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Background. Hippocampal atrophy is a well-known feature of Alzheimer's disease (AD), but sensitivity and specificity of hippocampal volumetry are limited. Neuropathological studies have shown that hippocampal subfields are differentially vulnerable to AD; hippocampal subfield volumetry may thus prove to be more accurate than global hippocampal volumetry to detect AD.

Methods. CA1, subiculum and other subfields were manually delineated from 40 healthy controls, 18 AD, 17 amnestic Mild Cognitive Impairment (aMCI), and 8 Semantic Dementia (SD) patients using a previously developed high resolution MRI procedure. Non-parametric group comparisons and receiver operating characteristic (ROC) analyses were conducted. Complementary analyses were conducted to evaluate differences of hemispheric asymmetry and anterior-predominance between AD and SD patients and to distinguish aMCI patients with or without β-amyloid deposition as assessed by Florbetapir-TEP. Results. Global hippocampi were atrophied in all three patient groups and volume decreases were maximal in the CA1 subfield (22% loss in aMCI, 27% in both AD and SD; all p<0.001). In aMCI, CA1 volumetry was more accurate than global hippocampal measurement to distinguish patients from controls (areas under the ROC Curve = 0.88 and 0.76, respectively; p=0.05) and preliminary analyses suggest that is was independent from the presence of β-amyloid deposition. In patients with SD, whereas the degree of CA1 and subiculum atrophy was similar to that found in AD patients, hemispheric and anterior-posterior asymmetry was significantly more marked than in AD with greater involvement of the left and anterior hippocampal subfields. Conclusions. The findings suggest that CA1 measurement is more sensitive than global hippocampal volumetry to detect structural changes at the pre-dementia stage, although the predominance of CA1 atrophy does not appear to be specific to AD pathophysiological processes.

Introduction

Hippocampal atrophy is a major feature of Alzheimer's disease (AD) [START_REF] Frisoni | The clinical use of structural MRI in Alzheimer disease[END_REF] that strongly correlates with AD neuropathology [START_REF] Jack Cr | Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia[END_REF][START_REF] Bobinski | Neurofibrillary pathology--correlation with hippocampal formation atrophy in Alzheimer disease[END_REF]. Using MRI, this atrophy is detectable prior to the diagnosis of AD, at the stage of amnestic Mild Cognitive Impairment (aMCI) [START_REF] Convit | Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease[END_REF][START_REF] Shi | Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies[END_REF] or even earlier, in asymptomatic elderly up to 10 years before the diagnosis of dementia [START_REF] Smith | Brain structural alterations before mild cognitive impairment[END_REF][START_REF] Tondelli | Structural MRI changes detectable up to ten years before clinical Alzheimer's disease[END_REF]. Hippocampal volume has thus been proposed as a neuroimaging biomarker for early AD diagnosis [START_REF] Dubois | Revising the definition of Alzheimer's disease: a new lexicon[END_REF][START_REF] Albert | The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[END_REF]. Yet, the accuracy of this measurement is limited by a moderate sensitivity and a rather low specificity to AD pathophysiological processes [START_REF] Frisoni | The clinical use of structural MRI in Alzheimer disease[END_REF]. Indeed, hippocampal atrophy has been highlighted in various neurological and psychiatric conditions [START_REF] Geuze | MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders[END_REF], and notably in other neurodegenerative disorders such as semantic dementia (SD) [START_REF] Chan | Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease[END_REF][START_REF] Nestor | Declarative memory impairments in Alzheimer's disease and semantic dementia[END_REF][START_REF] Desgranges | Anatomical and functional alterations in semantic dementia: a voxel-based MRI and PET study[END_REF][START_REF] Galton | Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia[END_REF][START_REF] Davies | The human perirhinal cortex and semantic memory[END_REF].

Interestingly, neuropathological studies have shown a differential vulnerability of hippocampal subfields to AD, with CA1 showing the earliest and strongest changes in terms of both neurofibrillary tangles (NFT) [START_REF] Braak | Neuropathological stageing of Alzheimer-related changes[END_REF][START_REF] Schönheit | Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology[END_REF] and neuronal loss [START_REF] West | Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease[END_REF][START_REF] Rössler | Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer's disease[END_REF]. In vivo measurement of CA1 atrophy may thus constitute a better surrogate marker for AD pathology than global hippocampal volumetry. Recently MRI acquisition and processing techniques have been developed to assess the hippocampus in more detail, including high-resolution hippocampus scans allowing visualization and measurement of hippocampal subfields [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Pluta | In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI[END_REF][START_REF] Wisse | Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment[END_REF].

In this study, we aimed at identifying the pattern of hippocampal subfield atrophy in patients with AD, aMCI and SD using a previously developed technique based on high-resolution 3-Tesla-MRI and adapted delineation guidelines [START_REF] Joie | Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence[END_REF]. In addition we assessed the diagnosis accuracy of these measures, hypothesizing that specific measurement of the most vulnerable subfield(s), e.g. CA1, would be more accurate than global hippocampal volumetry to detect AD-related hippocampal atrophy [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Pluta | In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI[END_REF].

Material and methods

Participants

Eighty-three right-handed native French-speaking participants from the IMAP project [START_REF] Joie | Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence[END_REF] were included in the present study: 40 healthy controls (HC), 17 aMCI patients, 18 AD patients, and eight SD patients (see Table 1). They were all aged over 50 years, had at least 7 years of education and had no history of alcoholism, drug abuse, head trauma or psychiatric disorder.

All patients were recruited from local memory clinics and selected according to corresponding internationally agreed criteria: Petersen's criteria for aMCI [START_REF] Petersen | Mild cognitive impairment as a clinical entity and treatment target[END_REF], NINCDS-ADRDA criteria for probable Alzheimer's disease [START_REF] Mckhann | Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease[END_REF] and Neary et al criteria for SD [START_REF] Neary | Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria[END_REF].

HC were recruited from the community and performed in the normal range on a neuropsychological examination assessing multiple domains of cognition including episodic and semantic memory, executive and visuo-spatial functions, language and praxis.

In addition to this clinically based selection, the majority of aMCI and AD patients underwent a Florbetapir PET scan allowing to classify them as β-amyloid (Aβ)-positive or Aβ-negative as recommended in the new research criteria for AD [START_REF] Dubois | Revising the definition of Alzheimer's disease: a new lexicon[END_REF][START_REF] Albert | The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[END_REF] (see sections 2.3.3 and 2.4 below).

The IMAP Study was approved by regional ethics committee (Comité de Protection des Personnes Nord-Ouest III) and is registered with ClinicalTrials.gov (number NCT01638949). All participants gave written informed consent to the study prior to the investigation.

Neuroimaging data acquisition.

All participants were scanned on the same MRI and PET cameras at the Cyceron center (Caen, France).

MRI data.

A high-resolution proton density-weighted MR sequence, perpendicular to the long axis of the hippocampus (repetition time/echo time = 3500/19 msec; flip angle = 90°; 13 x 2 mm slices with 2 mm gap; in-plane resolution = 0.375 x 0.375 mm) was acquired on a Philips (Eindhoven, The Netherlands) Achieva 3T scanner. A sagittal T1-weighted anatomical image was obtained beforehand using a 3D fast field echo sequence (repetition time/echo time = 20/4.6 msec; flip angle = 20°; 180 x 1 mm slices without gap; in-plane resolution = 1 x 1 mm) for the purpose of PET data preprocessing and Total Intracranial Volume (TIV) measurement (see below).

PET data.

Florbetapir PET scans were acquired on a Discovery RX VCT 64 PET-CT device (General Electric Healthcare) with a resolution of 3.76 x 3.76 x 4.9 mm (field of view = 157 mm). Forty-seven planes were obtained with a voxel size of 2.7 x 2.7 x 3.27 mm. A transmission scan was performed for attenuation correction before the PET acquisition. Participants underwent a 20-min PET scan, starting 50 min after the intravenous injection of ≈ 4 MBq/kg of Florbetapir.

Neuroimaging data processing.

Hippocampal subfield delineation.

Three regions of interest (subiculum, CA1 and "other" subfields -encompassing CA2-CA3-CA4 and the dentate gyrus) were delineated on both hippocampi of all individual high-resolution MRI images, following guidelines developed in the lab and described in full details elsewhere [START_REF] Joie | Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence[END_REF].

These guidelines were based on the anatomical description from an atlas of the human hippocampus [START_REF] Harding | Variation in hippocampal neuron number with age and brain volume[END_REF]. Delineations were performed on slices perpendicular to the long axis of the hippocampus by a single rater, blind to the identity (age, gender, clinical status) of the participants.

Illustrations are provided in Figure 1 (see also Supplementary Figure 1 for further details and additional examples).

Unlike other groups with comparable high-resolution anisotropic images [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Pluta | In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI[END_REF] we delineated subfields along the head and body of the hippocampus (versus in the body only for these previous articles). Yet, because of the difficulty of distinguishing landmarks for subfields delineation in the hippocampal head, we only considered 3 regions of interest (therefore combining CA2-3-4 and the dentate gyrus in the same "subfield") to ensure sufficient reliability and reproducibility (versus 4 or 5 subfields in previous studies [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Pluta | In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI[END_REF]). As previously mentioned [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Wisse | Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment[END_REF], measurements of hippocampal subfields not only rely on landmarks derived from anatomical atlases, but also on arbitrary rules that are fixed by the investigators to reach a compromise between reliability/reproducibility and validity. We acknowledge that existing protocols show differences in their definition of hippocampal subfields but, in the absence of direct comparison between in vivo imaging methods (ideally including a confrontation to neuropathological gold standard), the importance of these variations and their influence on results remains unknown. However, a recently formed initiative led by experts in the field is specifically meant to address this issue and to potentially develop a unified hippocampal subfield segmentation protocol (to know more about this group, visit http://www.hippocampalsubfields.com/ ). Moreover, it is to note that high-resolution scans such as those used here are particularly prone to motion artifacts. To prevent the rejection of a large proportion of individuals from analyses, a procedure was settled to obtain high quality data from all individuals participating to imaging studies in our lab (including, but not restricted to the controls and patients from the present article). Indeed, a visual quality check was performed immediately after or within a few days of the MRI acquisition and was carried out by the same person who analyses the data (RLJ). If image quality was considered insufficient for subfield delineation, the scan was repeated within a few weeks during a second MRI session (this occurred for about 15-20% of healthy controls and 30-40% of the patients included in our total imaging cohort). Rarely, a third scan was proposed. In the end, we failed to obtain an image of sufficient quality in some participants (roughly 5-10% of the controls and 15-20% of the patients) as they could not come back for a repeated scan or because the repeated scan(s) was/were still of insufficient quality; in this case, data were disregarded and excluded from all analyses. The 83 participants included in the present study had high quality data.

Total Intracranial Volume (TIV).

Individual TIV values were obtained from the T1-weighted images using the VBM5 toolbox implemented in the Statistical Parametric Mapping software (SPM5; Wellcome Trust Center for Neuroimaging, Institute of Neurology, London, England).

Florbetapir PET.

PET data were processed as described in reference [START_REF] Joie | Region-Specific Hierarchy between Atrophy, Hypometabolism, and β-Amyloid (Aβ) Load in Alzheimer's Disease Dementia[END_REF]. Briefly, each individual T1-weighted MRI was segmented into gray and white matter using the VBM5 toolbox ( http://dbm.neuro.unijena.de/vbm/vbm5-for-spm5/ ). These segments were used for partial volume effect correction of raw PET data using the PMOD software. Using the Statistical Parametric Mapping (SPM) software, resulting images were coregistered onto corresponding MRI and normalized into Montreal Neurological Institute (MNI) space using the deformation parameters defined from the VBM procedure. The mean Florbetapir value in the cerebellum GM was extracted for each subject from the normalized TEP images. Each Florbetapir image was then divided by its corresponding mean cerebellar value, resulting in Florbetapir-PET SUVr data. The global neocortical Florbetapir-PET SUVr value was then computed for each subject from the Florbetapir-PET SUVr data using a neocortex mask (including all regions but the cerebellum, hippocampus, amygdala and subcortical grey nuclei).

Statistical analyses

Raw volumes of each hippocampal subfield and of the whole hippocampus (corresponding to the sum of the three subfields) were first normalized by the TIV to account for inter-individual variability in head size (normalized volume = 1000 x raw volume / TIV) and then transformed into W-scores, i.e. age and gender-adjusted Z-scores [START_REF] Jack Cr | Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia[END_REF]. W-scores provide information about the difference between a patient's value and the value that would be expected in the control group for his/her age and gender. In the present study, the use of W-score is of particular interest because of the rather wide age range of the participants and significant age difference between aMCI and both HC and SD groups (see Table 1). Due to the relative limited size of the patient groups, Kruskal-Wallis non-parametric analyses of variance (ANOVAs) were then performed on hippocampal subfield and whole hippocampus W-scores, and when a significant effect of group was found (p<0.05), Mann-Whitney U tests were used for pairwise comparisons.

As previous studies reported a stronger hemispheric asymmetry and an anterior predominance of hippocampal atrophy in SD compared with AD [START_REF] Chan | Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease[END_REF][START_REF] Nestor | Declarative memory impairments in Alzheimer's disease and semantic dementia[END_REF], complementary indices were calculated to characterize these gradients within each subfield. First, hemispheric asymmetry was measured as the absolute difference between left and right hippocampal volumes expressed as a percentage of the total volume (100 x |right volume -left volume| / bilateral hippocampal volume). Second, an index of anterior-posterior gradient was calculated as the percentage of each subfield volume located in the anterior hippocampus (100 x anterior volume / total hippocampal volume), with the anterior portion corresponding to the hippocampal head [START_REF] Jack Cr | Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease[END_REF][START_REF] Pruessner | Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories[END_REF][START_REF] Malykhin | Threedimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail[END_REF]. These indices were compared between HC, AD and SD using Kruskal-Wallis ANOVA and Mann-Whitney U tests.

Discriminant analyses were performed to assess the ability of each hippocampal subfield and of the whole hippocampus volume to distinguish i) AD patients from HC, ii) aMCI patients from HC, iii) SD patients from AD. Areas Under the receiver operating characteristic Curve (AUC) of global hippocampus versus subfield volumes were then compared to test the hypothesis that subfield are more accurate than global hippocampal volumetry to discriminate between the groups.

Finally, preliminary analyses were conducted to assess the impact of the presence of Aβ on the different hippocampal volumes. All AD patients (n=18) and 15 patients with aMCI (out of 17) underwent a Florbetapir PET scan and were classified using a previously determined Florbetapir neocortical SUVr of 1.1 (see reference [START_REF] Joie | Region-Specific Hierarchy between Atrophy, Hypometabolism, and β-Amyloid (Aβ) Load in Alzheimer's Disease Dementia[END_REF]). All AD patients were classified as Aβ-positive and 9 aMCI patients (60 % of aMCI patients who underwent Florbetapir-PET) were classified as Aβpositive. Aβ-positive and Aβ-negative aMCI did not differ in age, gender or education (all p-values>0.8). Statistical analyses on hippocampal volumes included both Spearman's correlation between Aβ load and hippocampal atrophy within the 15 aMCI patients, and comparisons between Aβ-positive versus Aβ-negative aMCI, and between each subgroup and HC. For the latter analysis, because aMCI were significantly older than the whole HC group (see Table 1), a subgroup of age, gender and education-matched HC (n=28) was used.

Results

Atrophy of hippocampal subfields in patients.

Comparisons of W-scores are illustrated in Figure 2. Briefly, the volume of the whole hippocampus was significantly decreased in all three patient groups as compared to HC (mean volume loss = -12% for aMCI, -22% for AD and -17% for SD). In aMCI, atrophy was highly significant in CA1 (-22%, p<0.001) and to a lesser extent in the subiculum (-17%, p=0.01). In AD, volume decreases were highly significant (p<0.001) for all three subfields, but atrophy in the other region (-17%) was significantly lower (p<0.005 using Wilcoxon rank-sum test) than in both CA1 and subiculum (both -27%). In the SD group, both CA1 and subiculum volumes were significantly reduced relative to HC (-27% and -24% respectively, both p<0.001). Similarly to the findings in the AD group, comparing degrees of atrophy (expressed as W-scores) between the three subfields in SD showed that both CA1 and subiculum were significantly more affected than the other subfield (both p<0.05 Wilcoxon rank-sum test). None of the volumes differed between AD and SD patients (all p values>0.15). Note that the main results were unchanged when performing comparisons on raw volumes or TIV-normalized volumes instead of age-and gender-ajusted Wscores as presented here (see supplementary figure 2).

Hemispheric asymmetry and anterior-posterior gradient in AD and SD.

The results of the between-group comparisons of the hippocampal indices are reported in Table 2.

Greater hemispheric asymmetry was found in SD patients compared to HC for all volumes (all p values<0.03). Asymmetry was significantly stronger in SD than in AD for the whole hippocampus (p=0.001), subiculum (p=0.02), other (p=0.01) and a trend was found for CA1 (p=0.06).

Finally, the anterior-posterior index was significantly lower in SD compared to both HC and AD for the whole hippocampus, CA1 and subiculum, indicating a predominance of atrophy in the anterior hippocampus in SD.

Evaluation of diagnostic accuracy

For the AD versus HC discrimination, the AUC of all subfields was significantly higher than 0.5 (mean [95% CI]=0.92 [0.85-0.99] for CA1, 0.88 [0.76-1] for subiculum, 0.81 [0.67-0.94] for other) but none of them was significantly higher than that of the whole hippocampus (0.91 [0.78-1]). For the discrimination between HC and aMCI, the AUC of CA1 (0.88 [0.78-0.98]) was significantly higher than 0.5 and higher than the AUC of the whole hippocampus (0.76 [0.60-0.93], p=0.05; see Figure 3) whereas the subiculum AUC (0.74 [0.59-0.90]) was significantly higher than 0.5 but did not perform better than the whole hippocampus, and the AUC for the other subfields was not significantly different from 0.5 (0.53 [0.34-0.72]). Finally, none of the volume measurements allowed to separate AD from SD as none of the AUCs was significantly different from 0.5: 0.51 [0.27-0.74] for CA1, 0.64 [0.43-0.85] for subiculum, 0.69 [0.45-0.94] for other, and 0.69 [0.47-0.90] for the whole hippocampus.

Volume of hippocampal subfields versus neocortical amyloid load in aMCI patients.

A Kruskal-Wallis ANOVA with three groups (HC, Aβ-positive aMCI, Aβ-negative aMCI) was performed on TIV-normalized hippocampal measurements. A significant effect of group was found for CA1 (H=13.8; p=0.001), subiculum (H=5.99; p=0.05) and global hippocampus (H=5.98; p=0.05). Post-hoc analyses revealed that Aβ-positive aMCI had significantly lower CA1 (p<0.001), subiculum (p=0.01) and hippocampal volumes (p=0.01) as compared to HC, while Aβ-negative aMCI only showed lower CA1 volume (p=0.04) as compared to HC, as illustrated in Figure 4. The direct comparison between Aβ-positive aMCI and Aβ-negative aMCI did not show any significant difference (all p values>0.25). Similarly, none of the volumes significantly correlated with Florbetapir neocortical SUVr in the whole group of 15 aMCI (CA1: Spearman's ρ= -0.34, p =0.22; subiculum ρ= -0.26, p=0.34; other ρ= -0.01, p=0.96; whole hippocampus ρ= -0.23, p=0.41). All the results remained unchanged when using W-scores instead of TIV-normalized volumes (data not shown).

Discussion

Using a high-resolution sequence on a 3T MRI scanner, hippocampal subfields were delineated in healthy controls and patients with aMCI, AD or SD. Analyses showed that the pathologies had a differential effect on the hippocampal subfields, with a preferential involvement (ie. stronger and earlier atrophy) of CA1 and subiculum. This pattern was not discriminant at the dementia stage as i) no differences were found between AD and SD and ii) hippocampal subfields did not perform better than the whole hippocampus in discriminating AD from HC. By contrast, at the aMCI stage, CA1 volume loss predominated and was found to better discriminate aMCI patients from HC than global hippocampal volume.

Hippocampal subfield atrophy in AD

The finding of a differential atrophy of the hippocampal subfields in AD, with a stronger and earlier alteration of CA1 and subiculum, is in agreement with neuropathological studies [START_REF] Braak | Neuropathological stageing of Alzheimer-related changes[END_REF][START_REF] Schönheit | Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology[END_REF][START_REF] West | Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease[END_REF][START_REF] Rössler | Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer's disease[END_REF]. For instance, West et al [START_REF] West | Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease[END_REF] reported a reduction in the number of neurons in AD patients compared to HC of 68% in CA1, 47% in the subiculum and 25% in the hilus of the dentate gyrus. The higher vulnerability of CA1 neurons is likely to be at least partly due to the neurofibrillary pathology as the CA1 subfield is the first hippocampal area to be affected by NFT [START_REF] Braak | Neuropathological stageing of Alzheimer-related changes[END_REF][START_REF] Schönheit | Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology[END_REF]. Moreover, several studies have reported a strong negative correlation between neuronal counts and NFT number in the CA1 subfield [START_REF] Fukutani | Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in late-onset sporadic Alzheimer's disease[END_REF][START_REF] Gunten | Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer's disease[END_REF] suggesting that the progression of brain atrophy and NFT are strongly associated [START_REF] Whitwell | MRI correlates of neurofibrillary tangle pathology at autopsy[END_REF].

Using a variety of neuroimaging approaches such as radial atrophy [START_REF] Frisoni | In vivo neuropathology of the hippocampal formation in AD: a radial mapping MR-based study[END_REF], large-deformation highdimensional brain mapping [START_REF] Wang | Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging[END_REF], voxel-based morphometry [START_REF] Chételat | Threedimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry[END_REF] or manual delineation [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF], the predominance of atrophy in CA1 (and to a lesser extent in the subiculum) in patients with clinical AD or aMCI has already been shown in vivo. In the present study, we confirmed this point using a refined methodology in patients with both a clinical diagnosis of AD and a positive Florbetapir PET-scan. Our study showed that all subfields were atrophied at this AD dementia stage and subfield measurements were not more accurate than the global hippocampus in discriminating AD from HC. By contrast, and in agreement with previous volumetric studies [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Pluta | In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI[END_REF][START_REF] Hanseeuw | Mild cognitive impairment: differential atrophy in the hippocampal subfields[END_REF], we showed that subfield measurements were more accurate than global hippocampal volumetry to differentiate aMCI from HC, highlighting the interest of these methods for early AD detection. However, discrepancies exist as regards to the area of largest difference between HC and aMCI patients (CA1 [START_REF] Pluta | In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI[END_REF], CA1-CA2 transition area [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF] or subiculum [START_REF] Hanseeuw | Mild cognitive impairment: differential atrophy in the hippocampal subfields[END_REF]), probably reflecting variations in the anatomical landmarks used for subfield delineation as further discussed in previous publications [START_REF] Wisse | Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment[END_REF][START_REF] Joie | Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence[END_REF] (see the method section 2.3.1 for further discussion).

Comparison of the pattern of hippocampal atrophy in AD versus SD

AD and SD patients did not differ in terms of subfield volumetry. Although the absence of significant difference could be due to a lack of statistical power, preferential atrophy of both CA1 and subiculum were found in both groups and this finding is consistent with a recent surface-based study of the hippocampus in SD [START_REF] Lindberg | Hippocampal shape analysis in Alzheimer's disease and frontotemporal lobar degeneration subtypes[END_REF]. Yet, the pathological substrate of hippocampal atrophy in SD is not clear, notably because patients with SD can present with heterogeneous pathological features [START_REF] Davies | The pathological basis of semantic dementia[END_REF]. Despite this variability, a severe neuronal loss in the CA1 subfield together with a preservation of neurons in the dentate gyrus, consistent with our imaging findings, was reported independently of the histopathological subtypes [START_REF] Davies | The pathological basis of semantic dementia[END_REF].

Contrastingly, hippocampal atrophy differed between SD and AD patients in terms of hemispheric and anterior-posterior asymmetry, in agreement with previous reports [START_REF] Chan | Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease[END_REF][START_REF] Nestor | Declarative memory impairments in Alzheimer's disease and semantic dementia[END_REF][START_REF] Galton | Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia[END_REF][START_REF] Davies | The human perirhinal cortex and semantic memory[END_REF], and we showed that these two gradients were mostly independent of subfields. Previous authors [START_REF] Chan | Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease[END_REF][START_REF] Galton | Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia[END_REF][START_REF] Davies | The human perirhinal cortex and semantic memory[END_REF] hypothesized that this asymmetric nature of hippocampal atrophy in SD could partly explain the intriguing relative preservation of episodic memory in SD as compared to AD [START_REF] Hornberger | Episodic memory in frontotemporal dementia: a critical review[END_REF] in spite of similarly severe hippocampal atrophy [START_REF] Pleizier | Episodic memory and the medial temporal lobe: not all it seems. Evidence from the temporal variants of frontotemporal dementia[END_REF]. According to these authors, the relatively spared hippocampal areas (posterior areas and most of the time the right hippocampus) in SD could therefore be sufficient to support essential episodic memory abilities [START_REF] Chan | Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease[END_REF][START_REF] Galton | Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia[END_REF][START_REF] Davies | The human perirhinal cortex and semantic memory[END_REF]. Alternatively, it has been proposed [START_REF] Nestor | Declarative memory impairments in Alzheimer's disease and semantic dementia[END_REF] that differential alterations of cortical areas that are crucial for episodic memory, such as the posterior cingulate cortex (PCC) that shows a strong hypometabolism in AD but not in SD, are more likely to account for the differential alteration of episodic memory between AD and SD. Yet, these two hypothesis are not necessarily independent as hippocampal atrophy has been shown to induce PCC hypometabolism through a disconnection process in AD [START_REF] Villain | Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease[END_REF]. Besides, the connectivity of the hippocampus varies along its anterior-posterior axis, with the posterior part being more strongly connected to the PCC [START_REF] Poppenk | Long-axis specialization of the human hippocampus[END_REF]. It is thus possible that the predominance of atrophy in the anterior hippocampus in SD at least partly accounts for differences in distant cortical alterations (e.g. the lack of PCC hypometabolism) compared to AD, themselves underlying differences in the cognitive deficits. This would also be consistent with the idea that SD and AD target two large-scale brain networks that would underlie different cognitive functions and differentially include anterior versus posterior hippocampi [START_REF] Ranganath | Two cortical systems for memory-guided behaviour[END_REF].

Relationships between hippocampal subfield atrophy and Aβ in aMCI

Because the presence of Aβ deposition significantly increases the likelihood of having AD pathology in patients with aMCI according to current diagnosis recommendations [START_REF] Dubois | Revising the definition of Alzheimer's disease: a new lexicon[END_REF][START_REF] Albert | The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[END_REF], we also investigated hippocampal subfield atrophy in aMCI patients as a function of Aβ load. We did not find a significant influence of the presence of Aβ on the pattern of hippocampal subfield atrophy as both Aβ-positive and Aβ-negative aMCI showed a predominant atrophy of the CA1 subfield (Figure 4). However, these findings should be considered as preliminary given the small size of the aMCI samples when dichotomized in Aβ-positive and Aβ-negative. Yet, this finding is in line with recent studies showing that AD-type atrophy and/or hypometabolism can be found in both Aβnegative healthy controls [START_REF] Jack Cr | An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease[END_REF] and Aβ-negative MCI patients [START_REF] Prestia | Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease[END_REF]. While it may reflect methodological issues related to biomarker measurements [START_REF] Jack Cr | Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers[END_REF], it is possible that CA1 atrophy in Aβ-negative patients reflect non-AD pathophysiological processes. This would be consistent with the finding of CA1 atrophy in other disorders [START_REF] Jack Cr | Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia[END_REF][START_REF] Gemmell | Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias[END_REF][START_REF] Zarow | Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample[END_REF] and the idea that aMCI in Aβ-negative patients is unlikely due to AD etiology [START_REF] Albert | The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[END_REF]. Alternatively, recent findings suggest that neuronal injury biomarkers known to be closely related to tau pathology such as hippocampal atrophy (see above), may occur independently and possibly prior to Aβ in the course of AD [START_REF] Chételat | Alzheimer disease: Aβ-independent processes-rethinking preclinical AD[END_REF][START_REF] Knopman | Neuronal injury biomarkers are not dependent on β-amyloid in normal elderly[END_REF]. This would rather support hypotheses suggesting that tau pathology could occur independently from Aβ accumulation [START_REF] Small | Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis[END_REF], than the amyloid hypothesis where tau-related neurodegeneration is supposed to appear downstream to Aβ. Further investigations are needed to test these hypotheses but also to replicate our findings regarding the relationships between hippocampal subfield atrophy and Aβ in a larger sample given the limited size of our aMCI subgroups.

It should also be noted that subfield volumetry as performed in the present study only provides approximations of the exact volumes of the hippocampal subfields, based on anatomical landmarks derived from histological atlases (see the method section 2.3.1 for further discussion).

Conclusion

Overall, our findings in AD and SD are consistent with the topography of neuronal loss described in post-mortem studies as well as with previous imaging studies that used different methods. They suggest that hippocampal subfield volumetry is a promising biomarker for early AD detection at a predementia or even presymptomatic stage, especially with the widespread use of high-resolution MR sequences in the last years [START_REF] Mueller | Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Wisse | Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment[END_REF] and the on-going development of automatic subfield segmentation procedures [START_REF] Van Leemput | Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI[END_REF][START_REF] Yushkevich | Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI[END_REF]. Further studies are therefore needed to assess the diagnostic and prognostic accuracies of this novel technique in larger samples and in comparison to other established AD biomarkers. 
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SUPPLEMENTARY MATERIALS

Supplementary figure 1 Additional exemples of hippocampal subfield delineation in 3 patients with Alzheimer's disease (AD), two patients with semantic dementia (SD) and a healthy control. For each individual, different slices are shown with and without annotations to enable a better visualization of the hippocampus.

Supplementary figure 2. Influence of the correction for total intracranial volume and demographic factors on group comparisons.

Abbreviations: HC = healthy controls; aMCI = amnestic mild cognitive impairment; AD = Alzheimer's disease; SD = semantic dementia; TIV = total intracranial volume.

In the upper row, raw volumes were directly compared between groups. On the middle row, volumes were first normalized by the TIV using the following formula: normalized volume = 1000 x raw volume / TIV. On the lower row, TIV-normalized volumes were transformed into W-scores (i.e. age and gender-adjusted Z-scores). This last row shows the same results as those presented in the main manuscript (figure 2) but are presented here for the sake of comparison with the other conditions. Pairwise comparisons were performed with the Mann-Whitney test (t: p<0.10; *: p<0.05; **: p<0.01; ***: p<0.001). Bars represent the median value for each group.