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Abstract

Background: The use of pesticides and the related environmental contaminations can lead to human exposure to various
molecules. In early-life, such exposures could be responsible for adverse developmental effects. However, human health
risks associated with exposure to complex mixtures are currently under-explored.

Objective: This project aims at answering the following questions: What is the influence of exposures to multiple pesticides
on the metabolome? What mechanistic pathways could be involved in the metabolic changes observed?

Methods: Based on the PELAGIE cohort (Brittany, France), 83 pregnant women who provided a urine sample in early
pregnancy, were classified in 3 groups according to the surface of land dedicated to agricultural cereal activities in their
town of residence. Nuclear magnetic resonance-based metabolomics analyses were performed on urine samples. Partial
Least Squares Regression-Discriminant Analysis (PLS-DA) and polytomous regressions were used to separate the urinary
metabolic profiles from the 3 exposure groups after adjusting for potential confounders.

Results: The 3 groups of exposure were correctly separated with a PLS-DA model after implementing an orthogonal signal
correction with pareto standardizations (R2 = 90.7% and Q2 = 0.53). After adjusting for maternal age, parity, body mass index
and smoking habits, the most statistically significant changes were observed for glycine, threonine, lactate and
glycerophosphocholine (upward trend), and for citrate (downward trend).

Conclusion: This work suggests that an exposure to complex pesticide mixtures induces modifications of metabolic
fingerprints. It can be hypothesized from identified discriminating metabolites that the pesticide mixtures could increase
oxidative stress and disturb energy metabolism.
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Introduction

The use of pesticides can lead to environmental contaminations

to various molecules in different environmental media. Several

studies have shown that the proximity to agricultural pesticide

applications may be a source of pesticide exposure in addition to

domestic or dietary sources [1], [2], [3], [4], [5].

In Brittany, more than 60% of the surface area is devoted to

agricultural activities, with a large part (50%) of cereal and corn

crops. In this region in the 2000’s, almost all land areas received at

least four different treatments in order to control annual grasses

(herbicides), fungus or insects proliferation (fungicides and

insecticides). The main classes used in 2006 were chloroacetani-

lides, carbamates, morpholines, triazoles, organophosphorus,

pyrethroids [6]. For some of these, the modes of action of

poisoning in mammals, included human beings are well known:

organophosphorus and carbamate insecticides are able to inhibit

the acetylcholinesterase, leading to an overstimulation of postsyn-

aptic cholinergic receptors [7]; pyrethroid insecticides can modify

the kinetics of voltage-sensitive sodium channels, inducing a

change in the nerve action potential [8]. These effects have been

confirmed in the case of chronic occupational exposure with

moderate levels [9]. Little is known in the case of environmental

and low-doses exposure to complex pesticide mixtures in the

general population and especially in fetuses and infants, who are

considered particularly susceptible to toxicants because of the

development of the organism until the puberty. Using biomoni-

toring tools to assess exposure, several recent studies have

suggested potential impact of low-doses exposure to specific

pesticide compounds (such organophosphorus insecticides) during

pregnancy, on pregnancy outcomes [10], [11] and behavioral and

neuropsychological outcomes [12], [13], [14], or triazine herbi-
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cides on pregnancy outcomes [15]. Other studies have examined

the impact of more complex mixtures on pregnancy outcomes, in

using indicators of agricultural activities: In Brittany (France), Petit

et al. showed an association between a small head circumference

at birth and living in a municipality where peas were grown in

early pregnancy [16]. In Colorado (U.S.A.), Xiang et al. suggested

an association between low birth weight and total crop, corn crop

and sugar beet crop production, using geographic information

system in order to identify the proximity of maternal residence to

agricultural areas [17]. Schreinemachers studied the rate of birth

abnormalities in several U.S. states by comparing counties with a

high percentage of wheat land’s areas and those with a lower

percentage. She showed significant increases in certain birth

malformations (circulatory/respiratory and musculoskeletal/integ-

umentary systems) in high wheat counties [18].

Currently, the identification of biomarkers of exposure, early

effect and disease is of particular concern, with the development of

new high-throughput technologies such as genomics, proteomics

or metabolomics. Metabolomics consists in the study of the nature

and quantity of all metabolites produced by an organism

(including endogenous molecules involved in the growth and

homeostasis of cells as well as by-products of external pollutants). It

has come to be widely used in recent years to identify metabolic

pathways modified by disease, drugs or toxic exposures, as

reviewed by several authors [19], [20], [21]. Unlike genomics or

proteomics, metabolomics provides extensive data about the

phenotype and can be the last step in understanding the

functioning of an organism. In theory, this approach might help

to characterize biological disruptions caused by various stimuli and

environmental factors and thus it could be an integrative tool to

increase our understanding of the mode of action induced by

pollutant exposures. The metabolic changes could be observed

directly in biological fluids, making also possible the direct

identification of biomarkers of complex and low-dose exposure

or early effect in human population. However, in non-experimen-

tal studies the main challenge is to control the high number of

factors affecting the metabolome, in addition to environmental

exposures (lifestyle, diet, drugs…). To our knowledge, only two

epidemiological studies have been interested in the modification in

urinary and blood metabolic profiles associated with human

environmental pollutant exposures. The first one concerned 51

male workers exposed to welding fumes in Taiwan. The study has

shown an increase of metabolites involved in inflammatory and

oxidative tissue injury processes, especially glycine, taurine and

betaine [22]. The second one was interested in urinary metabolic

profiles in 178 human volunteers living near a source of

environmental cadmium pollution [23].

For the first time, the present study performed metabolomics

analyses on urine of pregnant women with contrasted exposure to

pesticide mixtures in order to identify discriminant metabolites

between exposure groups. It is based on 2 hypotheses: the

metabolome could be modified after an exposure to a toxicant [21]

as well as to a low-dose mixture of toxicants; the change of a

metabolic process could lead to a disturbance at the cell-scale,

affecting possibly the functioning of the whole organism [24].

Materials and Methods

Population and sample collection
The INSERM (French National Institute of Health and

Medical Research) ethics committee approved the study proce-

dures. The population selected is issued from the PELAGIE

cohort, which includes 3421 pregnant women in Brittany (France)

enrolled from general population by gynecologists in early

pregnancy between 2002 and 2006. Gynecologists informed them

about the nature of the study and asked them to participate, after

providing written consent. This consent was accompanied by a

letter of information describing the goal of the study, the

consortium, data collection procedures, follow-up after birth

through mailed questionnaires or health examinations. Reference

(Nu902076; 31 may 2002) to the approval of the National

Commission in charge of Data Protection (CNIL) was also

indicated. The right to refuse participation and the fact that this

refusal would not have any consequence on the relation with her

physician was explicitly mentioned. The objective of the

PELAGIE study is to assess the consequences of environmental

exposures (solvents, persistent organic pollutants, pesticides…) on

the pregnancy, birth outcomes and psychomotor development in

infant. A detailed description of this cohort is made elsewhere [15].

At her inclusion during the first trimester of the pregnancy (4th to

15th week), each woman had to return a first morning void urine

sample that she collected and transferred into two vials containing

nitric acid to avoid bacterial degradation. Samples were mailed to

the study laboratory in a pre-stamped package at ambient

temperature, with routine delivery taking from 1 to 3 days. Upon

receipt, the 10 mL samples were frozen and stored at 220uC. In

the same time, data on social and demographic characteristics, diet

and lifestyle were retrieved by questionnaire. At birth, medical

data on health outcomes were obtained.

For this exploratory study, pregnant women were selected

according to 4 criteria as shown in the figure 1. A special attention

has been paid to the comparability of the data: the same year of

inclusion was selected for all the women to consider a similar

likelihood of pesticide exposure according to the agricultural use,

and to avoid the potential variability induced by different duration

of storage of biological samples [25], [26]. The year 2004 was

selected because it corresponds to the higher percentage of

inclusion (36%). Finally, only urinary samples from the same

gestational age were selected to decrease the variability according

to stage of pregnancy suggested in the pilot study (data not shown).

Samples were therefore restricted to the 11th week of gestation,

corresponding to the highest proportion of subjects (almost 26%,

i.e. 86 women).

Identification of exposure groups
We define groups of exposure according to the surface of land

dedicated to agricultural crops in the town of residence of the

pregnant woman. Data on agricultural activities were collected

from the National General Agricultural Census (RGA) between

2002 and 2006. It provides the percentage of area of the

municipality used for agricultural activities according to crop,

including corn, wheat, colza, peas, potatoes, and fresh vegetables

(plus strawberries and melons). These data were matched with the

mother’s municipalities of residence in early pregnancy. Because

cereal crops are widespread in the study region, we classified the

pregnant women in 3 groups according to the percentage of the

surface of land dedicated to cereal crops in their town of residence

in early pregnancy (First, second and third tercile, corresponding

to 0–17%, between .17 and 25% and above 25%). Presence of

other crops in the municipalities has been associated with presence

of cereals, especially peas crop which has been associated with

higher risk of small head circumference according to a previous

study [16].

Metabolomics analyses
Sample preparation. After thawing at room temperature

and vortexing, 500 mL of urine were mixed with 200 mL of

phosphate buffer (pH 7.39) prepared in D2O in which was added
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sodium 3-trimethylsilyl-1-[2,2,3,3,-2H4]-propionate (TSP, 1 mM).

The phosphate buffer is used to minimize variations in chemical

shift values in the acquired NMR spectra due to pH differences.

TSP served as a chemical shift reference and D2O served as a

field-frequency lock for the NMR spectrometer. Each sample was

vortexed and centrifuged for 10 min at 8,000 rpm to remove any

precipitate. Then, 600 mL aliquots were transferred to standard

5 mm - NMR tubes (Norell ST 500, Landisville, NJ) for analysis.

Spectra acquisition and metabolite identification. NMR

spectra of urine samples were acquired at 300 K on a Bruker

Avance DRX-600 operating at 600.13 MHz (Bruker Biospin,

Germany) and equipped with an autosampler and an inverse
1H-13C-15N cryoprobe. One-dimensional 1H NMR spectra were

acquired using a standard pulse sequence NOESY to suppress

residual water resonance. A relaxation delay of 2 s and mixing

time of 150 ms were used. 128 free induction decays (FIDs) were

collected into 32 k data points using a spectral width of 20 ppm

with an acquisition time of 3.36 s, giving a total acquisition time of

7.10 s. 2D homonuclear 1H-1H COSY (correlation spectroscopy)

and 2D heteronuclear 1H-13C HSQC (heteronuclear single

quantum coherence spectroscopy) NMR spectra were also

acquired for selected samples as an aid to spectral assignment,

which was based on matching 1D and 2D data to reference

spectra in a home-made reference database, as well as with other

databases (http://www.bmrb.wisc.edu/metabolomics/; http://

www.hmdb.ca/), and reports in literature.
1H NMR data preprocessing. All free induction decays

were then multiplied by an exponential function with a line

broadening factor of 0.3 Hz prior to Fourier transformation. All

spectra were referenced to the chemical shift of TSP (d 0.00). All

Figure 1. Flowchart of the metabolomics analysis.
doi:10.1371/journal.pone.0064433.g001
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NMR spectra were phase- and baseline-corrected manually using

Topspin (V2.1, Bruker Biospin, Germany). The spectral region

containing residual water and urea resonances (d 4.515–6.495) was

removed and spectra were digitized to 751 buckets corresponding

to 0.01 ppm intervals across the chemical shift range d 0.505–

9.995 using the AMIX software package (V3.9.11, Bruker Biospin,

Germany). Each integrated region was divided by the total spectral

intensity in order to normalize values. This partially removes

concentration differences between urine samples.

Discriminant analysis on urinary metabolites according

to exposure groups. The NMR spectral data were imported

into the SIMCA-P+ software package (version 12.0, Umetrics) for

multivariate statistical analysis. A preliminary PCA (principal

component analysis) was made to remove outliers (n = 3) among

the 86 eligible women according to the 4 criteria mentioned

above. Additionally, we used orthogonal signal correction (OSC)

filtering in order to decrease variability in X-matrix (spectral data)

not correlated with the Y-matrix (exposure groups) [27], [28], that

is confounding factors such as physiological, experimental, and

instrumental factors. Then, filtered data were Pareto-scaled. PLS-

DA method was applied to filtered and Pareto scaled data. In PLS-

DA, linear combinations of NMR buckets are constructed by

maximizing covariance between the Y and X matrices. Then

observations are projected onto a few of these linear combinations.

Cross-validation was used to determine the number of linear

combinations to be included in the PLS-DA model. The quality of

the model was given by the two parameters R2Y (proportion of

explained variance) and Q2Y (predictive ability). Q2 value was

evaluated using a 7-fold cross-validation. A permutation test (200

iterations) was conducted for each PLS-DA model to test for

validity. The spectral regions (buckets) with variable importance in

the projection (VIP) above 2 were selected in this study. A non-

Table 1. Characteristics of the 83 pregnant women included in the metabolomic study by group of exposurea.

Total By group of exposure

Group 0 Group 1 Group 2

(n = 83) (n = 40) (n = 20) (n = 23) p-value

Characteristics No. (%) No. (%) No. (%) No. (%)

Educational Level 0.68b

Middle/high school 12 (14.5) 8 (20.0) 2 (10.0) 2 (8.7)

Baccalaureate degree 22 (26.5) 9 (22.5) 7 (35.0) 6 (26.1)

Post-secondary 49 (59.0) 23 (57.5) 11 (55.0) 15 (65.2)

Age 0.17b

,25 years 7 (8.4) 3 (7.5) 3 (15.0) 1 (4.4)

25–30 years 39 (47.0) 14 (35.0) 9 (45.0) 16 (69.6)

30–35 years 27 (32.5) 15 (37.5) 7 (35.0) 5 (21.7)

.35 years 10 (12.0) 8 (20.0) 1 (5.0) 1 (4.4)

Median [Q1; Q3] 29.3 [27.0; 32.6] 31.5 [26.9; 33.7] 27.8 [26.9; 31.8] 29.1 [27.3; 31.1] 0.15c

Body Mass Index 0.50b

#25 kg/m2 67 (80.7) 30 (76.9) 18 (90.0) 19 (82.6)

.25 kg/m2 15 (19.3) 9 (23.1) 2 (10.0) 4 (17.4)

Missing 1 1

Median [Q1; Q3] 21.4 [20.2; 23.8] 21.3 [20.5; 24.7] 21.0 [19.7; 22.2] 21.9 [20.1; 28.3] 0.30c

Parity (including the child to be born) 0.01b

1 29 (34.9) 17 (42.5) 9 (45.0) 3 (13.0)

2 36 (43.4) 11 (27.5) 9 (45.0) 16 (69.6)

.2 18 (21.7) 12 (30.0) 2 (10.0) 4 (17.4)

Smoking 0.10b

No smoking or ex-smoker 59 (71.1) 30 (76.9) 12 (60.0) 17 (73.9)

Stop smoking in early pregnancy 13 (15.7) 2 (5.1) 5 (25.0) 5 (21.7)

Smoking 10 (12.0) 7 (18.0) 3 (15.0) 1 (4.4)

Missing 1 1

Alcohol consumption 0.84b

No alcohol during pregnancy 71 (85.5) 34 (87.2) 18 (90.0) 19 (82.6)

Occasionally or one glass a day 11 (13.3) 5 (12.8) 2 (10.0) 4 (17.4)

Missing 1 1

aThree groups according to the percentage of the surface of land dedicated to cereal crops in the town of residence in early pregnancy: group 0: 0–17%, group 1: .17–
25% and group 2: .25%.
bp-value of a Fisher exact test.
cp-value of a Kruskal-Wallis test.
doi:10.1371/journal.pone.0064433.t001
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parametric Kruskal-Wallis test with the critical p-value of 0.05 was

further used to determine whether a significant difference of each

metabolite obtained from PLS-DA models existed between at least

two groups. In case of significance, pairwise comparisons were

performed (p-value was corrected to take into account multiplicity

of comparisons). This test was conducted using the R software

(version 2.12.1).

Adjustments for confounding factors
The previous step was used to identify the metabolites of

interest. Polytomous regressions, using spectral data before

filtering by OSC, were used to confirm the relations between

exposure groups and the concentrations of urinary metabolites

previously identified, taking into account individual characteristics

of the women. The dependent variable was the exposure group (3

levels) and results from these analyses were reported as the odds

ratio (OR) and 95% confidence interval (CI) for each group of

exposure (with group 0 as reference) associated with 1 unit increase

of the metabolite (treated in continuous). In these analyses, 1

unit = (area under the pic of the bucket of the metabolite/total

area of the spectrum) * 10000. The literature suggested some

major confounding factors such as age, gender, height or weight,

body mass index (BMI) and lifestyle [29], [30], [31], [32].

Educational level (middle/high school, baccalaureate or post-

secondary level), maternal age (continuous), parity (1; 2; .2), BMI

(continuous), alcohol consumption (no alcohol during pregnancy;

occasionally or one glass a day) and smoking status (non-smoker or

ex-smoker; stopped smoking in early pregnancy; smoker) were

considered as potential confounders and were retained in the

model if the likelihood ratio (LR) test was statistically significant for

at least one metabolite. Age, parity, BMI and smoking status met

this criterion. We used the LR test to select confounders because

this one compare nested models in term of goodness of fit. Two

missing values were replaced with the median value for BMI and

the mode for smoking status. SAS software (version 9.3, SAS

Institute) was used for these analyses.

Results

Table 1 describes the characteristics of enrolled women. Most of

them are 25–35 years old (79.5%) with a BMI#25 (80.7%). The

median maternal age at inclusion was 29.3 years old (range 21.5 –

40.9). 59% have a high educational level (post-secondary). 65%

already have at least one child and 71.1% didn’t smoke while

15.7% stopped during the first trimester. Alcohol consumption was

limited with only 13.3% of women reporting an occasional or

regular consumption (at least 1 glass a day, only 1 woman). Among

the various characteristics studied, only parity differs between the

exposure groups (p-value,0.05, see Table 1). Differences were

also observed for maternal age, BMI or smoking habits, but these

did not attain statistical significance.

The preliminary PCA identified 3 outliers among the 86 eligible

women according to the 4 criteria mentioned in the figure 1. The

first woman has a high concentration of urinary glucose and was

identified as diabetic. The second one has no specific character-

istics compared to the other individuals but a high concentration

Figure 2. PLS-DA score plot from the 1H NMR urinary metabolic profiles from 83 pregnant women. The score plot is the projection of
the observations onto the first two latent variables. The PLS-DA model, constructed on OSC-filtered and Pareto-scaled data, includes 4 latent variables
(N = 83; R2 = 90.7% and Q2 = 0.53). Three groups according to the percentage of the surface of land dedicated to cereal crops in the town of residence
in early pregnancy: purple: group 0: 0–17%, green: group 1: .17–25%; orange: group 2: .25%.
doi:10.1371/journal.pone.0064433.g002
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of hippurate was detected in her urinary sample. A specific dietary

habit (benzoate-rich diet for example) may have contributed to this

high level of hippurate. The last woman did not appear to have

any specific characteristics but her urinary sample was extremely

diluted, which could explain a different spectrum compared to the

other individuals.

A PLS-DA model comprising four latent variables was

constructed on OSC-filtered (eight components removed) and

Pareto-scaled data. The 3 exposure groups are correctly discrim-

inated (R2 = 90.7% and Q2 = 0.53). The first two latent variables

accounted for a high proportion of total variance (71%). Figure 2

shows projection of the observations (the women) onto the two first

principal components (the score plot). This figure shows that the

first group (lesser-exposed, called group 0 and corresponding to a

0% to 17% level of surface area of land dedicated to cereal crops

in the town of residence) is separated from the more exposed

groups (groups 1 and 2) by the first component, while group 1

(cereal .17%–25%) is separated from group 2 (cereal .25%) by

the second component.

More than 60 variables (buckets) were considered important in

the PLS-DA model (VIP.2). Figure 3 shows the correlation

between variables and components. Among them, 17 variables

were statistically significantly different between the first and the

other groups of exposure (1 versus 2 and 3 or 1 versus 3) (Kruskal-

Wallis test, p,0.05). The most statistically significant changes with

OSC data were observed for glycine, lactate, threonine and

glycerophosphocholine (GPC) (on the left of the loading plot) with

an upward trend, and citrate and hippurate (on the right of the

Figure 3. Graphical summary of the correlation between X and Y for the first two components. The correlation between X and Y (w*c) is
represented by the loading plot. The PLS-DA model used was constructed on OSC-filtered and Pareto scaled data (N = 83; R2 = 90.7% and Q2 = 0.53),
from the 1H NMR urinary metabolic profiles from 83 pregnant women differently exposed to pesticides.
doi:10.1371/journal.pone.0064433.g003

Table 2. Urinary metabolites discriminated between the 3 groups of pesticide exposures (assessed from the percentage of the
surface of land dedicated to cereal crops in the town of residence in early pregnancy) with a PLS-DA model including 4 latent
variables on Pareto scaled data (N = 83; R2 = 90.7% and Q2 = 0.53), after an orthogonal signal correction.

Metabolites Chemical shifts (corresponding to the variables) Trends p-values [OSC-data]

Glycine d 3,545 ppm 8 3.50E-6

Threonine d 4,235 ppm 8 3.33E-4

Lactate d 4,095 ppm 8 2.91E-4

GPC d 4,285 ppm 8 5.00E-4

Citrate d 2,665 – 2,545 – 2,525 ppm : 9.72E-6

Hippurate d 7,645 – 7,565 – 7,555 – 3,975 ppm : 6.39E-5

Abbreviation: GPC: glycerophosphocholine. The trends are observed after an OSC filtering. The significance was assessed with a non-parametric Kruskal-Wallis test
(threshold 0.05).
doi:10.1371/journal.pone.0064433.t002
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loading plot), with a downward trend. The metabolites associated

with their p-values are given in Table 2. Trends in crude

associations as estimated by polytomous regressions using spectral

data before filtering by OSC (Table 3) were similar to what was

observed in table 2 except for hippurate. Adjustment for smoking

status, BMI, age and parity, provided trends similar or slightly

increased: upward trends for glycine, threonine, lactate and GPC,

a downward trend for citrate, and no association for hippurate

(Table 3). As an example, compared to exposure group 0 (cereal

#17%), a unit increase in lactate level multiplies the odds of

belonging to exposure group 1 (cereal .17%–25%) and group 2

(cereal .25%) by 1.36 and 1.47 respectively.

Discussion

This work is an exploratory study designed to test whether the

use of metabolomics could help uncover metabolic modifications

related to exposure to complex mixtures. It shows an association

between the modifications of different urinary metabolites in

women in early pregnancy and their exposure to low doses of

complex pesticide mixtures. Five metabolites were identified

having significantly different urinary concentrations according to

the most contrasted exposure groups, after adjusting for maternal

age, parity, BMI and smoking habits. Glycine, threonine, lactate

and GPC were significantly increased while citrate was decreased.

These metabolites are involved in amino-acids metabolism,

oxidation/reduction pathways and mitochondrial metabolism

(citrate cycle) as shown in Figure 4. Glycine is a cytoprotective

agent because it scavenges reactive oxygen species (ROS) and

inhibits inflammatory response. It is also a major inhibitory

neurotransmitter in the central nervous system [33]. According to

previous data showing ROS generation after exposure to

organophosphorous or pyrethroids [34], [35], we hypothesize that

the increase in urinary glycine could result from a protective

mechanism against the oxidative stress induced by a more

complex exposure to pesticides. This oxidative stress may induce

a mitochondrial dysfunction with an impairment of the tricarbox-

ylic acid (TCA) cycle resulting in a decrease in citrate levels. The

observed increase in urinary lactate supports the hypothesis of an

alteration of the energy metabolism [36]. GPC plays an important

role in the structural integrity of cell membranes [37]. Its increase

suggests a protective mechanism against cell damage which could

also be a consequence of the oxidative stress. Threonine plays an

important role in the TCA cycle. Its catabolism in mammals forms

2-oxobutyrate, glycine and acetylCoA [38]. Its increase could be

linked with a disruption in the TCA cycle. But amino-acids such as

threonine join the fetal blood through active transport systems in

the placenta [39]. An increase in urinary threonine could also be

due to an enhancement in plasmatic threonine induced by a

disruption of fetoplacental transfers as has been observed in

mothers delivering very low birth weight infants [40]. This

metabolic change may be a consequence of an adverse effect on

the placenta induced by the oxidative stress.

Pesticide exposure was assessed in an indirect way, according to

the percentage of cultures in women’s towns of residence. There

are some limitations to understanding of the relationships between

residential proximity to agricultural activities and real individual

exposures. However, different studies showed that residential

proximity to agricultural pesticide applications could increase

exposure to pesticides. Gunier et al. showed a correlation between

concentrations of chlorpyrifos, chlorthal-dimethyl, iprodione,

phosmet and simazine in house dust (89 dwellings) and the

proximity of agricultural activities (within 1,250 m). These

concentrations were lower in dwellings without nearby agricultural

use [4]. Bradman et al. studied the determinants of organophos-

phorous exposure in 400 Californian children and showed that

Table 3. Association between urinary metabolite changes in pregnant women and exposure to pesticides (assessed from the
percentage of the surface of land dedicated to cereal crops in the town of residence in early pregnancy).

Metabolite Groups of exposure n Crude OR (95%CI) Adjusteda OR (95%CI) p-value

Glycine 0 40 Ref Ref

1 20 1.25 (1.10; 1.43) 1.29 (1.10; 1.52) 0.002

2 23 1.19 (1.05; 1.35) 1.28 (1.09; 1.50) 0.003

Threonine 0 40 Ref Ref

1 20 1.54 (1.04; 2.28) 1.57 (0.99; 2.51) 0.06

2 23 1.79 (1.21; 2.64) 1.98 (1.21; 3.22) 0.006

Lactate 0 40 Ref Ref

1 20 1.35 (1.11; 1.64) 1.36 (1.08; 1.71) 0.008

2 23 1.38 (1.13; 1.67) 1.47 (1.16; 1.87) 0.002

GPC 0 40 Ref Ref

1 20 1.17 (0.98; 1.40) 1.25 (1.00; 1.55) 0.05

2 23 1.20 (1.01; 1.42) 1.35 (1.07; 1.69) 0.01

Citrate 0 40 Ref Ref

1 20 0.98 (0.97; 1.00) 0.98 (0.96; 1.00) 0.03

2 23 0.98 (0.97 ; 1.00) 0.97 (0.95; 1.00) 0.02

Hippurate 0 40 Ref Ref

1 20 1.00 (0.99; 1.01) 0.99 (0.98; 1.00) 0.27

2 23 1.00 (0.99; 1.01) 1.00 (0.99; 1.01) 0.62

aAdjusted for maternal age, body mass index, parity and smoking status.
doi:10.1371/journal.pone.0064433.t003
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among the 12-month-old infants, the concentrations of dialkylpho-

sphate metabolites (coming from organophosphorus) in urine were

higher when children lived within 60 m of an agricultural field [5].

Rural residence and close proximity to a farm were also found to

be risk factors for pesticide exposure in 190 Chilean children [41].

Therefore, the use of the percentage of cereal cultures in the

women’s town of residence appears to be a good surrogate for the

assessment of complex pesticide exposures. Moreover, preliminary

results of an ongoing study on several women of the PELAGIE

cohort show that the presence of urinary metabolites of fungicides

used in cereal cultures increases with the percentage of these

cultures in the town of residence.

Identification of metabolic changes directly in humans may be

difficult due to the high number of factors influencing urinary

metabolome such as genetics, sex, age, diurnal variation, cultural

trends, diet, lifestyle, stress… [42]). Only a limited number of

confounding factors were taken into account (age, parity, BMI and

smoking status). We noticed that adjustment for these factors did

not attenuate the initial trends observed. The PELAGIE

population is relatively homogeneous in terms of cultural, dietary

trends (women from western France) and age (childbearing age).

Regarding diet prior to urine collection and time of collection, we

can assume that these uncontrolled factors should be evenly

distributed according to exposure group.

In conclusion, this study is a first exploratory work studying the

link between metabolic changes and low-dose/complex exposures

in environmental health. It can be hypothesized from identified

discriminating metabolites that environmental exposure to pesti-

cides could increase oxidative stress and disturb energy metabo-

lism, possibly resulting in disruptions to transplacental exchanges.

These observations could have an impact on the offspring but new

studies on metabolic profile in newborns are needed to confirm

this first hypothesis. Furthermore, an experimental confirmation of

oxidative stress hypothesis could be helpful, and this is planned as

the next step of this investigation.
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