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In all vertebrate species, estrogens play a crucial role in the development, growth, and function of reproductive and nonreproductive
tissues. A large number of natural or synthetic chemicals present in the environment and diet can interfere with estrogen signaling;
these chemicals are called endocrine disrupting chemicals (EDCs) or xenoestrogens. Some of these compounds have been shown
to induce adverse effects on human and animal health, and some compounds are suspected to contribute to diverse disease
development. Because xenoestrogens have varying sources and structures and could act in additive or synergistic effects when
combined, they havemultiplemechanisms of action. Consequently, an important panel of in vivo and in vitro bioassays and chemical
analytical tools was used to screen, evaluate, and characterize the potential impacts of these compounds on humans and animals.
In this paper, we discuss different molecular actions of some of the major xenoestrogens found in food or the environment, and we
summarize the current models used to evaluate environmental estrogens.

1. Introduction

Xenoestrogens are natural or industrial compounds found
in the diet and environment that are capable of mimicking
part of the effects of endogenous estrogens or interfering
with estrogen signaling pathways [1]. Xenoestrogens are con-
sidered endocrine disruptors, also called endocrine disrupt-
ing chemicals (EDCs). The notion of endocrine disruptors
appeared at the end of the 20th century, and these chemicals
were defined as exogenous compounds that interfere with the
signaling pathways of endogenous hormones at the level of
their synthesis, storage, metabolism, transport, elimination,
and binding to their specific receptors [2]. Additionally, EDCs
are characterized by their ability to have deleterious effects on
the health of living organisms and their descendants. EDCs
can have numerous origins, various chemical structures, and
act on various targets at the molecular level (Figure 1 and
Table 1, see also [3, 4]).

Xenoestrogens, such as phthalates, can be extremely
persistent in the environment. Some EDCs, for example,
polychlorinated biphenyls (PCBs), are able to bioaccumulate
in the food chain or in several biologicalmatrices (as fats) and

often exhibit effects at weak concentrations or in combination
[5]. Among the numerous sources of exposure, the ingestion
of water or contaminated food, cosmetics, pharmaceuticals,
industrial exposure, and contact via professional activities
(e.g., pesticides) are the most common. It is important to
underline that the exposure to these compounds can have
particularly critical effects at the fetal and postnatal stages
[6]. Indeed, the development of the nervous system and the
reproductive organs can be severely disrupted at these stages,
as numerous tissues are particularly sensitive to hormonal
regulation.

Many xenoestrogens are synthetic estrogens stemming
from human activity, which, due to their use, can enter
in contact with living organisms or be released into the
environment. For instance, workers in the production of
contraceptive pills were exposed to the potent estrogen
ethinyl-estradiol (EE2) which is capable of being absorbed
by the skin [7]. A correlation was also established between
the massive exposure to pesticide DDT (dichlorodiphenyl-
trichloroethane) by farm laborers and the risks of oligosper-
mia [8]. There is also the notorious example of diethylstilbe-
strol (DES), considered at its discovery as a miracle pill to
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Table 1: Illustration of the structural diversity of estrogenic compounds from diverse origins.
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Table 1: Continued.
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fight against miscarriages and widely prescribed to pregnant
women in the 70’s in France. Exposure to this chemical
in utero induced serious deformities and disorders in the
reproductive system of male and female children [9]. More
recently, an epidemiological study performed in the French
West Indies analyzed the relationship between exposure to
chlordecone and the risk of prostate cancer [10]. Chlordecone
is an insecticide which exhibits estrogenic-like activity, that
was used extensively (from 1973 to 1993) to control the
banana root borer, thus contaminating the foodstuffs and
population for several years. Interestingly, this study showed
a significant increase in the risk of prostate cancer as the
plasma chlordecone concentration increased [10]. Of course,
these molecules are only a few of the numerous molecules
whom estrogenic activities have been demonstrated or are
suspected.

As above mentioned, xenoestrogens are not only syn-
thetic compounds, but there are also numerous natural
molecules in food that exhibit estrogen-mimetic activi-
ties. These natural molecules are mainly phytoestrogens
isoflavones, and the most consumed are genistein and
daidzein; in particular, these two xenoestrogens are contained
in the subproducts of soy and some legumes, fruits, and
nuts. Other groups of phytoestrogens such as flavones,
coumestans, and lignans were also found [11]. Additionally,
certain mushrooms, mosses, or fungi can contain estrogen-
like compounds called mycoestrogens, such as zearalenone
[11].

2. Estrogen Receptor Pathways

The physicochemical characteristics of estrogens, in partic-
ular their liposolubility, allow them to passively enter the
cell through the plasma membrane. The majority of estrogen
effects are mediated by their binding, in the cytoplasm or
directly in nucleus, to estrogen receptors (ERs) which are
expressed in numerous cell types. Two ERs, ER𝛼 (ESR1,
NR3A1), and ER𝛽 (ESR2, NR3A2) were identified in mam-
mals, although numerous splice variants exist (Figure 2(a)).

2.1. Characteristics of ERs. ERs are members of the nuclear
receptor superfamily which also includes the glucocorticoid
receptor (GR), progesterone receptor (PGR), and androgen
receptor (AR). The ability to act as a transcription factor
whose activity depends on ligand binding is a common
characteristic of most nuclear receptors. ERs are modular

proteins that consist of distinct structural and functional
domains. The A/B domain contains the ligand-independent
transactivation function AF-1. The C domain contains the
conserved zinc finger DNA-binding domain (DBD). The D
domain contains nuclear localization signals (NLSs), and,
finally, the E/F domain carries the ligand-dependent transac-
tivation functionAF-2 and the ligand-binding domain (LBD)
[12, 13]. Mostly, the estrogen effects mediated by ER occur
at the transcriptional level of a large number of estrogen-
dependent genes [14–16]. These effects are called “genomic”
actions as opposed to the nongenomic actions of estrogens
that involve cytoplasmic signaling pathways (Figure 2(b)).
These nongenomic effects are rapid effects of estrogens, of the
order of a second or of aminute, which result in the activation
of several intracellular signaling pathways such as MAPK or
PI3K [17]. In addition, numerous studies have described the
cross-talk between the genomic and nongenomic actions of
ER, allowing a fine regulation of several target genes and
increasing the complexity of the estrogenic signalization [18,
19]

2.2. Mechanisms of ER Actions. E2 mediates multiple pheno-
typic changes in cells by binding to its receptors, ERs that
mediate E2 effects through diverse transcriptional mecha-
nisms. Indeed, ERs modulate the expression of E2-target
genes by directly binding to the chromatin at a consensus
DNA sequence, the estrogen response element (ERE), within
the promoter of target genes. This ER-DNA interaction
induces the mobilization of the coregulators necessary for
transcription (Figure 2(b)).This represents the classical path-
way, but numerous E2-sensitive genes do not contain the
ERE. ERs thus regulate transcription by interactingwith other
transcription factors, such as stimulating protein 1 (Sp1) or
activator protein 1 (AP1), which are already bound to the
promoter [20]. Ligand binding to the receptor induces ER
conformational changes. The precise positioning of the helix
H12, dependent on the nature of the bound-ligand, is essential
for the interaction with coregulators and transcriptional
activity of the ER. Thus, the expression of ER-target genes
and ER-mediated cellular functions is dependent on both the
promoter context and the nature of the estrogenic ligands
[21, 22].

2.3. Tissue-Specific ER Expression. ERs are coded by two
different genes localized on two different chromosomes,
chromosome 6 in the locus 6q25.1 for ER𝛼 and chromosome
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Figure 1: Sources of exposure to xenoestrogens. Various natural or synthetic molecules that enter in contact with humans by alimentation
or during professional activities can interfere with estrogenic signaling pathways, explaining the great diversity of origins of the so-called
xenoestrogens, illustrated here.

14 in the connection between loci 14q11.1 and 14q11.2 for
ER𝛽 [23, 24]. The utilization of different promoters results in
multiple variants that code for the same protein, 66 kDa for
ER𝛼 and 55 kDa for ER𝛽, but the use of various promoters
allows a fine tissue-specific regulation of ER expression,
allowing for the modulation of transcript synthesis and
regulating their stability and translational efficiency [25, 26].
In addition, several splice variants were identified. Among
them, ER𝛼-46 and the ER𝛼-36 are the best-characterized
forms. Due to the use of an alternative promoter resulting
in the direct splicing to exon 2 of the ER𝛼 transcript, ER𝛼-
46 is deleted from the N-terminal part of the protein and
lacks the AF-1 function. The ER𝛼-46 isoform can inhibit
the transcriptional activity of ER𝛼-66 in various cell types
[27, 28]. ER𝛼-36 was discovered more recently and lacks
both the N- and C-terminal domains, resulting in a form
that lacks the two transactivation functions [29]. ER𝛼-36 is
capable of acting as a dominant negative form of ER𝛼-66 and
is also found anchored at the plasma membrane where it can
modulate the activation of intracellular signaling pathways,
such as the PI3K/Akt or MAPK signaling pathways.

As a result, various tissues that express the ERs present
very variable expression profiles of both ER subtypes. Thus,
a strong expression of ER𝛼 is observed in tissues related
to female reproduction (ovary, womb, mammary gland);
ER𝛼 is also strongly expressed in men and is the most
expressed ER subtype in the testicle (Leydig cells). ER𝛽 is also
abundantly expressed in ovaries but expressed a little in the
mammary gland. In men, ER𝛽 is expressed in the prostate,
germinal cells, and epididymis. In both sexes, lung, hepatic,
fat, osseous, nervous tissues, and endothelial cells express
both receptors with variable expression levels [30, 31].

2.4. ER Expression during Development. In addition to the
diverse roles of estrogens in different target tissues, they have
also multiple functions during development, particularly
during the development of reproductive tissues such as the
ovaries, uterus, and gonads. Estrogens play roles in the devel-
opment of the brain, as they contribute to neuronal growth

and differentiation [32]. ER knockout in mice demonstrated
key roles for both ER𝛼 and ER𝛽 in gametogenesis. Interest-
ingly, ER𝛼-deficient mice exhibit significantly elevated levels
of testicular testosterone secretion compared with wild-type
fetal mice [32, 33]. The appearance of ERs appears to be
under a spatial-temporally control during development [32].
For instance, the expression of ER𝛼 has been detected in the
developing uterus as early as fetal day 15 in mesenchymal
cells, whereas it appears in the epithelial cells at later fetal
stages and increases during the neonatal period. In the rodent
cerebral cortex, the expression of ER𝛼 is higher in postnatal
life anddecreases considerably during puberty [34].However,
ER𝛽 distribution in the developing brain of mice showed
that ER𝛽 appears mainly in the midbrain and hypothalamus
at E12.5, and its expression increased at E15.5 and E16.5.
Interestingly, the expression of ER𝛽 appears strongly and
widely throughout the brain including the cerebellum and
striatum at E18.5, while very few positive cells could be
detected in the ventricular region [35].

3. Mechanisms of Xenoestrogen Actions

Xenoestrogens can affect the endocrine system at every level.
First, they can disrupt the action of the enzymes involved
in steroidogenesis. For example, a perturbation of aromatase
activity can modify the estrogen/androgen balance and thus
alter the development or the function of reproductive organs,
as was observed with the tributyltin and some other pes-
ticides [36]. Other enzymes of the steroidogenesis can be
impacted (mostly inhibited), as can the enzymes involved
in metabolism of estrogens (Figure 3(a)). For instance, some
PCB metabolites inhibit sulfotransferase, resulting in an
increase of circulating estradiol rates [37]. The transport
of hormones can also be used as the target of certain
compounds capable of interacting with the binding sites of
SHBG (sex hormone binding globulin), thus competing with
endogenous estrogens (Figure 3(b)) [38].

The most studied mode of actions of xenoestrogens is
focusing the ability of these chemicals to bind and activate
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Figure 2: Structure andmechanisms of action of estrogen receptors. (a) ER𝛼 and ER𝛽 have an evolutionary conservedmodular structure.The
percentages of homology between the two forms are presented. The localizations of the ligand-binding domain (LBD) within the E domain
and the DNA-binding domain (DBD) within the C domain are also presented. ERs possess two transactivation functions (AF-1 and AF-2),
each divided into two subdomains which regulate the expression of target genes and contain a nuclear localization signal (NLS). (b) Due to
its lipophilic properties, estradiol (E2) can passively enter the cell, through the lipid membranes. E2 can then bind ERs in the cytoplasm or
the nucleus. ER dimers bind to the chromatin tomodulate target gene expression.This mechanism corresponds to the genomic action of ERs,
but ERs can also exercise nongenomic action, fast, directly in the cytoplasm. Indeed, the cytoplasmic or membrane-bound fraction of ER can
induce, after E2-binding, the activation of intracellular signaling pathways independently or in association with the growth factor pathways.

the ERs in target tissues [21]. However, it is of note that the
two ERs mediate distinct biological effects in many tissues
such as the mammary glands, bone, brain, and vascular
system in both males and females. Therefore, because ER𝛼
and ER𝛽 show partially different tissue distribution and
distinct physiological functions, xenoestrogens could display
agonist or antagonist activity in a tissue-selective manner or
during development. Considering the significant differences
between ER subtypes in structural features and relative
ligand binding affinity, xenoestrogens can induce distinct

conformational changes in the tertiary structure of the
ERs, affecting the recruitment of cofactors differently. These
interactions between ERs and coactivators/corepressors are
critical steps in ER-mediated transcriptional regulation and
consequently the modulation of the expression of ER-target
genes. For example, the phytoestrogen genistein exhibits
an affinity for ER𝛽 that is 20-fold superior to its affinity
for ER𝛼 [39]. Moreover, the genistein effect is often tissue
specific because it depends on numerous factors such as the
expression of specific cofactors, the ER𝛼/ER𝛽 ratio, and the
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Figure 3: Examples of interaction between xenoestrogens and estrogen signaling pathways. (a) Some xenoestrogens, such as tributyltins, can
inhibit aromatase, the enzyme responsible for the conversion of androgens in estrogens, resulting in the perturbation of the androgen/estrogen
balance. (b) Other groups of compounds can interfere with estrogenic signaling by competing with natural estrogens for binding to sex
hormone binding globulin (SHBG), resulting in defects in E2 plasma transport. ((c) and (d)) Interaction between polycyclic aromatic
hydrocarbons (PAHs) and ERE-dependent E2-target gene transcription. (c) Some PAHmetabolites can bind ER, resulting in the recruitment
of ERs at the ERE and, subsequently, in the recruitment of coregulators that modulate the expression of E2 target genes. (d) Some PAH
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hydrocarbon nuclear translocator (Arnt). This transcriptionally active complex can then interact with ligand-unbound ER at the ERE site
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level of expression of certain intracellular kinases, including
cytoplasmic tyrosine kinases. Genistein has been reported to
have proliferative and antiproliferative effects in cancer cells
[40].

Xenoestrogens generally act in 100–1000 folds greater
concentrations than estradiol but can have additive or syn-
ergic effects with endogenous estradiol or when they are
present in combination [5]. Furthermore, the ability of some
xenoestrogens to act as agonists in certain tissues and as
antagonists in the others leads to the development and
use of selective ER modulators (SERMs), in particular for
antihormonal treatments, such as tamoxifen and raloxifene.

Some xenoestrogens can also affect the ER nongenomic
pathways and induce an endocrine disruption [41]. For
instance, a recent study performed on structurally different
xenoestrogens showed that at high concentrations, bisphenol
A (BPA) and diethylstilbestrol (DES) are able to activate ERs
via the activation of MAPK and PI3K in breast cancer cells.
In addition, the activation of PKC by some xenoestrogens has

been observed [42, 43]. Interestingly, PKC has been reported
tomodulate ER𝛼 transcriptional activity [44].Therefore, syn-
ergic or additive effects between these pathways to combine
the activation of ER signaling could be envisaged.

Although the mechanistic studies on the interaction
between dioxin and estrogen produced conflicting results,
several studies reported that the ligands of AhR, such as poly-
cyclic aromatic hydrocarbons (PAHs), can also affect estro-
genic signaling in mammary or uterine cells (Figure 3(c)).
Ohtake et al. [45] showed that an AhR agonist, methyl-
cholanthrene (3MC), is able to activate a reporter gene
containing an ERE without affecting the expression level
of ER. However, when this promoter is activated by estra-
diol, 3MC has an antagonistic effect. Coimmunoprecipita-
tion assays showed that these functional interactions are
correlated with the physical interaction between AhR and
ER. The proposed model (Figure 3(d)) suggests that 3MC
activates AhR, which dimerizes with Arnt. The AhR/ARNT
heterodimer can directly associate with ER that is not ligand
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bound to activate estrogen-sensitive gene transcription by
recruiting the coactivator p300 [45]. This model is consoli-
dated by in vivo experiments performed in themouse. In fact,
the proliferative effect of 3MC on the uterus is observed in
ovariectomized mice, but not in AhR knockout mice. These
studies suggest an original mechanism of activation of ER𝛼
in the absence of estradiol because ligand-activated AhR is
able to cooperate with the ER that is not ligand bound to
activate transcription. However, some metabolites of AhR
ligands, including 3MC, could also behave as partial agonist
on estrogen signaling pathways by direct interaction with
ER𝛼 (Figure 3(a)).

Several mechanisms have also been proposed to describe
the antiestrogenicity of AhR ligands [46]. By binding to AhR,
these compounds could interferewith transcriptionally active
ER/SP1 or ER/AP-1 complexes [47–49]. They can also inhibit
the binding of ER to ERE sites by direct association with
ER𝛼 [45]. The antiestrogenic effects of dioxins could also
be mediated by the reduction of ER𝛼 protein level through
activation of the proteasome [50]. However, AhR-mediated
degradation rates may vary according to the specific cellular
context [46]. Therefore, these interactions should be taken
into account in the interpretations of studies that investigate
the estrogenic effects of AhR ligands, particularly inmixtures.

Similarly, both the potent estrogenic and antiestrogenic
effects of the heavy metal cadmium (Cd) have been reported
in vitro in mammary cell lines, recombinant yeast assays,
or fish hepatocyte cultures and in vivo in the rodent uterus
[51–53]. Although the precise mechanisms underlying the
effects of Cd as an endocrine disruptor remain unclear [54],
two different mechanistic explanations were suggested. Cd
could directly interact with the LBD of ER𝛼, inducing a
conformational change in LBD that favors the interaction
between helix 12 of ER𝛼 with transcriptional coactivators
[55]. Other studies suggested that the interaction of Cd
with the LBD of ER𝛼 induces conformational changes in
the DBD which could inactivate the DNA binding activity
of the receptor, reducing transactivation [51, 53]. However,
cadmium is not the sole heavy metal able to interfere with
estrogen signaling pathways, even if the precise modes of
actions of these metalloestrogens are largely misunderstood
[56, 57].

Because EDC can also modulate hormonal signaling
indirectly via their metabolites, EDC metabolism should be
taken into account in the evaluation and identification of their
mechanisms of action. For instance, the insecticide DDT
and its metabolite DDE (dichlorodiphenyldichloroethylene)
were characterized as weak estrogens in the environment
and were suspected to affect reproduction function in several
animal species [58]. More recently, DDE, which is highly
lipophilic and resistant to biodegradation, was identified as
the compound that induced the feminization of alligators
(i.e., micropenis and various abnormalities of the testes)
from Lake Apopka. These effects are likely mediated by the
inhibition of androgen signaling during the critical develop-
mental window [59]. In fact, althoughDDE shows low affinity
to ERs, it is capable of binding to AR and repressing the
transcriptional activity of this receptor. This antiandrogenic
action of DDE shown in different cell-based assays could

clearly cause abnormalities in the steroidogenic cells of rat
testis and could disturb the development and function of fetal
testis [60–62]

4. Assessment and Quantification Methods,
Biosensors, and Bioassays

In environmental monitoring, there are twomajor questions:
what is the quantity of each pollutant in an environmental
sample, and what is the molecule’s effect on humans and
wildlife? To answer these two questions, several methods
have been developed. These methods have progressed with
the understanding of estrogenic functions at the organismal,
organ, cell, andmolecular levels. Due to this diversity of EDC
actions, evaluation and quantification require physicochem-
ical, biophysical, biochemical, cellular, and whole organism-
based methods.

4.1. Analytical Methods. The most widely used methods for
the quantification of estrogenic compounds are analytical
methods such as high-performance liquid chromatography
(HPLC), gas chromatography/mass spectrometry (GC/MS),
GC-spectrometry of mass coupled (MS/MS), and liquid-
phase chromatography (LC-MS/MS). These methods allow
the extensive identification and quantification of compounds
with estrogenic properties, within solid or liquid samples
[63]. However, these methods are not directly sensitive
enough for the direct measurement of the estrogenic com-
pounds contained in an environmental sample. These meth-
ods need therefore a preconcentration step to increase the
concentration of compounds between 100 and 1000 folds.
Moreover, the preconcentration step is aimed to specifi-
cally extract the estrogenic compound through liquid-liquid,
solid-phase extraction (SPE), solid-phase microextraction
(SPME) or stir bar sorptive extraction (SBSE) [64–69].These
extractions methods are determined by the chemical prop-
erties of the target molecules. The elution leads to specific
concentration of the compound in the adequate solvent for
chromatography analysis. For a technical review see Farré
et al. [70]. Together, these techniques allow for a precise
detection of the compounds with a low limit of detection,
but they do not provide information about the estrogenic or
antiestrogenic properties of these molecules. Furthermore,
these methods target specific molecules which imply that the
estrogenic potential of the molecules of interest was already
identified. However, using bioassays ranging from in vitro
receptor binding assays, tissue culture, and cell-based assays,
and in vivo animal models can overcome most analytical
drawbacks.

4.2. In Vivo Methods for Estrogenic Potency Assessment. The
use of the whole organismmethods presents the advantage of
an in vivo evaluation of the estrogenic potential of molecules
in biological functions or in the expression of markers of
hormonal exposure. These approaches have been developed
in amphibians, fishes, rats, and mice to estimate the estro-
genicity of compounds [71]. The uterotrophic test is based
on the strong proliferative effect that estrogens have in the
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rodent female genital tract. This test is commonly conducted
with measurements of the uterus weight of immature or
ovariectomized rodents. This test has widely been used by
researchers for estrogenic compound evaluation [72, 73] and
has been validated by OECD and the endocrine disrupters
testing assessment group (EDTA) [74]. Other in vivo tests
examine the expression of the vitellogenin of male fishes, by
ELISA or Western blot [75]. The induction of vitellogenin
after exposure to estrogenic compounds has been demon-
strated in several fish species [76, 77]. Transgenic mice and
zebrafish that express an easily quantifiable reporter gene
were also recently developed. These models allow for the
specific expression of estrogen-dependent genes in different
cell types [78–81].

4.3. In Vitro Cell-Based Methods for Evaluation and Quantifi-
cation. In vitro cell-based assays using cell lines offer a good
sensibility but do not allow the determination of the specific
effect of a particular xenoestrogen in an environmental
sample containing several compounds. The use of these
assays in environmental monitoring gives global information
of the estrogenic potency of the sample. Moreover, these
in vitro bioassays do not elucidate the overall effects of
the biotransformation and pharmacokinetics of compounds.
However, these assays provide a method to quickly estimate
the total estrogenicity of a mixture or given compound and
generally require less expensive equipment than the analytical
methods.

Several bioassays have been developed for the estrogenic
potency assessment. The estrogenic actions evaluated by
these methodologies are based on the estrogenic action in
cells, for instance, the proliferation of ER-positive breast
cancer cell lines (MCF7, T47D), known as E-screen [82], and
optimized by several authors to ameliorate detection [82–
85]. Other bioassays are based on the capacity of estrogenic
compounds to bind and activate ER.These assays that induce
an estrogen-regulated gene were previously reported as ER-
CALUX [86], YES assay in yeast [87–89] and various reporter
gene assays [90, 91]. These assays target ERE, SP1, and AP1
regulated genes [22, 92]. Other methods use the differen-
tiation of ER-positive cell lines to evaluate the estrogenic
potency of EDC [93]. Together, these methods permit the
evaluation of estrogenic potency of compounds and, in
some cases when test is sensitive enough, the environmental
quantification of estrogenic compounds [83, 85, 94].

4.4. Biosensor. The termbiosensor appeared in 1962when the
first method was developed for the detection of glucose con-
centration in blood sample thanks to amperometric method
[95]. A biosensor consists of two parts, the biological recog-
nition element and the transducer.The biological recognition
element is able to interact specifically with the target, while
the transducer is able to convert the biological recognition
event into an electrical signal because of physical property
changes (Table 2). Several strategies have been established to
optimize the couple biological transducer [96, 97].

Table 2: Biological recognition elements and transducers usually
used in the development of biosensors.

Biological
recognition
elements

Transducers

(i) Cells
(ii) Membranes
(iii) Nucleic acids
(iv) Protein:

(a) Antibodies
(b) Enzymes
(c) Membrane
receptors
(d) Nuclear
receptors
(e) Peptides

(i) Optical
(a) Fluorescence (BRET, FRET,
fluorescence anisotropy ⋅ ⋅ ⋅ )
(b) Colorimetry
(c) Surface plasmon resonance (SPR)
(d) Reflectometric interference
spectroscopy (RfIS)

(ii) Electrochemical
(a) Amperometric
(b) Conductimetry
(c) Potentiometry

(iii) Piezoelectric
(a) Quartz crystal microbalance (QCM)

(iv) Thermal
(a) Differential scanning
microcalorimetry (DSC)
(b) Isothermal microcalorimetry (ITC).

As detailed in Table 2, there are many possibilities in
the combination of biological recognition element and trans-
ducer. However, in the development of methods for the
evaluation and quantification of estrogenic compounds, the
main biological recognition elements used are as follows:
antibodies against estradiol [98], estrogen receptor (complete
ER protein [99, 100], LBD [101, 102] or recombinant and
genetically modified ER [103–105]), ER dimerization [106],
DNA binding [107–111], and finally the ER interaction with
cofactors. The transducers usually used are the following:
fluorescence anisotropy [112–114], surface plasmon resonance
(SPR) [108–111], reflectometric interference spectroscopy
(RfIS) [102], fluorescence resonance energy transfer (FRET)
[115], and bioluminescence resonance energy transfer (BRET)
[103, 104]. However, the high diversity of the biological
recognition elements and transducers that are usually used
in biosensor methods for the evaluation of estrogenic com-
pounds makes comparison between methods difficult. While
the time of responsiveness from these methods is generally
shorter than with the cellular methods, it is currently not
sensitive enough to use them for environmental detection.
Therefore, for environmental monitoring purposes, a pre-
concentration step is currently needed.

5. Conclusion

The origin and the exposure sources of xenoestrogens are
multiple. They can come from food, products of combustion,
and agricultural and industrial chemicals. Because xenoe-
strogens have varying structural complexity and produce a
great number of metabolites or biodegradation products in
the environment, they exhibit various mechanisms of action.
Moreover, these mechanisms could differ depending on the
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cellular and tissue context. For instance, it has been reported
that the widespread environmental contaminants PAHs have
both estrogenic and antiestrogenic activity [116]. Similarly,
both potent estrogenic and antiestrogenic effects and an
androgen-like effect of Cd have been shown in vivo and in
vitro [51–53].

In addition to the direct actions of xenoestrogens in
primarily exposed organisms which usually result in the
modulation of gene expression and potentially in phenotype
alterations, there is increasing evidence to suggest that EDC
can also act across generations. For instance, a study in a
mouse model showed an increase in uterine adenocarcinoma
in the female descendants (lineage F2) of mice exposed
developmentally to diethylstilbestrol [117]. Parental exposure
to environmental contaminants could thus induce epigenetic
modifications and gene expression alterations that can pass
from one generation to the next, resulting in physiological
changes in their offspring [118]. It has been reported that the
exposure during development to the fungicide vinclozolin
induces a reduction of fertility in treated male animals
that is transmitted through four generations without further
exposure to vinclozolin [119–121]. This pesticide has been
characterized as an antiandrogenic compound, and some of
its metabolites could interact with other steroid receptors
including the receptors for progesterone, glucocorticoids, and
mineralocorticoids. Thus, vinclozolin could interfere with
hormone signaling pathways during development, but it is
currently not known whether the effects of vinclozolin are
mediated by its interference with hormonal signaling during
development [122–125].

These studies exemplify the diversity and complexity of
xenoestrogen effects and the need for the further understand-
ing of the diversity of their molecular actions. In particular,
the effort concerning xenoestrogen effects in epigeneticmod-
ifications at the DNA sequences and chromatin-associated
proteins should be a priority research.

It is important to emphasize that xenoestrogens do
not necessarily mediate their effects by binding to specific
nuclear ERs. Indirect effects can thus be considered. For
instance, modifications on the expression or activity of their
associated protein kinases, enzymes, or transcription factors
necessary for the activity of the specific ER subtypes (DNA
binding, phosphorylation, transactivation, degradation, and
subcellular translocation) [37, 40].

However, identifying the G-protein-coupled receptor
homologue GPR30 as the plasma membrane receptor for
estrogens provides a higher level of complexity to the mech-
anisms of action of these hormones [126]. GPR30 is able
to bind 17𝛽-estradiol and allows fast nongenomic responses
of estrogens such as the stimulation of MAPK pathways,
adenylyl cyclase, or c-fos expression in the breast cancer
cell line SKBR3 which does not express the classical ERs
[127–129]. Notably, several phytoestrogens, such as genistein
and quercetin, or other xenoestrogens such as bisphenol A,
zearalenone, and nonylphenol, have been shown to bind to
thismembrane estrogen receptor [130, 131]. BecauseGPR30 is
expressed in a wide number of cell types, it could potentially
mimic environmental estrogen effects in a great number of
tissues. The further characterization of cellular and tissue

distribution and the mode of action of GPR30 and other
plasma membrane receptors for steroid hormones will likely
contribute to a better comprehension of the xenoestrogen
actions in relation to the important number of physiological
roles played by estrogens.

The assessment of environmental estrogens has greatly
increased in the past decade in different areas such as
the development of biomarkers, cell- and animal-based
bioassays, bioinformatics, and bioanalytical and biosensor
technology [51, 78, 82, 86, 110]. To elucidate the estrogenic or
antiestrogenic properties of suspected compounds, several in
vivo screening approaches, which generally cover the kinetics
and potential degradation of compounds, were developed. A
transgenic mouse model expressing an estrogen-dependent
green Fluorescent Protein (GFP)-based reporter gene consti-
tutes a powerful animal model because it provides a method
to determine the in vivo delivery, stability, and tissue speci-
ficity of the compounds within the mammalian body [79].
More recently, a similar method was adapted to nonmam-
malian vertebrates such as zebrafish [78, 80, 132]. Transgenic
zebrafishes constitute an interesting animal model because
of their rapid and ex-utero development, the transparency
of their embryos, and their small size. While the assessment
of xenoestrogens by in vitro assays does not fully take into
account metabolism and pharmacokinetics, some of these
assays are notably valuable tools for (i) the high specificity
of responsiveness, (ii) the high throughput screening of
large numbers of chemicals, and (iii) the determination of
molecular and cellular actions of the environmental contam-
inants and identification of their signalization pathways and
cofactor and ER selectivity. Therefore, the combination of in
vivo and in vitro approaches is necessary to obtain a better
understanding of the molecular actions of xenoestrogens.
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[28] G. Penot, C. Le Péron, Y. Mérot et al., “The human estrogen
receptor-alpha isoform hERalpha46 antagonizes the prolifer-
ative influence of hERalpha66 in MCF7 breast cancer cells,”
Endocrinology, vol. 146, pp. 5474–5484, 2005.

[29] Y. W. Zhao, X. Zhang, P. Shen, B. W. Loggie, Y. Chang, and T. F.
Deuel, “Identification, cloning, and expression of human estro-
gen receptor-𝛼36, a novel variant of human estrogen receptor-
𝛼66,” Biochemical and Biophysical Research Communications,
vol. 336, no. 4, pp. 1023–1027, 2005.

[30] H. Shi, H. Shigeta, N. Yang, K. Fu, G. O’Brian, and C. T.
Teng, “Human estrogen receptor-like 1 (ESRL1) gene: genomic
organization, chromosomal localization, and promoter charac-
terization,” Genomics, vol. 44, no. 1, pp. 52–60, 1997.

[31] P. T. K. Saunders, “Oestrogen receptor beta (ER𝛽),” Reviews of
Reproduction, vol. 3, no. 3, pp. 164–171, 1998.

[32] J. F. Couse and K. S. Korach, “Estrogen receptor null mice:
what have we learned and where will they lead us?” Endocrine
Reviews, vol. 20, no. 3, pp. 358–417, 1999.

[33] G. Delbès, C. Levacher, C. Duquenne, C. Racine, P. Pakarinen,
and R. Habert, “Endogenous estrogens inhibit mouse fetal
leydig cell development via estrogen receptor 𝛼,” Endocrinology,
vol. 146, no. 5, pp. 2454–2461, 2005.

[34] M. E. Wilson, J. M. Westberry, and A. L. Trout, “Estrogen
receptor-alpha gene expression in the cortex: sex differences
during development and in adulthood,” Hormones and Behav-
ior, vol. 59, no. 3, pp. 353–357, 2011.

[35] X. Fan, H. J. Kim, M. Warner, and J. A. Gustafsson, “Estrogen
receptor 𝛽 is essential for sprouting of nociceptive primary
afferents and for morphogenesis and maintenance of the dorsal
horn interneurons,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 104, no. 34, pp.
13696–13701, 2007.



International Journal of Endocrinology 11

[36] D. D. Heidrich, S. Steckelbroeck, and D. Klingmuller, “Inhi-
bition of human cytochrome P450 aromatase activity by
butyltins,” Steroids, vol. 66, no. 10, pp. 763–769, 2001.

[37] M. H. A. Kester, S. Bulduk, D. Tibboel et al., “Potent inhibition
of estrogen sulfotransferase by hydroxylated PCB metabolites:
a novel pathway explaining the estrogenic activity of PCB’s,”
Endocrinology, vol. 141, no. 5, pp. 1897–1900, 2000.
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