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Abstract 

 

Quantitative measurement of cerebral blood flow using QUIPSS II pulsed arterial spin 

labeling relies on the assumption that the time between label and QUIPSS saturation is shorter 

than the natural temporal bolus width. Yet, the duration of the bolus of tagged blood spins 

entering the region of interest may vary across subjects due to physiological differences in 

blood velocity or vessel geometry. We present a new technique, Bolus Turbo Sampling 

(BoTuS), to rapidly measure the duration of the inflowing bolus. This allows optimizing the 

ASL acquisition for each subject to ensure reliable quantification of perfusion while 

maximizing SNR by avoiding the use of unnecessarily short label durations. The repeatability 

of this technique is evaluated and its validity assessed by comparison with ASL data acquired 

at variable TI1 and by testing subjects at different physiologic states. 

 

  



Introduction   

 

Arterial Spin Labeling (ASL) is a quantitative MRI method to non-invasively measure 

cerebral blood flow (CBF)[1]. The longitudinal magnetization of water spins in arterial blood 

is inverted in the feedings arteries and subsequently the flowing tagged spins are imaged in 

the region of interest after a certain delay (TI2). ASL methods can be divided into continuous 

and pulsed ASL (PASL) techniques depending on the way spins are tagged. PASL is widely 

used in clinical research protocols due to its ease of implementation, its lower specific 

absorption rate (SAR) and the absence of need for specific coils. The ASL signal depends not 

only on CBF but also on factors such as magnetization at equilibrium, tagging efficiency, 

temporal width of the bolus of tagged spins (�) and the transit time of blood from the label 

slab to the imaging slice[2]. The QUIPSSII[3] and Q2TIPS[4] sequences aim to eliminate 

sensitivity to bolus duration and transit times by saturating the longitudinal magnetization of 

labeled spins remaining in the label region after a delay TI1. This delay, if shorter than the 

natural bolus duration, defines the temporal width of the bolus. However, if the saturation is 

applied too late, the actual temporal width of the bolus is shorter than TI1, leading to errors in 

the quantification of CBF from the ASL signal[5].  

One response to this issue are multi-TI ASL techniques like QUASAR[6] or Bolus-tracking 

ASL[7]. Since images are acquired at different inversion times, transit delay and bolus 

duration can be obtained and accounted for by fitting model functions to the ASL signal. 

However, multi-TI acquisitions require significantly longer acquisition times or limit the 

spatial coverage available, and require more sophisticated analysis techniques to obtain robust 

CBF maps. 

Previous single-TI studies have tried to use optimal values for the saturation delay TI1, fixed 

for all subjects in a study. However, its dependence on patient population, geometrical label 



width and position of the label pulse implies that this optimization may need to be performed 

for each specific study[8]. Furthermore, if quantitative CBF measurements are to be 

guaranteed, the shortest natural bolus duration occurring in the patient population dictates the 

choice of the TI1 for all subjects, leading to a loss in sensitivity in subjects with longer label 

durations. 

The aim of this study is to validate a new technique (BoTuS, for Bolus Turbo Sampling) to 

measure the natural bolus duration � in each subject and thus to optimize the TI1 parameter 

individually[9], [10]. This technique directly traces the bolus of the tagged spins for about 

three seconds after the application of the tag pulse, with a temporal resolution of fifty 

milliseconds. The initial shape of the bolus of the tagged spins is modeled as a boxcar 

function with flow through the vasculature modeled as a Gaussian dispersion of the tag in 

time[11], a modified version of the Hrabe-Lewis model[12], [13]. 

 

Methods 

 

For this study, a total of thirteen healthy volunteers (age 23-40 years, five female) were 

scanned on a 3-T Philips Achieva TX whole body scanner using whole-body RF transmit and 

8-channel head receive coils. The institutional review board approved the protocol and all 

subjects gave prior written consent to participate in the study. During all acquisitions we 

recorded physiological parameters of our subjects (EtCO2, SpO2, respiratory frequency, heart 

rate) to verify that the subjects stayed in the same physiological state. The entire protocol 

consisted of two parts: 1) the measurement of the shape of the bolus using the BoTuS 

technique, performed twice under baseline physiologic conditions, once at the beginning and 

once towards the end of each session in order to assess repeatability, and performed once 

during globally increased CBF under hypercapnia at the end of the session 2) a different 



measurement of the natural duration of the bolus from multi-TI1 data, to obtain an 

independent measure of bolus width. 

 

BoTuS protocol 

 

The purpose of this part of the study was to assess the feasibility and the repeatability of the 

BoTuS technique. The aim of this sequence is to rapidly measure the bolus shape of the 

tagged spins entering our region of interest (ROI). The BoTuS sequence consists of a 

PICORE[3] tagging scheme (tag width=200 mm, label gap=15 mm) immediately followed by 

a rapidly repeated EPI read-out on one axial slice just above the Circle of Willis scanned 

every 50 ms until TI=2900 ms (Figure 1a). Acquisition parameters were: flip angle=90°, 

TE=19 ms, EPI BW=3525 Hz, voxel size=4*4*5 mm, NA=10 ctl-tag pairs, total scan 

duration=1’18”. The 90° flip angle assures that the signal is dominated by fresh spins entering 

the slice between consecutive acquisitions. At a TR of 50 ms in a 5-mm slice, blood in the 

arteries crossing the slice is fully replaced at flow speeds above 10 cm/s. This is long enough 

to be sure that fresh blood arrives between subsequent EPI acquisitions in the major feeding 

arteries of the brain (VPCA > 20cm/s[14]). The mean difference image from the 10 control-tag 

pairs shows the inflowing bolus in large vessels at each TI. During the protocol we acquired a 

total of three BoTuS datasets. Two were acquired at baseline physiologic conditions separated 

by 40 min to test for repeatability. We also tested the capacity of the BoTuS sequence to 

detect the global flow differences after a vasodilator paradigm using increased fiCO2 (8% 

CO2, 21% O2, balance N2 administered at approximately 12 l/min via a non-rebreathing face 

mask). We acquired the hypercapnia BoTuS dataset during CO2 inhalation, shortly after the 

second baseline BoTuS dataset.  

MATLAB
®

 (The Mathworks, Inc., Natick, MA, USA) was used for the post-processing of the 



data. The mean difference between control and tag images was calculated to obtain a vascular 

ASL signal map at each TI. Using the Brain Extraction Tool (bet2) from FSL[15] data from 

non-brain tissue were eliminated. To automatically select voxels with arterial signal, four 

large regions approximately corresponding to anterior cerebral artery (ACA), posterior 

cerebral artery (PCA), and left and right middle cerebral artery (MCA) vascular territories 

were defined (Figure 1b). The area under the bolus curve (AUC) was computed for each 

voxel and voxels with at least 20% of the maximal AUC in each territory were selected. The 

cluster of connected voxels with the highest cumulative AUC in each of the four vascular 

territories was retained as ROI for the subsequent analysis. We fitted the bolus in each voxel 

from each ROI with the model of Ozyurt [I] based on a modified version of Hrabe-Lewis 

model to account for the dispersion of the labeled bolus[11] (Figure 1c):  

 

[I]   

 

where A is an amplitude factor, T1B is the T1 of the arterial blood, � is the natural width of the 

bolus of tagged spins, �t is the transit delay between label region and imaging slice and k is 

the dispersion constant. A four-parameter fit was performed using the Levenberg-Marquardt 

algorithm[16], adjusting A, �, �t and k on a per-voxel basis. 

After averaging the model curves from each voxel of the ROIs, we extracted the full width at 

half-maximum from the average bolus model curve, taking into account the T1 decay 

(Figure 1c). We thus obtain a value of the bolus width for each of the four ROIs from each 

BoTuS dataset. 

 

Multi-TI1 ASL protocol  

 



In order to independently measure the duration of the bolus of labeled blood, we measured 

and analyzed the ASL signal as a function of TI1, at constant TI2. The ASL signal in a 

QUIPSS II sequence is directly proportional to the quantity of labeled blood that leaves the 

label region prior to TI1. Blood flow can be assumed to be constant during the TI1 period, if 

signals are averaged over many repetitions that are not synchronized to cardiac phase[17]. If 

TI1 is shorter than or equal to the natural duration of the bolus, the ASL signal increases 

linearly as a function of TI1. For longer TI1 delays, the ASL signal is independent of TI1, as 

all labeled blood has left the label region prior to the saturation pulse. This provides an 

independent means of measuring the natural duration of the bolus of labeled spins. More 

standard multi-TI2 ASL signal measurements also provide information about the label width, 

but they depend in addition on transit delay, which makes the data less robust to analyze. 

We acquired a series of 12 PASL datasets varying the TI1 from 200 ms to 1300 ms in 100 ms 

increments in a Q2TIPS sequence in randomized order. ASL acquisition parameters were: 

EPI single shot images, voxel size [4-4-5 mm], 14 slices, 30 pairs of images, tag 

width=200 mm, label gap=15 mm, TE=24 ms, total acquisition time ~40 min. The minimum 

TI2 was fixed to 1800 ms. TR and TI2 were mostly independent of TI1, but needed to be 

adapted for the shortest and longest TI1-values due to sequence timing constraints. The exact 

parameter values used are listed in Table 1. For subjects 11-13 we added measurement points 

at TI1= 1600 and 2000 ms and used a SENSE factor 2.5 with a TE of 19 ms. The first slice of 

the ASL acquisitions is the same as the BoTuS slice (Figure 2a). We acquired a high-

resolution T1-weighted structural image to obtain grey and white matter masks using SPM8 

(3D GRE TR=8.1 ms, TE=3.8 ms. voxel size [1-1-1.3 mm], 256 mm field of view, 100 

contiguous sagittal slices).  

All images were realigned, coregistered to the anatomic image and normalized to the MNI 

ICBM atlas using SPM8 software (SPM, Wellcome Department of Imaging Neuroscience, 



http://www.fil.ion.u-cl.ac.uk/spm/). Control and label images were subtracted. Data acquired 

at a TI2 different from 1800 ms were corrected for T1-decay assuming an arterial blood T1 of 

1700 ms[18]. We calculated the average ASL data from the grey matter in MCA, ACA and 

PCA territories, for each of the 12 acquisitions (Figure 2b). We then plotted the ASL signal as 

a function of the TI1 and fitted it with the model of Ozyurt integrated over time. To determine 

TI1,max, the highest TI1 acceptable for ASL data acquisition according to the multi-TI1 data, 

we located the point beyond which the model curve was outside a 10% margin around the 

initial linear slope (Figure 2c). 

 

Results   

 

BoTuS protocol 

 

The acquisition time of the BoTuS sequence is 78 seconds. Subsequently, about 2 minutes of 

processing are required to obtain the bolus width in the four vascular territories. From the 104 

measurements we made under baseline physiologic conditions, 12 were excluded due to an 

insufficient quality of fit (R
2
<0.9). Capnia remained constant throughout all acquisitions 

under baseline condition. 

The differences between the bolus width in the left and right MCA and the ACA for our 13 

subjects are not statistically significant (right MCA=(708±121) ms; left MCA=(743±116) ms; 

ACA=(811±156) ms - mean±std), with a higher inter-individual variability in the ACA 

territory. However, we measured significantly longer bolus duration in the PCA territory: 

(1094±211) ms. The mean bolus widths for right and left MCA territories for each subject are 

spread from 550 ms to 977 ms.  



We tested the repeatability of the technique by measuring the bolus shape twice, at an interval 

of 40 minutes. The repeatability is good as shown in the Bland-Altmann[19] scatter-plot (Fig 

3). One subject out of thirteen showed a difference to mean exceeding the 2�-interval. The 

mean difference between the two measurements is significantly different from zero, which 

implies the presence of an order-effect. 

The repeatability coefficient[19] for the measurement of the average bolus width in the right 

and left MCA territories is 75 ms, that is, the absolute difference between two repeated 

measurements is expected to be smaller than this value in 95% of the cases. With a mean 

bolus width of 728 ms in right and left MCA territories for our 26 measurements, this 

represents a difference of 10% between two measurements on the same subject. The 

minimum of the bolus widths in left and right MCA territories (instead of their average) 

showed the same repeatability. 

The mean MCA bolus width in 12 subjects (1 subject was excluded due to an insufficient 

quality of fit (R
2
<0.9)) was (498±176) ms under hypercapnia (HC) and (747±113) ms under 

normocapnia (NC) immediately prior to the HC experiment. The analyses of the physiological 

parameters of our subjects showed no significant difference before and during HC in heart 

rate (NC=(61±7) min
-1

 ; HC=(62±7) min
-1

), arterial oxygen saturation (NC=(98±1)% ; 

HC=(98±1)%) and respiratory rate (NC=(15±3) min
-1

 ; HC=(15±3) min
-1

). The mean end-

tidal CO2 increased from (46±6) mmHg during normocapnia to (57±6) mmHg under 

hypercapnia. If we assume that the observed reduction in bolus width is inversely proportional 

to the perfusion change then the mean increase in perfusion due to the CO2 paradigm was 

(6±4.3) %/mmHg which is consistent with the literature[20]. The responses to this stimulus 

were however very heterogeneous between subjects. 

 

Multi-TI1 ASL protocol 



 

Five subjects were excluded due to excessive motion or because the quality of the fit was bad 

due to a poor signal to noise ratio (R
2
<0.9). The mean TI1,max on the remaining 8 subjects is 

(1020±182) ms for the right and left MCA territories, (1009±250) ms for the ACA territory 

and (1152±435) ms in the PCA territory. The differences between the three territories are not 

significant. Also the values in the PCA territories are very heterogeneous and calculated on 

two subjects only since the others showed a R
2
 lower than 0.9.  

 

Correlation between BoTuS results and multi-TI1 data  

 

We saw a significant correlation between the bolus width measured in the MCA territory 

using BoTuS method and the TI1,max determined from multi-TI1 data, with a Pearson 

coefficient of 0.65 (p<0.05) (Figure 4a). The bolus width derived from the pre-scan under-

estimated the allowable TI1 obtained by the multi-TI1 method, as attested by the scatter plot. 

 

Discussion 

 

The rapid bolus shape pre-scan (acquisition time of 1’18”) allowed determining an optimized 

TI1 for each subject. The pre-scan acquisition time is dramatically reduced compared to the 40 

minutes of acquisitions needed to obtain the bolus width using the 12 PASL multi-TI1 data 

points. There are significant differences in the measured bolus widths between vascular 

territories. Indeed, the PCA are predominantly fed by the basilar arteries, which exhibit 

slower flow than the ICA predominantly feeding the MCA[21]. This slower velocity 

generates a longer bolus. The higher inter-individual variability that we observed on the ACA 

territories is certainly due to the heterogeneities of the ROI in that region. The right and left 



MCA territories are the most homogeneous regions since we selected the middle cerebral 

arteries just above the circle of Willis. The repeatability of the BoTuS technique in this 

territory is good as shown in the Figure 3.  

The estimation of the allowable TI1 from the multi-TI1-data is taken as a reference since it 

directly samples the ASL signal of interest. However, it suffers from low SNR. The long 

acquisition times make the results prone to motion artifacts and prevented us from assessing 

its repeatability. Almost 40% of the multi-TI1-data had to be discarded. To somewhat 

alleviate the problem of SNR, and because the bolus duration is shorter in this territory, we 

used the large MCA territories (�2400 voxels on average) to examine the correlation with the 

BoTuS method. The results in the ACA and PCA territories are more variable due to the small 

ROIs, given the position of the imaging volume above the circle of Willis (�950 and 

�290 voxels, respectively).  

The significant correlation between the BoTuS and the multi-TI1 methods indicates that our 

BoTuS sequence has the potential for optimizing PASL acquisitions. However, the BoTuS 

results are not immediately comparable to the multi-TI1 data, since the TI1,max is a measure of 

the integral under the bolus curve. A calibration is therefore necessary to translate the width at 

half maximum of the roi-average bolus model to a subject-optimized TI1. The limited multi-

TI1 data available in this study leads us to an empirical calibration: 

TI1,sequence=1,2*TI1,BoTuS,MCA (Figure 4b). 

The bolus widths measured by multi-TI1 PASL in the MCA territory with a 200-mm label 

region vary from 717 ms to 1226 ms. With the choice of a fixed TI1 of 700 ms, perfusion 

would be quantified accurately for all of our subjects under baseline physiologic conditions. If 

we determine a per-subject TI1 using the rapid BoTuS pre-scan and our calibration, one 

BoTuS scan in one subject may suffer from under-estimation of the perfusion by about 11%. 



On the other hand, with TI2=1800 ms, the optimized TI1 would lead to an average gain of 

18% in ASL signal, with respect to the fixed TI1 of 700 ms. 

The ASL literature is relatively sparse in data concerning the optimal choice of TI1 depending 

on label width, position, and subject population. From the limited data presented here it is 

obvious that inter-subject heterogeneity in label duration is large. The method presented has 

the potential to avoid the need for time-consuming optimizations of this parameter, and to 

render protocols more robust to variations in slice positioning and subject physiology and 

morphology. 
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Tables and Figures 

TI1 (ms) 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1600 2000 

TI2 (ms) 1800 1800 1800 1800 1800 1800 1800 1800 1800 1900 2100 2100 2300 2700 

�TI (ms) 1600 1500 1400 1300 1200 1100 1000 900 800 800 900 800 700 700 

TR (ms) 3500 3400 3300 3200 3100 3000 3000 3000 3000 3000 3100 3000 3000 3400 

  

Table 1. Acquisition parameters of multi-TI1 images  (TI1: Time between label 

and QUIPSS saturation, TI2: time between label and acquisition of the first slice, 

�TI=time between saturation and acquisition (TI1+�TI=TI2), TR: time between 

successive tag and control label pulses) 

 

 

 

Figure1: a) Position of the BoTuS acquisition slice just above the circle of 

Willis, b) ROIs of connected voxels with strong vascular signal in right and left 

middle cerebral arteries, and in the anterior and posterior area, c) Normalized 



control/tag difference from the BoTuS sequence showing the bolus shape of the 

tagged spins entering our regions of interest for four vascular territories. The 

dashed line indicates the cutoff at half the peak amplitude after correction for 

T1-decay, used to determine the duration of the bolus as indicated by the vertical 

lines. 

 

 

Figure 2: a) Position of the multi-TI1 imaging slices. The first slice of the PASL 

region of interest is the same as the BoTuS slice, b) Vascular territory map 

(pink: middle cerebral arteries, blue: anterior cerebral arteries, purple: posterior 

cerebral arteries), c) Average ASL signal in the gray matter of the MCA 

territories as a function of TI1 for a single subject. The solid line represents the 

fit to the data and the shaded region indicates the limits of the linear regime of 

the ASL signal. 

 



 

 

Figure 3: Repeatability of the BoTuS results shown in a Bland-Altmann graph 

representing the difference to the mean for two separate measurements as a 

function of their mean. 
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Figure 4: a) Correlation between the bolus width measured twice using BoTuS 

and using multi-TI1 PASL for 8 subjects with linear correlation and unity line, b) 

Correlation between the bolus width measured using BoTuS after correction 

(TI1,sequence=1,2 * TI1,BoTuS ) and multi-TI1 PASL method for 8 subjects. 
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