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Abstract 
 
Follicular lymphoma (FL) results from the malignant transformation of germinal center 

B cells and is characterized by recurrent genetic alterations providing a direct growth 

advantage or facilitating interaction with tumor microenvironment. In agreement, 

accumulating evidences suggest a dynamic bidirectional crosstalk between FL B 

cells and surrounding non-malignant cells within specialized tumor niches in both 

invaded lymph nodes and bone marrow. Infiltrating stromal cells, macrophages, and 

T/NK cell subsets either contribute to anti-tumor immune response, or conversely 

form a tumor supportive network promoting FL B cell survival, growth, and drug 

resistance. This review depicts the phenotypic heterogeneity and functional plasticity 

of the most important FL cell partners and describes their complex interplay. We also 

unravel how malignant B cells recruit and subvert accessory immune and stromal 

cells to trigger their polarization towards a supportive phenotype. Based on these 

observations, innovative therapeutic approaches have been recently proposed, in 

order to benefit from local anti-tumor immunity and/or to selectively target the 

protective cell niche.  
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1. Introduction  
Follicular lymphoma (FL) is the most frequent indolent lymphoma and is considered 

virtually incurable with high response rates to therapy but frequent relapses [1]. 

Progression to aggressive diffuse large B-cell lymphoma (DLBCL) occurs in about 

35% of cases, an event associated with poor outcome [2]. Malignant FL B cells 

express germinal center (GC) B-cell markers such as BCL6 and CD10, have 

somatically mutated immunoglobulin variable genes with ongoing intraclonal 

diversification, and display a gene expression profile of centrocytes, indicating that 

FL results from the malignant transformation of GC-derived B cells [3]. The genetic 

hallmark of FL is the t(14;18) translocation associated with an overexpression of the 

anti-apoptotic protein BCL2, actively repressed in normal GC B cells. However, this 

founder genetic event is detected at a low frequency in most healthy individuals 

within peripheral blood IgM memory B cells, the so-called FL-like cells (FLLC) [4], 

suggesting that additional driver genetic events are required to complete cell 

transformation. Accordingly, genome-wide profiling has recently shed new lights on 

the mutational landscape in FL and delineated a hierarchical model of successive 

genetic events supporting FL tumorigenesis [1, 5].  

Besides the failure of primary FL cells to survive and grow autonomously in vitro, the 

major role of the microenvironment in FL development and evolution has been 

highlighted by several seminal observations. First, like their normal counterpart, 

malignant FL B cells are found admixed with lymphoid stromal cells, macrophages, 

and follicular helper CD4pos T cells (TFH) in GC-like follicles within invaded lymph 

nodes (LN) [6]. In addition, bone marrow (BM) infiltration found in up to 70% of 

patients at diagnosis is characterized by an ectopic differentiation of lymphoid-like 

stromal cells [7] and local enrichment in CD4pos T cells [8] suggesting a critical 

dependence of malignant B cells to this specific supportive cell niche. Despite these 

similarities, some differences in cell composition and organization exist between LN 

and BM niches [8, 9]. In agreement, different subclones could be detected within BM 

and LN, and BM FL cells are characterized by a lower cytological grade and 

proliferation [9-11]. These data support the hypothesis that trafficking in various 

specific microenvironments could contribute to FL clonal selection and molecular 

heterogeneity [12]. Second, several highly frequent genetic alterations are not 

oncogenic per se but favor the crosstalk of FL cells with neighboring cells. Among 

them, mutations in TNFRSF14/HVEM affecting its expression or binding to the 
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inhibitory receptor BTLA could contribute to the maintenance and supportive activity 

of BTLAhi FL-infiltrating TFH [13, 14]. Moreover, more than 90% of FL cases display 

unusual sites for N-linked glycosylation within their immunoglobulin variable regions 

introduced during the somatic hypermutation process (SHM) [15]. Added glycans 

contain oligomannoses that might interact with C-type lectins expressed by myeloid 

cells in the microenvironment, allowing FL cells to receive antigen-independent but 

cell contact-dependent survival signals through their BCR [16]. Finally, several 

studies based on expression profiling and immunohistochemistry have proposed a 

panel of prognostic biomarkers reflecting the number, activation, and/or spatial 

organization of infiltrating immune cells, further emphasizing the central role of FL 

microenvironment [17]. In the landmark study performed on whole tumor biopsies, 

the clinical outcome of FL patients was primarily predicted by molecular features of 

non-malignant cells and not by specific genetic characteristics of tumor B cells [18]. 

However, these studies led to highly contradictory results, in part due to treatment 

heterogeneity, and remained essentially descriptive without transposition of the data 

into more functional and mechanistic approaches.  

Our current knowledge of the relationship between FL B cells and their 

microenvironment has been hindered by four main technical pitfalls: i) the lack of true 

FL B-cell lines; ii) the lack of relevant transgenic mouse model of FL; iii) the difficulty 

to establish FL xenografts in immunocompromised mice in the absence of T-cell help 

and mature secondary lymphoid organs; iv) the heterogeneity and plasticity of the 

numerous cell subsets involved in FL cell growth, associated to their limited survival 

and proliferation in vitro. Nevertheless, several recent studies have provided 

interesting clues illustrating the two faces of FL microenvironment; i.e. its capacity to 

exert anti-tumor activity by itself or by potentiating the efficacy of FL-targeting drugs 

versus its capacity to favor directly and indirectly FL B-cell growth. This review will try 

to integrate them in a comprehensive view of the intricate FL cell niche. A related 

interesting question is how malignant B cells co-opt and divert their 

microenvironment to create a conducive niche in LN and BM and how this niche is 

modified after treatment and support FL relapse. A better understanding of the 

ambivalent role of FL microenvironment would be useful to select the more relevant 

biomarkers for patient stratification and prognosis. It will also make it possible to 

design new microenvironment-targeted treatments, a field that recently gained 

increasing attention in B-cell lymphomas.  
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2. Microenvironment can inhibit FL cell growth 
FL has long been considered as particularly immune responsive based on reports of 

spontaneous regressions, high response rates to monoclonal antibodies (mAb) 

associated with a long-lasting vaccinal effect, and good biological responses to 

vaccination using tumor-specific idiotype or immunogenic neoplastic cells [19-22]. 

Several immune cell subsets could contribute to this anti-tumor activity and provide 

useful biomarkers and potential therapeutic targets.  

 
2.1 Cytotoxic lymphoid cells  

CD8pos T cells are major actors of anti-tumor immunity and an increased CD8pos T-

cell infiltrate is correlated to a better FL prognosis [23]. Similarly, high levels of blood 

CD3pos, CD4pos, and CD8pos predict favorable outcome in patients treated with 

rituximab [24]. Using 3-D tissue imaging, Laurent et al. described a rich infiltrate of 

functional CD8pos cells containing granzyme Bpos lytic granules in the interfollicular 

spaces [25]. T cells at the follicular border form lytic synapse-like structures with FL B 

cells, suggesting a tonic control of malignant cell trafficking and FL progression. 

However, a global CD8pos T-cell exhaustion as well as dysfunctional synapses with 

FL B cells have been reported in biopsy specimens [26, 27]. In addition, intratumoral 

regulatory T cells (Treg) have been shown to inhibit in vitro degranulation and 

cytotoxic activity of infiltrating CD8pos T cells exposed to lymphoma B cells [28].  

Beside antigen-driven cytotoxicity of CD8pos T cells, innate anti-tumor cytotoxicity 

involved essentially NK cells and γδ T lymphocytes (Figure 1). Our knowledge of in 

situ NK cells in FL is limited, and the low frequency of CD56pos cells on malignant 

tissue sections has not been associated with the progression of the disease [29]. 

However, we could hypothesize an induction of NK-DC crosstalk by therapeutic mAb, 

which could trigger tumor antigen-specific T cell immunity [30]. Considering γδ T 

cells, Vγ9δ2 T cells recognize tumor phosphoantigens, like isopentenyl 

pyrophosphate (IPP), and are able to kill in vitro a wide variety of tumor cell lines, as 

well as primary FL B cells [31]. Whereas γδ T cells could migrate into GC within 

normal secondary lymphoid organs [32], immunohistochemistry studies revealed that 

these cells display mainly perifollicular localization and are represented at lower 

density in FL LN tissues, compared to reactive LN [33]. Moreover, those FL B cells 

retaining HVEM expression could inhibit proliferation of BTLApos infiltrating Vγ9δ2 T 
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cells [34]. In agreement, we found a lower in vitro expansion capacity of FL infiltrating 

Vγ9δ2 T cells in response to a combination of their pharmacological agonist 

bromohydrin pyrophosphate (BrHPP) with IL-2 (our unpublished data). FL B cells 

were shown to express ULBP proteins, the ligands for NKG2D activating receptor 

and an increase in circulating ULBP-responsive Vδ1 T lymphocytes have been 

described in FL patients [35]. However, the role of Vδ2neg γδ T cells in FL 

pathogenesis remains poorly understood. 

Finally, NK cells, γδ T lymphocytes, and a subset of CD8pos T cells share the capacity 

to mediate antibody-dependent cellular cytotoxicity (ADCC), an important mechanism 

of anti-tumor immune response. The association between Rituximab clinical 

efficiency and a specific polymorphism in CD16/FcγRIIIa resulting in a modulation of 

affinity for IgG1 revealed the critical role of CD16-expressing cells in the activity of 

this anti-CD20 mAb [36]. 

Overall, cytotoxic cells of both innate and adaptative immunity could efficiently kill 

lymphoma B cells but this antitumor immune response is actively counteracted by 

tumor escape mechanisms affecting immune cell recruitment and activation. 

 

2.3 Myeloid cells  

Tumor-associated macrophages (TAM) exhibit a dual role in FL pathogenesis, as 

underlined by the opposite predictive value of a high TAM content, depending on 

treatment schedule. In fact, high numbers of CD68pos or CD163pos TAM are 

associated with adverse outcome in FL patients treated with conventional 

chemotherapy, whereas this prognosis value is abrogated or even inversed when 

Rituximab is combined with chemotherapy [37-39]. These data suggest that FL TAM 

could favor tumor progression but also contribute to the clinical efficacy of antibody-

based anti-lymphoma drugs (Figure 2). Accordingly, B cell depletion with anti-CD20 

mAb in mouse models prominently depends on macrophages, and more specifically 

on their expression of activating FcγR [40]. In addition, for rituximab-mediated tumor 

clearance in human, antibody-dependent cellular phagocytosis (ADCP) mediated by 

macrophages probably plays a key role beside that of NK-mediated ADCC [41]. In 

particular, Rituximab and Ofatumumab show high direct ADCP capacities in vitro and 

elicit TNF-α release by macrophages, which could indirectly contribute to NK cell 

activation [42]. Interestingly, alternatively activated M2 macrophages were shown to 
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display in vitro a greater phagocytic capacity towards Rituximab-opsonized B cells 

from chronic lymphocytic leukemia (CLL), when compared to M1 proinflammatory 

macrophages [43]. This was associated with a differential regulation of FcγR 

expression by polarizing cytokines. In agreement, several reports demonstrate that 

IL-4 decreases expression of CD64/FcγRIa whereas IL-10 up-regulates all classes of 

FcγR and favors CD32a/FcγRIIa-mediated phagocytosis [44]. FL TAM display a 

CD16negCD32ahiCD64hi phenotype and CD32a is primarily involved in the 

phagocytosis of anti-CD20-opsonized primary FL B cells in vitro (our unpublished 

data). Altogether, the overexpression of both IL-4 and IL-10 within FL 

microenvironment [45] could modulate the TAM phenotype, including expression 

levels of FcγRs and phagocytic properties in the presence of therapeutic antibodies.  

The clinical relevance of ADCP has been further underlined by the demonstration 

that FL and DLBCL B cells overexpress CD47, a transmembrane protein that 

enables evasion of phagocytosis through binding to the inhibitory receptor signal 

regulatory protein (SIRP)-α on macrophages [46]. Accordingly, a blocking mAb 

targeting CD47 restores phagocytic activity of macrophages in vitro and synergizes 

with Rituximab for the elimination of human lymphoma in xenotransplant models in 

NOD-scid Il2rgnull (NSG) mice. It was recently demonstrated that the genetic 

determinant favoring human cell engraftment in NOD-based immunodeficient mouse 

models is a Sirpa gene polymorphism allowing recognition of human CD47 by mouse 

phagocytes and inhibiting human grafted cell engulfment [47]. This observation could 

have potential impact for the development of new xenograft models of FL. 

Altogether, TAM appear as a highly plastic cell subset involved in antitumor 

immunity, in particular through FcγR-related ADCP, a process actively inhibited by 

CD47-expressing malignant B cells. 

 

2.4 Relevance for the design of new therapies  

The demonstration that several immune cell subsets could efficiently trigger FL B-cell 

death is difficult to reconcile with the general lack of clinical response following 

classical antigen-specific immunotherapy strategies. In particular, despite promising 

proof-of-principle studies, the results of phase III randomized trials examining the 

clinical impact of idiotypic vaccination in FL were disappointing [21]. Since idiotypes 

have been shown to be immunogenic, these negative results are likely due to 
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mechanisms of avoiding immune cell recruitment, recognition, and lysis by malignant 

B cells. A better understanding of the relationships between B cells and their immune 

microenvironment will be highly useful to design new treatments that could overcome 

immune escape and enhance clinical efficacy of chemotherapy and antibody-

mediated immunotherapy (Figure 3).  

Such approaches are currently explored with immunomodulators like lenalidomide 

that is evaluated in clinical trials in FL, in combination with Rituximab. Lenalidomide 

has pleiotropic activities including a substantial capacity to activate NK cells, to 

increase T-cell proliferation and function, and to enhance macrophage-mediated 

ADCP of Rituximab-coated tumor cells [48]. The main molecular target of 

lenalidomide is the E3 ubiquitin ligase cereblon that was recently shown to trigger the 

induction of cytokine production by T cells [49]. Interestingly, FL infiltrating CD4pos 

and CD8pos T cells display immunological synapse dysfunction with impaired F-actin 

polymerization [27]. This defect could be reversed after in vitro treatment of both FL 

and autologous T cells with lenalidomide. A recent report pinpoints lenalidomide 

capacity to rescue LFA-1-dependent T-cell adhesion and motility in CLL patients by 

restoring Rho GTPase activity [50]. The relevance of this mechanism for the clinical 

activity of lenalidomide in FL remains to be evaluated.  

Another important research field is the engineering of modified antibodies with 

optimized effector properties [51]. GA101 afucosylated anti-CD20 mAb is currently 

under clinical evaluation in FL and is supposed to mediate greater NK-cell ADCC 

through a higher affinity for CD16/FcRγIIIA that abrogates the negative impact of the 

unfavorable FcRγIIIA polymorphism [42]. However, GA101 recently demonstrated 

inferior ADCP compared with rituximab suggesting that new Fc modifications are 

required to improve specific binding to CD32a and enhance phagocytosis [52]. 

Besides targeting directly tumor cells, a new generation of antibodies has been 

designed to stimulate immune cells in the microenvironment (reviewed in [53]). 

Among them, agonistic antibodies targeting the inducible co-stimulatory molecule 

CD137 could favor ADCC and T-cell activation and enhance the antilymphoma 

activity of anti-CD20 mAb [54]. Similarly, antibodies blocking KIR, the NK inhibitory 

receptor family, could be useful despite their systemic activation of resting NK cells 

[55]. Finally, promising immunological and clinical results have been obtained using 

combination of rituximab, BrHPP, and IL-2 in relapsed FL patients, suggesting that γδ 
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T cells could be activated in vivo and trigger direct cytotoxic activity as well as ADCC 

owing to their inducible CD16 expression [56]. Targeting immune cells to increase 

their effector functions should thus be considered as a promising therapeutic strategy 

in FL, in particular with the aim of optimizing mAb-driven cytotoxicity. 

 

3. Microenvironment can favor FL cell growth 
Besides its potential role in tumor eradication, FL microenvironment revealed 

individual tumor supportive activity of each cell subset, including stromal cells, TFH, or 

TAM, on malignant B-cell recruitment, survival, proliferation, and drug resistance. In 

addition, the FL cell niche should be envisioned as a dynamic network of cell 

interactions where the various cell compartments also contribute to migration, 

expansion, activation, and polarization of each other.  

 

3.1 Stromal cells  

Cancer-associated fibroblasts (CAF) are phenotypically and functionally different 

from their normal counterpart and play a key role in tumor development and 

progression in various cancer models [57]. In FL, LN and BM CAF essentially display 

some features of lymphoid stromal cells, a heterogeneous cell compartment 

organized as three specialized cell niches within normal secondary lymphoid organs 

[58, 59]: i) the mesenchymal stromal network of the T-cell zone is formed by 

fibroblastic reticular cells (FRC), which provide a foothold for antigen delivery, 

immune cell recruitment, motility, interaction, and homeostasis through the release of 

extracellular matrix components, IL-7, VEGF, nitric oxyde, and homeostatic 

chemokines CCL19, CCL21 and CXCL12; ii) follicular dendritic cells (FDC) drive 

CXCL13-dependent attraction of B cells and TFH within the GC where they promote 

the selection of high affinity B cells through the retention and presentation of antigens 

as immune complexes; iii) finally, marginal reticular cells (MRC) deliver small 

antigens to cognate B cells though specific follicular conduits. The main common 

feature of lymphoid stromal cells is to derive from resident local precursors and to 

require both tumor necrosis factor (TNF)-α and lymphotoxin (LT)-α1β2 for their 

maturation and maintenance as immunologically competent cells. In addition, human 

LN contain bona fide mesenchymal stromal cells (MSC) that can be triggered to 

adipocyte, osteoblast, and chondrocyte lineages but also to FRC differentiation in 

response to a combination of TNF-α and LT-α1β2 [60]. However, the exact origin of 
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human lymphoid stromal cells remains elusive in both normal and FL-invaded LN and 

BM. Moreover, FL LN stromal cells displayed altered in situ phenotype compared to 

normal LN, including a uniform and marked activation of transglutaminase expressing 

FRC-like network whereas follicle stromal cells progressively loose classical FDC 

markers [61-63]. The mechanisms and consequences of these phenotypic 

modifications are unknown, in particular because functional analysis of native stromal 

cells remains a highly challenging issue. 

MSC obtained after culture of invaded FL BM (FL-MSC) support more efficiently the 

growth of malignant B cells than MSC obtained from healthy donor BM (HD-MSC) 

[64]. To better understand this result, we compared the gene expression profile of 

FL-MSC and HD-MSC and revealed that FL-MSC in the BM are ectopically 

committed to a FRC-like differentiation. In agreement, FRC-like cells obtained from 

HD-MSC in response to TNF-α and LT-α1β2 priming are more powerful to drive 

malignant B-cell survival than HD-MSC themselves [60]. The tumor-promoting 

capacity of FL-MSC remains to be molecularly understood (Figure 4).  

Stromal cells have been involved in the recruitment of malignant FL B cells through 

the release of CXCL12 and CXCL13 [60, 65]. They also contribute directly and 

indirectly to B-cell survival and drug resistance. Accordingly, interaction of malignant 

B cells and FDC was recently suggested to upregulate MDR1, an ABC transporter 

triggering multidrug resistance in FL B cells compared to DLBCL [66]. Among the 

paracrine supportive factors produced by stromal cells, Hedgehog (Hh) ligands, B 

cell-activating factor of the TNF family (BAFF), IL-15, hepatocyte growth factor 

(HGF), and the adhesion molecule CD106 have all been proposed to contribute to 

the antiapoptotic effect of stromal cells on normal and malignant GC B cells [67-74]. 

Paracrine Hh signaling might also favor stroma-mediated chemotolerance in indolent 

lymphomas by upregulating the drug transporter ATP-binding cassette (ABC)G2 [75], 

whereas adhesion of VLA-4pos FL B cells to CD106pos stromal cells protects them 

from rituximab-induced apoptosis [76]. The role of FDC-derived Wnt5a, Notch 

ligands, and PGE2 in GC-derived lymphomas has not been explored to date. In 

addition, the question of whether stromal cells transfer paracrine information to 

malignant B cells remains unanswered. BM-MSC from patients with multiple 

myeloma release exosomes containing specific microRNA and proteins that support 

the growth and dissemination of malignant plasma cells [77]. It would be important to 
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clarify the role of such microvesicles in the crosstalk between stromal cells and B 

cells in FL.  

Finally, beyond the numerous individual factors suspected to trigger stromal 

protection of neoplastic cells, a recent paper revealed that BM-MSC promote 

gluthatione synthesis and survival of CLL B cells [78]. Given the central place of 

oxydative metabolism in cancer development, it is tempting to speculate that such 

mechanism could also be involved in the supportive activity of stromal cells in FL 

context.  

FL stromal cells are likely organizers of FL cell niche. In particular, FL-MSC 

overexpressed CCL2 that favors the recruitment of monocytes and triggers their 

differentiation into proangiogenic and anti-inflammatory TAM-like macrophages [64]. 

Interestingly, MSC isolated from spontaneous lymphomas in mouse also overexpress 

CCR2 ligands and recruit more macrophages than BM-MSC [79]. In addition, IFN-γ 

primes human and mice FRC to produce the immunosuppressive enzymes 

indoleamine-2,3 dioxygenase (IDO) and nitric oxide synthase 2 (iNOS), respectively 

[80, 81]. Since IFN-γ is upregulated within FL microenvironment [80], such primed 

FRC could thereafter inhibit T-cell proliferation and contribute to tumor immune 

escape.  

In conclusion, stromal cells play a central role in FL pathogenesis through both a 

direct tumor B-cell supportive activity and an indirect effect on the orchestration of FL 

cell niche. 

 

3.2 CD4pos T cells  

Genes related to CD4pos T cells represent a prominent part of the FL specific 

prognostic signature at diagnosis emphasizing the pivotal role of this subset (Figure 

1). Despite a global profile of exhausted T cells associated with a high proportion of 

PD1 and/or TIM3pos cells [26, 82], FL helper T cells also display a more activated 

phenotype than reactive LN helper T cells suggesting a more complex phenotype 

than previously anticipated [83]. In agreement, fully functional PD-1-expressing TFH 

are enriched within FL LN thus challenging the idea of a classical anergic T-cell-rich 

tumor niche [45]. TFH were initially identified as CD4pos T cells expressing CXCR5, 

allowing their localization in follicular areas of secondary lymphoid organs. Recent 

data broadened the definition of this compartment, and defined it as a distinct helper 

T-cell lineage, under the control of BCL6, and playing a central role in GC B-cell 
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localization, selection, and differentiation in normal follicles [84]. Nevertheless, beside 

this unique functional definition, the TFH compartment is more heterogeneous than 

previously assumed, and could be subdivided into several subsets, based on the 

secretion of various cytokines formerly assigned to other helper T cell lineages, i.e. 

IFN-γ, IL-4, or IL-17 shared with Th1, Th2, and Th17 cells; respectively. FL-TFH 

display a specific gene expression profile compared to tonsil-TFH, with an 

overexpression of IL4, IL2, IFNG, and TNF [85]. High levels of IL-4, essentially 

produced by TFH, have been associated with a STAT6 and Erk-dependent FL B-cell 

activation [45, 86] and recent evidences highlighted a potential role of TFH-derived 

CD40L in malignant B-cell survival [85, 87]. Beside this direct protumoral activity, FL-

TFH could also modulate the FL supportive niche through their expression of TNF and 

LTA that sustain differentiation and maintenance of the B-cell supportive lymphoid 

stroma network [60]. In addition, FL-TFH secrete high amounts of IFN-γ, thus inducing 

the expression by stromal cells of the tryptophan-catabolizing enzyme IDO [80] and 

could contribute by their overexpression of IL-4 to the polarization of TAM within the 

malignant cell niche [88]. 

Analyzes of dissociated FL biopsies revealed also a higher frequency of Treg 

compared with non-malignant LN or tonsils [85, 89]. Treg have been experimentally 

described to inhibit the anti-tumor immune responses in FL by suppressing the 

proliferation and activity of intratumoral CD4pos and CD8pos T cells [28, 89]. Elevated 

levels of soluble IL-2Rα have been involved in the inhibitory activity of FL-Treg and 

predict reduced survival in FL [90]. More importantly, an excessive number of 

Foxp3posCXCR5hi follicular Treg (TFR) has been specifically reported in FL neoplastic 

follicles. Strikingly, the follicular localization of Foxp3pos T cells rather than their 

absolute number was recently associated with a worse overall survival, suggesting 

that TFR are the more relevant Treg subset for FL biology [91]. These cells share 

phenotypic characteristics with TFH, and express a higher level of BCL6, the master 

regulator of TFH differentiation pathway, than classical Treg [85]. TFR also strongly 

express the co-stimulatory molecule ICOS, as reported for a subset of Treg with 

strong suppressive functions and able to induce IL-4-secreting T cells [92]. 

Suppressive TFR have also been described in mice. They control the GC reaction by 

limiting TFH number and inhibiting the selection of non-cognate B cells [93]. 

Nevertheless, the targets of the specific FL-TFR subset are currently unknown. It is 
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tempting to speculate that FL-TFR inhibit anti-tumor responses, thus explaining the 

worse prognosis associated with their expansion. However, we could not exclude 

that FL-TFR also contribute to a limitation of the FL-TFH compartment, in agreement 

with a lower proportion of KI67pos FL-TFH, compared to tonsil-TFH (our unpublished 

data). If this hypothesis is confirmed, the high proportion of FL-TFH should result from 

a preferential commitment of activated CD4pos T cells into TFH differentiation pathway, 

or an increased survival of differentiated TFH in response to tumor-specific 

surrounding growth factors, rather than a proliferation of a mature TFH compartment.  

Altogether, these results highlight the role of various CD4pos T-cell subsets in FL B-

cell growth as well as immune escape. In particular, TFH and Treg are strongly 

modulated both quantitatively and qualitatively during FL pathogenesis. 

 

3.3 Myeloid cells  

Although several studies have proposed TAM number as a prognostic marker, 

knowledge of their direct role in B-cell growth and how they cooperate with 

neighboring infiltrating T cells and stromal cells is still rudimentary (Figure 2). BAFF is 

a well-known myeloid-derived B-cell growth factor. Even if BAFF expression is not 

increased in FL patients [94], a polymorphism in TNFSF13B/BAFF was associated 

with an increased risk of developing FL, whereas a germline mutation in 

TNFRSF13C/BAFF-R was specifically detected in 10% of FL patients in association 

with a stronger BAFF-induced signaling [95, 96]. Another potential TAM-mediated 

pathway in FL is BCR signaling. In fact, whereas a recent study suggests that BCR 

from a subset of FL patients recognize self-antigens potentially retained on the 

surface of FDC [97], the majority of FL B cells express mannosylated BCR able to 

interact with C-type lectins DC-SIGN (CD209) and Mannose Receptor (CD206) 

independently of antigens [15, 16]. CD209 and CD206 are known to be upregulated 

on M2 macrophages and on TAM in solid tumors [98], a situation mirrored in FL by 

the overexpression of IL-4 by TFH [45]. FL-TFH also overexpress CD40L that both 

increases IL-15Rα expression on myeloid cells [99] and confers IL-15 sensitivity to B 

cells through induction of STAT5 expression and activation [70]. In agreement, FL-

TAM overexpress IL15 compared to tonsil macrophages and FL B cells overexpress 

STAT5A compared to normal GC B cells. Interestingly, IFN-γ, which is also 

upregulated in FL microenvironment [80], was shown to increase the migration of 

macrophages in response to CCL2 through an upregulation of STAT1 expression 
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[100]. Such activation loop should be important for the recruitment of macrophages 

by CCL2hi FL stromal cells and the presence of STAT1posCD68pos macrophages in 

the vicinity of FL B cells was associated with unfavorable outcome [101]. Finally FL-

TAM could contribute to local immune escape through the release of 

immunosuppressive molecules like IL4I1 [102] but also to angiogenesis. Accordingly, 

increased angiogenic sprouting correlates both with elevated numbers of CD163pos 

macrophages and poor prognosis [103]. In parallel to the description of in situ TAM, 

circulating CD14pos HLA-DRlo suppressive monocytes have been identified in B-cell 

NHL [104] and the absolute monocyte count is inversely correlated with overall 

survival in FL and DLBCL [105]. Overall, myeloid compartment display specific 

features in FL and contribute to FL pathogenesis through the release of tumor growth 

factors, proangiogenic molecules, and immunosuppressive mediators. 

3.4 Relevance for the design of new therapies  

Since interaction of FL B cells with their microenvironment is postulated to be an 

important mediator of drug resistance and disease relapse, targeting B-cell adhesion 

and/or retention within tumor niches has recently emerged as a promising therapeutic 

approach (Figure 3). Anti-VLA-4 mAb natalizumab has been shown to overcome 

stroma-mediated resistance to Rituximab [76]. In addition, disrupting the 

CXCL12/CXCR4 axis using the CXCR4 antagonist perixafor (AMD3100) or cell-

penetrating peptides targeting CXCR4 may augment the effects of anti-CD20 mAb 

[106, 107]. Interestingly, the Btk inhibitor PCI-32765, the PI3K inhibitor GS-1101, and 

Syk inhibitors do not only target BCR signaling but also impair chemokine networks 

and reduce CLL cell retention in protective microenvironment [108-110]. The 

combination of these two properties could be highly useful in FL. Lenalidomide also 

decreases CXCL12 production by stromal cells and alters CLL migration by targeting 

Rho protein activity [111, 112]. Finally, the tyrosine kinase inhibitor imatinib was 

demonstrated to impair xenografted lymphoma B-cell growth through a direct 

targeting of vascular mural cells resulting in loss of tumor vascular integrity [113]. 

This innovative finding paves the way for the introduction of antiangiogenic agents in 

our therapeutic arsenal in FL. 

Besides stromal cells, CD4pos T-cell help is crucial for FL survival and growth and 

represents an interesting druggable target. Antagonist mAb to PD-1 and PD-L1 

showed both a good safety profile and antitumor activity in some metastatic cancers 

[114]. They are supposed to block inhibitory PD-1 signaling on tumor infiltrating T 
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cells or to deplete PD-1pos anergic T cells depending on antibody isotype. In FL, PD-1 

is not only expressed on anergic T cells but also on fully functional TFH and TFR, and 

PD-L1/PD-1 pathway has been recently demonstrated to inhibit proliferation and 

function of both cell types [115, 116]. The use of anti-PD-1 mAb in this specific 

context should thus be highly valuable but would also benefit from extensive patient 

monitoring to unravel the exact target of these drugs. Of course, the recent 

development of other immune-checkpoint inhibitors, such as anti-CTLA4 mAb should 

also be considered for patients with FL.  

Beyond stimulation of effector immune cells, inhibition of protumoral T and stromal 

cells through kinase inhibitors or antagonistic mAb emerges as a valuable 

therapeutic approach in FL. 

 

3. Malignant B cells can subvert their microenvironment  
It is now well-established that tumor cells could subvert their molecular and cellular 

environment to favor their own growth, and to minimize anti-tumor immune response. 

Accordingly, the recruitment and polarization of the various microenvironment cell 

subsets in FL is at least partly governed by the malignant clone (Figures 1 & 4).  

Indeed, FL B cells directly contribute to the differentiation and maintenance of the 

dense FRC meshwork within invaded LN [60]. This FRC commitment is partly 

dependent on TNF-α secretion by malignant B cells, as exemplified for the induction 

of CCL2 in HD-MSC after contact with primary FL B cells. Invasion of BM by 

malignant GC B cells expressing TNF-α and LT-α1β2 likely induces ectopic 

lymphoid-like stromal cells. 

Malignant B cells also modify their chemokine environment through a direct secretion 

of CCL22 that recruits Treg. In addition, they contribute to the polarization of helper T 

cells. In particular, GC-derived lymphomas skew the balance of Th17 versus Treg 

differentiation in favor of an increased frequency of induced Treg, and both CD27-

CD70 and CD28-CD80/CD86 axes are involved in this process [117, 118]. Moreover, 

induction of TIM-3 on anergic T cells relies on malignant B-cell-derived IL-12 [26] 

whereas expression of multiple inhibitory ligands on B cells has been proposed to 

trigger T-cell synapse defect [119]. Despite data suggesting a thymic origin of mice 

TFR in physiological conditions [93], we could not exclude that the specific FL-TFR 

subset emerges at least in part from a tumor-driven in situ conversion of TFH into 

induced Treg. In support of this hypothesis, a strong correlation exists between FL-
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TFH and FL-TFR contents [85]. Whereas the mechanisms of FL-TFH expansion remain 

unknown, they should arise from a preferential GC-recruitment and/or commitment of 

activated helper T cells into TFH. FL B cells could be involved in this process through 

their overexpression of IL-6 and ICOS ligand (ICOS-L), compared to tonsil GC B cells 

(our unpublished data). First, it is now well documented that IL-6, in association with 

IL-21, promotes BCL6 expression in activated CD4pos T cells [120]. Second, ICOS-L 

expression by follicular bystander B cells has been recently demonstrated to control 

the recruitment of activated CD4pos T cells into GC allowing their further 

differentiation into TFH independently of cognate T-B or T-DC interaction [121]. In the 

context of FL, such co-stimulation independent function of ICOS is presumably 

important, as suggested by the fully polyclonal repertoire of infiltrating FL-TFH (our 

unpublished data). Thus, FL B cells are able to trigger recruitment, polarization, and 

maintenance of CD4pos T cells that in turn promote their survival and growth. 

 

4. Concluding remarks 
Genetic and functional studies corroborate the general concept that immune and 

stromal microenvironment plays a proactive role in the development and progression 

of FL and determines clinical behavior and response to treatment. The major goal of 

numerous recent studies was to unravel the different facets of FL cell niche and to 

define how they interact with each other. However several burning questions remain 

unsolved. Longitudinal follow-up of microenvironment composition will be helpful to 

define the kinetic of B cell/microenvironment bidirectional interactions. When do the 

first modifications of LN and BM niches occur and more specifically could some of 

them be detected at the FLLC pre-malignant stage? Comparison of 

microenvironment composition at diagnosis, in the context of residual disease, and in 

relapse would be instrumental to identify the minimal cell niche protecting malignant 

B cells from drug-induced cytotoxicity and to better understand the impact of 

treatments on the various microenvironment cell subsets. The role of the 

microenvironment in the selection of malignant B-cell subclones should be further 

analyzed. In particular, what are the molecular features of BM versus LN FL cells 

depending on their specific cell niche? Altogether, developing new tools to better 

understand microenvironment network may provide innovative tailored strategies to 

disrupt supportive niches whereas taking advantage of anti-lymphoma infiltrating 

cells.  
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Figure Legends 
 

Figure 1. Dual role of infiltrating T/NK cells in follicular lymphoma cell niche 
FL-TFH support malignant B-cell growth through CD40L and IL-4 signaling. 

Conversely, cytotoxic CD8pos T cells, γδ T cells, and NK cells display anti-tumoral 

activity and CD16-mediated ADCC is a major mechanism of action of Rituximab 

mAb. FL B cells subvert antitumor response leading to T-cell immune synapse 

dysfunction and T-cell exhaustion, to a preferential recruitment of Treg, and to an 

imbalance in Treg/Th17 polarization in favor of induced Treg. In addition, malignant 

cells could encourage TFH commitment through their overexpression of ICOS-L and 

IL-6. 

 

Figure 2. Dual role of infiltrating macrophages in follicular lymphoma cell niche 
Tumor-associated macrophages (TAM) contribute directly to malignant B-cell growth 

through BCR, IL-15, and BAFF signaling, and display proangiogenic and 

immunosuppressive properties. Conversely, FL-TAM participate to the therapeutic 

efficacy of anti-CD20 mAb through B-cell phagocytosis, a process inhibited by 

CD47/SIRPα axis, and activation of cognate cytotoxic T cells. FL-TFH cooperate with 

FL-TAM for promoting STAT5 activation in B cells and produce cytokines, including 

IL-4, IL-10, and IFN-γ, involved in TAM migration, polarization, and function. 

 

Figure 3. New drugs to target FL tumor microenvironment 
Lenalidomide exerts pleiotropic activities including activation of NK cells, T cells, and 

macrophage-mediated antibody dependent phagocytosis. Similarly, inhibitors of Btk 

and Syk exhibit broader mechanisms of action than initially anticipated and target not 

only BCR-mediated signal but also B cell/stromal cell interactions. Stromal cell niche 

could also be disrupted using CXCR4 antagonists and anti-VLA4 mAb. Several 

therapeutic mAb, including anti-PD-1, anti-CTLA4, anti-CD47, and anti-CD137, target 

tumor immune cells instead of malignant B cells whereas BrHPP is a specific γδT-cell 

agonist. Finally, imatinib was recently shown to compromise tumor-associated 

microvasculature through a selective inhibitory effect on pericytes. 
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Figure 4. Role of infiltrating stromal cells in follicular lymphoma cell niche 
Stromal cells recruit and support directly the growth of FL B cells through a 

combination of chemokines, adhesion molecules, and cytokines. The role of antigen-

presentation by FDC remains speculative. This protumoral property is strongly 

influenced by the local cytokine context. TNF-α (TNF) and LT-α1β2 (LT) produced by 

malignant B cells and TFH trigger stromal cell engagement into lymphoid stroma 

differentiation whereas IFN-γ could favor production of T-cell inhibitory enzyme IDO. 

Finally, FL stromal cells efficiently recruit TAM through the specific release of CCL2 

chemokine. 
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