “thus propagating the 

notion that processes work out in the same way in different contexts” (Duncan et al., 1996; Luke, 

2004). 

To solve these methodological problems, specific statistical modeling called multilevel modeling 

was developed during the last two decades. Such models have been created to allow analysis at 

several levels simultaneously, rather than having to choose at which level to carry out a single level 

analysis. They were relatively new compared to other common types of modeling, such as GLMs. To 

avoid previously described pitfalls in the analysis of hierarchical data, these multilevel models 

incorporate, in parallel to individual factors (commonly referred as fixed effects), group level effects 

describing the variability associated with particular group levels (commonly referred as random 

effects). With this ability, these models radically outperform classical regression in term of predictive 

accuracy. The vast increase in computing power over recent decades has led to the emergence of 
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these multilevel models as practical and powerful tools to better explain data variability. All 

statistical programs now have dedicated functions and packages that allow the study of hierarchical 

structures in data of all kinds in one unified framework called generalized linear mixed models 

(McCulloch et al., 2008), whatever the design of the study (cross-sectional or longitudinal) and with 

the distinct advantage to handle unbalanced designs quite well.  

However, multilevel modeling also raises some concerns about potential pitfalls and limitations 

which have to be carefully apprehended during the model construction. Some of them are, for 

example, the proper specification of the error structure, the model building strategy, the choice of 

appropriate software and associated options, and the interpretation and reporting of the results 

(Diez Roux and Aiello, 2005; Greenland, 2000; Nezlek, 2008). Nevertheless, in the area of infectious 

disease epidemiology, multilevel analysis remains a very pertinent tool, when properly used, to 

examine how both group- and individual-level factors are related to individual-level disease 

outcomes and how factors at both levels contribute to group-to-group differences in disease rates 

(Diez Roux and Aiello, 2005).  

The study of Yang et al. (2009), focused on risk factors for Schistosomiasis, perfectly illustrates  

the advantages of multi-level modeling on traditional ones (J. Yang et al., 2009). They conducted a 

cross-sectional survey in 16 villages in the Chinese province of Hunan to investigate both individual 

and group level (villages) risk factors for Schistosomiasis infection. Surprisingly, contrarily to their 

single level analysis and of those found in the literature, their multi-level analysis did not find a 

significant, independent effect of density, in particular, of infected snails on Schistosomiasis infection 

in humans. They concluded that previous studies having ignored the hierarchical structure of the 

data may have obtained improper results. These findings, obtained by multi-level modeling, may 

guide the development of Schistosomiasis infection prevention programs, questioning whether 

massive application of molluscicides to control snails in endemic areas is an effective preventive 

measure. 

More globally, epidemiological studies using multilevel modeling could now be seen in a large 

spectrum of infectious diseases such as malaria (Yusuf et al., 2010), HIV (Msisha et al., 2008), visceral 

leishmaniasis (Werneck et al., 2006) or leprosy (Sales et al., 2011) but this type of applications remain 

however globally sparse (Diez Roux and Aiello, 2005). As rightly said by Diez Roux and Aiello (Diez 

Roux and Aiello, 2005), the generalization of the use of multilevel analysis in infectious disease 

epidemiology could only be done if an upstream work, as usually done in ecological sciences notably 

(Burnham et al., 2002; Grace, 2006), was performed by the community to identify the levels that are 

relevant to the research question of interest, specifying the relevant constructs or variables at each 

level, operationalizing the relevant groups, and measuring the relevant group-level variables. The 

incorporation of group-level data in individual-level studies (if done carefully) can only strengthen 

the field (Duell, 2006). 
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Elucidating the non linear behaviors observed in infectious disease dynamics: the great value 

of the generalized additive model (GAM) 

In addition to the difficulty provided by the multilevel organization of data, complexity theory 

implies a second fundamental source of complexity: the nonlinear relationships between the 

variables of a system (Pearce and Merletti, 2006; Pearce, 1996).  

A non-linear behavior could be roughly defined as a behavior that is not based on a simple 

proportional relationship between two quantitative variables. Therefore, the induced changes are 

often sudden, unexpected and difficult (and sometimes impossible) to predict. In these nonlinear 

systems, a modification of a small amount of one or two parameters can dramatically change the 

behavior of the entire system (Pearce and Merletti, 2006; Pearce, 1996). Complex biological systems 

are often characterized by nonlinear behaviors whatever the level of organization (from the activity 

of an enzyme to the dynamic of infectious diseases in human populations). It is now well 

acknowledged that the incidence of an infectious disease is a non-linear function of the number of 

infectious and susceptible individuals within the population (Anderson and May, 1991), or that the 

relationship between malaria transmission and vector-sources adaptation to temperature is 

profoundly non-linear (Patz and Olson, 2006).  

However, to be able to apprehend natural complex systems, science has always tried to reduce 

their description to a simpler system. One of the most widely used methods to study and explain 

such systems was to consider these systems under the assumption of linearity. This paradigm 

requires that the relationship between two variables X and Y depends on a weight α representing the 

strength of the relationship. Because of its conceptual usefulness, this assumption is no longer 

challenged when selecting the methodology to apply. This is particularly true for GLMs used every 

day. Undoubtedly, this paradigm of linearity helps researchers to better understand phenomena of 

interest in epidemiology, but its usefulness is inherently limited when the investigator wants to 

better understand complex systems that involve non linear behaviors (Philippe and Mansi, 1998). 

There are important non-linearities in nature for which the linear approximation is an uninformative 

(and possibly misleading) first analysis step especially in the case of threshold, belt-shaped or 

Gaussian curves, and aggregated functions that are common in nature, and U, or J-shaped, or even 

more complicated relationships (May and Bigelow, 2005). 

There again, when confronted with these very difficult conceptual problems due to non linear 

relations between variables, some substitution strategies were developed to better accounts for it 

than in traditional models. When a relationship between two continuous variables is identified as 

non linear, a first practical solution is often to categorize one of the studied variables and to estimate 

for each associated categories the resulting effect on the second variable. Such methods have 

become very popular due to their easy interpretation and the ensuing intuitiveness of the 
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communication of the results. Unfortunately, it is now well admitted that the fit of such strategies is 

often very poor (Altman, 1991; Bennette and Vickers, 2012; Greenland, 1995; Zhao and Kolonel, 

1992). Indeed, categorization of continuously distributed variables is associated with three problems: 

first, it involves multiple hypothesis testing with pair-wise comparisons of groups; second, it requires 

an unrealistic function of risk that assumes homogeneity of risk within groups, leading to both a loss 

of power and inaccurate estimation; and third, it leads to difficulty comparing results across studies 

due to the data-driven cut off points often used to define categories (median, quintiles,…)(Bennette 

and Vickers, 2012). A second strategy massively adopted by the epidemiological community is to 

transform one or several exploratory variables to obtain a relationship that is linear (logarithmic, 

square root, inverse or square transformation …) (Flanders et al., 1992) or to use a parametric 

function of the original variable (most often quadratic and occasionally cubic or polynomial). 

Similarly, applying a transformation of the outcome through the use of a non linear link function 

possibly selected by a model selection procedure is another common strategy to deal with non 

linearity. There again, with their limited flexibility, the fitting of such models is often quite poor 

(Royston, 2000). 

An important statistical development of the last thirty years has been the advance in regression 

analysis provided by generalized additive models (GAM) (Hastie and Tibshirani, 1990, 1986). The 

strength of GAMs is their ability to deal with highly non-linear and non-monotonic relationships 

between the response and a set of explanatory variables. They are a semi-parametric extension of 

the GLM in that one or more predictors may be specified using a smooth function. The smoothness 

for the functions is calculated internally with the goal of optimal balance between the fit to the data 

and excessive ‘‘tortuosity’’ of the functions. Furthermore, group-level effect can also be taken into 

account in GAMs by the possible inclusion of random effects. Therefore, the hierarchical structure of 

explanatory variables can also be modeled with GAMs. Since their development, GAMs have been 

extensively applied in biological sciences as ecology, as evidenced by the growing number of 

published papers incorporating these modern tools (Guisan et al., 2002). This is due, in part, to their 

ability to deal with the multitude of distributions that define data in the same way as GLM, and to 

the fact that they blend in well with traditional practices used in linear modeling and analysis of 

variance. Like in ecology, the use of GAMs in epidemiology to handle non-linear data structures could 

improve the representation of the underlying data, and hence increase our understanding of 

complex epidemiological systems (Guisan et al., 2002).  

A simple but powerful example of GAM usefulness could be found in the study made by 

Giraudoux et al. (2013) focalizing on Human alveolar echinococcosis (Echinococcus. multilocularis). 

Through the use of a GAM model investigating the non linear effect of a large panel of environmental 

determinants on the infections status of more than 15,000 Chinese people, they showed and 

describe precisely the non linear impact of landscape features and climate on Human alveolar 
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echinococcocosis (Giraudoux et al., 2013) (figure 2). The authors concluded that their study may be a 

starting point for further research wherein landscape management could be used to predict human 

disease risk and for controlling this zoonotic helminthic. With the use of traditional statistical models 

assuming linearity alone, this simple and useful message could not have been elaborated. 

In infectious diseases, some research fields such as environmental science or biogeography have 

already understood the potential benefits of this kind of methods in the understanding of infectious 

disease dynamics. Applications could now be found for a variety of diseases such as influenza (L. Yang 

et al., 2009), malaria (Nkurunziza et al., 2011), cholera (Piarroux, 2011) and many others (Dukid et al., 

2012; Hens et al., 2007; Schindeler et al., 2009). However, similarly to multilevel modeling, empirical 

applications of GAM analysis in infectious disease researches remain globally sparse. Yet despite the 

methodological advancements provided by methods like GAM models and calls for the abandonment 

of variable categorization, the epidemiologic community continues to rely heavily on the use of 

linearity hypothesis as a primary means of analyzing and presenting results (Bennette and Vickers, 

2012). Possible explanations could be found in the fact that GAMs are more complicated to fit, 

require a sufficient amount of data to be performed, may lead to over-fitting when improperly used, 

are criticized to have a “black box” behavior and could provide difficulties in assigning biological 

meaning to the fitted model due to the flexibility of GAM in allowing different model types. With 

recent dedicated functions and packages simplifying their use, these problems and limitations 

become increasingly obsolete. By extending GLM and relaxing the linear assumption, GAMs could 

thus represent a new kind of “screwdriver” in the first line statistical toolbox of epidemiologists 

specialized in the study of non linear behaviors. They really offer to epidemiologists a practical 

methodology for improving on the extensive practice of linearity by default (Beck and Jackman, 

1998). 

 

Unraveling the complexity behind the interactions of variables: identification of the web of 

determinants by structural equation modeling (SEM) 

A third major source of complexity in epidemiology remains to be described: the existence of 

complex interactions between the outputs (or explanatory variables) and inputs (or dependent 

variables) (Pearce and Merletti, 2006; Pearce, 1996). A first source of interaction which could be 

described is when a relationship between a predictor and an outcome is weakened or strengthened 

by a second predictor. Furthermore, in a complex system, a particular determinant could have the 

ability to impact not directly the disease outcome (proximate determinants) but rather through a 

complex web of interactions involving others factors (distal determinants). For example, in 

tuberculosis, HIV status is clearly a proximal determinant of occurrence in individuals and belonging 

country economic level a distal one (acting for example through capability of health structures 

management or health intervention implementation). Complexity theory thus underlines that health, 
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disease and the balance between the two are determined by many interwoven factors, which may 

reinforce, interact synergistically, mask or inhibit each other in a dynamic web of interactions 

(Albrecht et al., 1998). Indeed, to understand a natural process, it is critical to know which groups of 

variables are joined in such complex effects and must be examined together. This “web of 

determinants” in infectious diseases is illustrated in figure 3 for Hendra virus emergence 

determinants in Australia. Furthermore, complexity theory also underlines that an infectious disease 

epidemiologist has to interrogate himself on the principle of “causation” (Joffe et al., 2012; Plowright 

et al., 2008). Under this theory, the definition of a causal relation between a determinant and a 

disease is much more than a direct relationship between the two; it is rather a confirmed effect of a 

determinant on a complex system in which many variables interact and influence the disease 

dynamic in a form of more or less complex cascade-of-effects structure.  

In a reductionist scientific tradition, epidemiology has tried to understand and explain the impact 

of different factors on outcomes by isolating and studying them separately (Susser, 1998). This 

philosophy is mainly achieved in epidemiology through traditional multivariate statistical analyses (as 

GLMs) revealing the impact of each health- or disease-promoting factor by controlling for the effect 

of all other factors included. These kinds of models are very useful to examine direct relationships 

between independent and dependent variables but are intrinsically limited to study complex 

interactions where distal influences could be at stake. Real life may not be so parsimonious; 

relationships between various variables may be much more complex, more “web-like” (Krieger, 

1994).  

Some adjustments are however possible. In traditional tools, interactions terms could be 

included in models to correct all deviations due to strong interactions between inputs. Nevertheless, 

these terms only represent statistical corrections and do not take explicitly into account the complex 

structural relations existing between variables. This traditional approach, which emphasizes single 

causes and bivariate associations, has dominated epidemiological researches until recently.  

Structural-equation models (SEMs) were developed in the mid-late 1980's to model more 

efficiently complex relationships between factors (Bollen, 1989; Kaplan, 2000). Statistically, they 

represent an extension of path analyses and GLM procedures. They are applicable to both 

experimental and non-experimental data, as well as cross-sectional and longitudinal data. Traditional 

SEMs are multiple-equation regression models in which the response variable in one regression 

equation can appear as an explanatory variable in another equation. Indeed, two variables in a SEM 

can even effect one-another reciprocally, either directly, or indirectly through a feedback loop. SEMs 

can also include variables that are not measured directly (latent variables). The goal of SEM is to 

determine whether a hypothesized theoretical model is consistent with the data collected. The 

consistency is evaluated through model-data fit, which indicates the extent to which the postulated 

network of relations among variables is plausible. Indeed, on the contrary to traditional methods 
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such as regression, SEM is able to yield unique information about the complex nature of disease and 

health behaviors when used within good research design. Nevertheless, like any procedure in data 

analysis, this methodology is also subject to misspecifications, and the researcher must be aware of 

several considerations to develop a legitimate model. These include the steps in model development, 

testing for reliability and validity, sample size requirements and interpretation of fitting measures 

(Beran and Violato, 2010). 

With the advent of SEM computer programs and the development of methods such as causal 

diagrams helping to structure the statistical analysis of the hypothesized pathways (Joffe et al., 2012; 

Plowright et al., 2008), SEM has now become a well-established and respected methodology. 

Important contributions to SEM have come out of the behavioral and social sciences. Currently, the 

potential of such techniques are just beginning to be appreciated in epidemiologic and clinical 

studies (Amorim et al., 2010; Beran and Violato, 2010).  

The advantages of SEM approaches compared to traditional analyses were perfectly illustrated 

by the study of Calis et al. (Calis et al., 2008). Little is known about the causes of severe anemia in 

African children. Among them, iron deficiency and infectious diseases are widely held to be some of 

the most common causes. To test this assertion, Calis et al. conducted a SEM analysis to finely model 

the complex relations existing between potential determinants and severe anemia. Retrieved 

significant associations were shown in figure 4. One of their counterintuitive results is that iron 

deficiency, due to complex relations with other determinants (as hookworm and bacteria load), could 

be in fact a protective factor of severe anemia. They concluded that treatment recommendations for 

severe anemia that promote iron and ignore bacteremia or hookworm infections appear to be of 

limited applicability. These important results could not have been obtained when developing classical 

analyzes. 

More globally, special uses of SEM are now emerging in fields as diverse as exposure assessment 

(Davis, 2011), nutritional epidemiology (Chavance et al., 2010) or human genetics (Li et al., 2006) but 

still percolate difficultly in the infectious disease area. Apart from the behavioral studies linked to 

infectious diseases (Rao et al., 2011), applications in infectious diseases remain quite rare (Guan et 

al., 2009; Obel et al., 2010). 

By permitting the study of the complex web of interactions exiting in every infectious disease 

dynamic, SEM could however be a promising tool to complement or an alternative to traditional 

ones. Incorporating SEMs in their statistical modus operandi could give infectious disease 

epidemiologists a real opportunity to better apprehend the inherent complexity of infectious 

diseases challenging them every day. 

 

Concluding remarks 
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We have seen that the traditional first-line statistical toolbox (mainly built around the GLM 

family), despite its undeniable practicality, has structural limitations limiting its ability to capture the 

complexity provided by the multilevel organization of data and the potential non-linear behaviors 

and/or complex interactions at stake in infectious diseases. As pointed in other research areas 

(Thornton-Wells et al., 2004), there is currently a crucial need for an extensive reevaluation of 

existing methodologies to study the infectious diseases. This discussion tries to make a move in this 

direction. Three additional candidates for this new statistical toolbox have been described here: the 

GLMM models (taking into account the multi-level organization of data), the GAM models (able to 

manage deep non-linear relationships between variables), and the SEM models (allowing the 

modeling of complex interactions between variables). We are convinced that a more systematic use 

of these of these kinds of models could help epidemiologists to better elucidate the inherent 

complexity of infectious diseases and fill the gap between acknowledgement of limitations and 

action to overcome them.  

The simultaneous application of these three models on every epidemiological datasets with 

which the GLM family is an adequate strategy of analysis cannot obviously be done systematically. 

Everything depends on the question under investigation, the collected data and the particular 

dynamic of the studied phenomenon. However, we think that, in a non-negligible proportion of these 

epidemiological studies, at least one of these models is applicable and can be used to investigate the 

underlying complexity of the epidemiological phenomenon more accurately. Furthermore, an 

upstream reflection must also be performed by the community to enable these kinds of models to be 

applied as often as possible. This reflection should primarily focus on formalizing assumptions on the 

complexity of the studied phenomena, the type of study to conduct to efficiently investigate this 

complexity and the nature of the data which have to be collected to accomplish this task.  

These three models are only examples of new interesting statistical methods; many others, 

also able to meet these challenges, already exist or are under development. These include among 

others, decision trees, neural networks, projection pursuit regression, boosting, bayesian hierarchical 

models, penalized regressions, generalized method of moments or quantile regression (Hastie et al., 

2009). Nevertheless the aforementioned methodologies have the unique advantage to be 

generalizations of GLM models: their assimilation and implementation would thus be greatly 

facilitated for epidemiologists. They also have the decisive advantages of being applicable to a wide 

variety of data and of having been tested and validated in many other scientific areas. They thus 

could be rapidly assimilated and used by the infectious disease community.  Nevertheless, what we 

propose here only represents a preliminary part of the in depth introspection that the community 

should perform. Indeed, Similarly to GLM models, the use  of more well-suited models instead of 

others statistical tools commonly used in infectious disease epidemiology (as survival analysis or 

spatial analysis for example) are needed to better apprehend the complexity provided by the 
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multilevel organization of data and associated potential non-linear behaviors and/or complex 

interactions. Furthermore, recent progresses in advanced statistics as in contact networks, spatial 

point processes, or transmission tree reconstruction to name a few have also to be tested and 

assimilated by the community to help to the definition of a new statistical toolbox plenty able to 

study the complexity of infectious diseases (Lawson, 2006; Mollison, 1995; Waller, 2004). This text 

underlines that the techniques necessary to answer current infectious diseases questions are quite 

different from the standard statistical techniques that are taught in most epidemiological textbooks 

and courses today (Pearce and Merletti, 2006). A sound reflection on what to teach in statistics 

and/or on how to better expose the future epidemiologists to new statistical methods must also be 

performed. In addition, recent advances outside the scope of statistical modeling in numerical 

simulation and mathematical models (as for example agent-based modeling or SEIR models) have 

shown their great utility in studying the complexity of infectious diseases and critically reinforce this 

need. This task appears to us as a necessity if the community wants to equip future epidemiologists 

for the study of the complex dynamics provided by infectious diseases in the next decades. 

This discussion is far from a plea against the traditional models used in epidemiology. Due to 

their simplicity, functionality and robustness, they must continue to be implemented in view to 

provide a first picture of studied phenomena. But the epidemiological community must now be 

aware about the fact that the former are necessary but not sufficient and that the implementation of 

more refined methodologies has to be performed concomitantly to go further in the understanding 

of the dynamic of infectious diseases. However to be largely used, selected new methodologies must 

themselves not fall in the trap of complexity. They have to be designed keeping in mind both 

“simplicity” in use/interpretation and “complexity” of potential phenomena under investigation. 

“Simplexity” paradigm argued that simple interfaces tend to improve the usability and understanding 

of complex systems (Kluger, 2008). Its full application is a challenging task for the statistician 

community in the next decades.  

To conclude, Neil Pearce and Franco Merletti asked the question to know if we are going to 

continue to use the epidemiological methods of the 20th century to address the scientific and public 

health problems of the 21st century (Pearce and Merletti, 2006). Our response is “yes” but a 

concomitant improved use and development of other methods, such as those described here, also 

have to be performed to entirely and efficiently address this task. This is particularly true in the field 

of infectious diseases for which major public health challenges operating at different spatial and 

temporal scales, from the local to upper scale and vice versa will have to be addressed in the coming 

decades. 
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