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Abstract

The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies
on one contrast and the analysis on a simplified model of the various phenomena that arise within a
voxel, leading to un-accurate perfusion estimates. To evaluate how these simplifications impact perfusion
estimates, we propose a versatile numerical tool to simulate the MR signal provided by a dynamic
contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic R1 and R2 relaxations,
the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of
the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and
the constrained diffusion of the CA within the voxel. The different blocks of the model are validated and
compared to classical models. The impact of the CA diffusivity on the permeability and blood volume
estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability
estimates (< 5% for classical blood flow and contrast agent diffusion). The effect of using longer echo times
is investigated. Simulations show that DCE-MRI performed with an echo time of only TE = 5ms may
already lead to significant underestimation of the blood volume (30% lower for brain tumor permeability
values). The potential and the versatility of the proposed implementation are evaluated by running the
simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable
cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI
experiments and may be used to evaluate and optimize acquisition and processing strategies.

Introduction

Bolus-tracking MRI techniques are widely used in clinical and preclinical studies to obtain imaging
biomarkers that predict tumors progression and outcome [1, 2]. Depending on the predominant contrast
in use, two different techniques can be employed: T1-weighted dynamic contrast enhanced MRI (DCE-
MRI) [3] or T2∗-weighted dynamic contrast susceptibility (DSC-MRI) [4]. DSC-MRI is the approach of
choice for measuring perfusion biomarker in the brain. DCE-MRI is preferred in other organs [5,6] where
the contrast agent (CA) leaks outside of the vessels. It is also used to assess the vessel permeability in
the brain when the blood brain barrier (BBB) is disrupted. These techniques emerged at the same time
about 20 years ago but their quantification remains challenging.

In a brain voxel with intact BBB, the CA yields a transient, strong increase in voxel R2 and R∗2 due to
the increase in the magnetic susceptibility difference (∆χ) between blood and tissue, and a more subtle
increase in voxel R1 due to the increase in blood R1 and the water exchange between intra and extravas-
cular compartments [7]. In a tissue with an altered BBB, the CA leaks across the vessels and ∆χ is
reduced at the vessel wall, limiting the increase in voxel R∗2 whereas the R1 effect is enhanced. Addition-
ally, the distribution of CA around extravascular impermeable cells further perturbs the magnetic field
and increases R∗2 which then competes with the enhancement due to R1 effect. The intricacy of these
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phenomena make the MR signal interpretation arduous.

In DCE-MRI, the analysis is made with compartment models which handle blood flow and CA exchanges
but often lack methods to deal with the NMR signal. Ideally, one would combine the compartment models
which describe the microscopic R1 and R2 changes [8–11] with a model that describes the perturbations
of the magnetic field induced by the susceptibility interfaces [12–15]. Recent progress to untangle these
phenomena have been made by measuring DSC-MRI and DCE-MRI simultaneously using multi-echo
sequences [16, 17]. The analysis of these acquisitions requires the use of advanced analytical models [18]
that can potentially provide new biomarkers [19]. However, the impact of the CA diffusion within the
extravascular space on the MR signal is disregarded and the effect of the arising susceptibility gradients
around the cells remains unclear. A better description of the entanglement of these various effects within
a voxel is thus of considerable interest.

The aim of this article is to present and evaluate a numerical model of the MR signal in a DCE-MRI
like experiment acquired with a multi gradient echo sequence over several minutes. Within an affordable
computing time, the proposed approach considered: the effect of the magnetic field perturbations caused
by vessel and cell interfaces, the diffusion of water molecules, the blood flow, the CA leakage across the
vessel wall and the CA diffusion within the extravascular space. The algorithm relies on:

1) A compartment model to simulate the CA exchange between the capillary bed and the tissue.

2) The computation of the magnetic field induced by the susceptibility variations using a Fourier based
approach [20,21].

3) The deterministic approach introduced by Bandetini et al. [22] and further developed by Klassen et
al [23] to model the MR signal provided by free diffusing water molecules within an inhomogeneous
magnetic field.

The impermeable vascular and cellular membranes were handled by a modified convolution kernel ap-
proach. The model was first validated and compared to simple cases where analytical solutions exist.
The impact of the CA diffusion on the permeability estimate was then investigated and the flexibility
of the tool was eventually demonstrated by running the simulation on vascular network obtained from
optical microscopy and geometries with extravascular cells.

Methods

Algorithm

Simulations were performed in the Matlab environment (Mathworks Inc. Natick, MA, USA) on a Dell
Precision computer (double quad 2.33GHz Intel Xeon processor, RAM 32 GB) and at the CNRS/IN2P3
Computing Center (Lyon/Villeurbanne - France). The step time was set to δt = 0.5ms and the total
duration of the simulated DCE experiment was TF = 900s. To simulate a 900s-long DCE experiment
(1.8.106 frames given our dt) with moderate computation time, simulations were performed in 2D. The
overall time was about 14days for a single DCE experiment. In the following, bold capital letters refer to
2D-lattices. I refers to the lattice filled with 1, × to the point wise multiplication, ⊗ to the convolution
and

∑
to the 2D summation over a lattice. Summation of a lattice and a scalar is done point wise.

The simulation tool was organized in three distinct blocks: Geometry, Physiology and NMR (Fig.1,
Tab.1).
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(a) Geometry block: The geometry was designed on a 2D plane sampled with Q2 pixels. N vessels
with radius R were randomly spread out orthogonal to the plane under periodic boundary condition,
defining the blood surface fraction BV f (equivalent to a volume fraction in 3D).

Cells were spread out with same the boundary condition to occupy a surface defined by the porosity
Π = 1 − (Cell surface + Vessel surface)/(Plane surface). The cell radius was initially set to 10µm and
slowly shrank to obtain the desired porosity.

Gv denoted the lattice with 1 inside the vessels and 0 outside. Gc denoted the lattice with 1 inside the
cells and 0 outside. For each time step the simulation of the two following blocks was repeated:

(b) Physiology block: This block modeled the CA concentration, C(t), within the plane.

(b.1) Plasma: The time evolution of the concentration of CA in the vessels, cv(t), was described by the
discretized form of a two compartments model where the CA enters the tissue via the arterial influx,
leaves by venous outflux and exchange by transendothelial leakage:

cv(t+ δt) = cv(t) + F
BV f (ca(t)− cv(t)) δt

−kpe.
∑

Gperiph∑
Gv

∑
Wperiph × (cv(t)−Cperiph(t)) δt if F.δt ≤ BV f

cv(t+ δt) = ca(t) if F.δt > BV f

(1)

where F denotes the blood flow in surface fraction per second (equivalent to a volume fraction in 3D), ca(t)
the arterial input function (AIF) and the terms modeling for the permeability are defined in the following
paragraph. cv(t) was considered the same in each vessel. The AIF was an input to the physiology block.
An illustration of the shape of the AIF is presented in Fig.3b.

(b.2) Permeability : The CA exchanges between the vessels and the extravascular space occurred only at
the periphery of each vessel. Gperiph was defined as the lattice with 1 in the one-pixel wide periphery of
each vessel (connectivity 4) and with 0 outside. The CA concentration lattice in that region was denoted
Cperiph(t). At each time step, we considered the CA exchange between the vessels and its periphery.
The amount of CA that extravasates was modeled by a first order kinetic law with exchange rate kpe.
The same exchange rate was considered in both ways:

Cperiph(t+ δt) = kpe × (cv(t)−Cperiph(t))δt+ Cperiph(t) (2)

In 3D, one generally defines kpe as the exchange rate between the vessel and the extravascular extracellular
volume, ve (kpe = P.S/ve, with P the permeability and S the surface exchange). In our 2D approach, we
must consider the volume in which the CA extravasates, which is reduced to the surface

∑
Gperiph, plus

the contact exchange which is not equivalent for every points in the periphery of the vessels. Thereby, to
remain consistent with the literature, kpe was scaled by Wperiph:

kpe = kpeWperiph (3)

with

Wperiph =

∑
(I−Gv −Gc)∑

Gperiph
× S∑

S
(4)

where the first fraction accounts for the volume scaling and the second for the differences in the contact
exchange. S was computed as (see also Fig.2C for an illustration of S):

S = Gv ⊗W+ −Gv with W+ =

 0 1 0
1 1 1
0 1 0

 (5)



4

The concentration lattice C was eventually updated with the values of Cperiph.

(b.3) CA Diffusion: The diffusion of CA into the extravascular space was modeled with a Gaussian
diffusion kernel, denoted DCA, as described by Eq.[6]:

C(t+ δt) = C(t)⊗DCA with DCA ∝
1

σ2
e−

x2+y2

2σ2 (6)

where the mean square displacement of a CA molecule is
〈
x2 + y2

〉
= 2σ2 = 4DCAδt (in 2D, [22]) and

(x, y) the coordinates in the plane. The kernel DCA was designed with the same size as C.
The diffusion of CA described by Eq.[6] should neither contribute to the transendothelial transport
modeled by Eq.[2] nor diffuse within the cells. We thus introduced a bounce-like mechanism for CA
transport at the membranes of the vessels and cells characterized by the following weighting lattice (see
also illustration in Fig.2A):

WCA = ((Gv + Gc)⊗DCA)× (I−Gv −Gc) (7)

For each point of the lattice, WCA defines the amount of CA that would have diffused from one point
into the cells or vessel in the case of free diffusion. At each time step, this amount has to be sent back to
the extravascular extracellular space. In our case, it is sent back to where it originates. The evolution of
C(t) was thus computed with Eq.[8]:

C(t+ δt) = (C(t)⊗DCA + C(t)×WCA)× (I−Gv −Gc) + cv(t)×Gv (8)

Special attention was paid to the kernel width to minimize physically impossible behaviors of CA such
as jump over obstacles. The step time δt was set according to

√
2DCAδt < sm where sm was the

characteristic size of the smallest obstacles (see discussion section for further details). Each step that
involved a convolution was computed using the FFT algorithm. The mean CA concentration in the plane,
[CA](t), was computed by averaging C(t).

(c) NMR block: This block modeled the magnetiztion, M(t), within the plane.

(c.1) Relaxation: Longitudinal and transverse relaxation lattices were calculated from C(t) based on
Eq.[9]:

Ri(t) = R0,v
i ×Gv +R0,t

i × (I−Gv) + riC(t) (9)

where index i stands for 1 or 2, R0,v
i and R0,t

i are the initial relaxation rates of the vascular and tissue
compartments respectively and ri is the CA relaxivity.

(c.2) Magnetic field : The perturbations of the magnetic field induced by the susceptibility variations in
the plane were computed using a Fourier based approach [20,21] adapted here in 2D, Eq.[10]:

∆B̃(t) = B0

(
1

3
−
k2y sin2 θ

k2x + k2y

)
∆χ̃(t) (10)

where kx and ky are the coordinates in the Fourier space, θ the angle between the normal to the plane and

B0 and the tilde, X̃, denotes the Fourier transform of X. The susceptibility map was defined by ∆χ(t) =
χmC(t) + ∆χblood-tissue×Gv where χm is the molar magnetic susceptibility of the CA and ∆χblood-tissue

the original magnetic susceptibility difference between the vessel and tissue. The perturbation of the
magnetic field was averaged over 3 orthogonal orientations of the plane with respect to B0 to mimic an
isotropic distribution of the vessel in a 3D voxel (see validation in results section).
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(c.3) Magnetization: The magnetization evolution was described by the Bloch equations, Eq.[11]:{
M⊥(t+ δt) = M⊥(t)e−iγ∆B(t)δte−R2(t)δt

M‖(t+ δt) = (M‖(t)−M0)e−R1(t)δt + M0
(11)

with γ = 2.68 · 108 rad · s−1 · T−1 and M0 the longitudinal magnetization at equilibrium. The symbol e
denotes here a point wise exponentiation.

(c.4) Water diffusion: The diffusion of water was modeled by applying a diffusion kernel, DH2O, on the
magnetization lattices as already proposed [22,23]:

Mi = Mi ⊗DH2O with DH2O ∝
1

σ2
e−

x2+y2

2σ2 (12)

where the mean square displacement of a water molecule is
〈
x2 + y2

〉
= 2σ2 = 4ADCδt (in 2D, [22])

and i stands for ⊥ or ‖. The convolution with the kernel modeled the probability of the spins to move
to a different location during the time δt. Due to the finite extension of the lattice, the kernel was
subsequently normalized to unity. We assumed that water diffused freely within the plane and between
compartments. The convolution was performed using the FFT algorithm.

(c.5) MR sequence: The simulated MR sequence was a multi gradient-echo sequence. At each echo time
TE , the MR signal was sampled by summing the transverse magnetization lattice M⊥ across the lattice.
At t modulo TR, RF excitation pulse, characterized by flip angle α and phase φ, was applied on the
magnetization lattices. For spin-echo case, a π RF pulse was applied at TSEE /2.

Unless mentioned otherwise, the parameter values used in the simulation were as follows. The static
magnetic field B0 was set to 4.7T, the time step δt to 0.5ms and the total duration of the experiment
TF to 900s. The geometry modeled was a 70 × 70µm2 plane sampled with Q2 = 5602 elements (lattice
point size 0.015µm2). N = 5 vessels of radius R = 3µm were generated, filling up BV f = 2.9%.
These values match in vivo measurements in healthy tissue [24, 25]. In vivo measurements made in
rodents provided the AIF shape, cv(t) [26]. Relaxation properties of the CA matched Gd-chelate ones:
r1 = 3.3s−1.mM−1,r2 = 4.1s−1.mM−1 (data from Guerbet, France). The initial relaxation rates were, in
the vessels, R0,v

1 = 0.582s−1 [27], R0,v
2 = 200s−1 (higher than previously reported value [28]), in the tissue,

R0,t
1 = 0.769s−1 [29], R0,t

2 = 16s−1ms. We used χm = 0.027ppm.mM−1 for the molar susceptibility of
the CA [30] and ∆χblood−tissue = 0.0422ppm (SO2 = 60% and [Hct] = 40% at 4.7T [31]) (CGS units).
The water diffusion was set to 760µm2s−1 [32]. TR was set to 500ms, α to 90◦ and φ to 0◦.

As a reference for kpe, we used k0 = 1.83 · 10−3s−1 and k1 = 4.83 · 10−3s−1, values reported in [26] for
healthy muscle tissue and for tumor tissue. For DCA, we used D0 = 46µm2s−1 which correspond to
the coefficient of diffusion for Gd-DOTA measured in rat brain [33]. The free diffusion of Gd-DOTA,
Dfree = 485µm2s−1, has also been reported [33].

Validation

Contrast Agent Diffusion
To evaluate our kernel based approach used to model constrained diffusion, we compared our results to a
2D Monte-Carlo (MC) simulation. In the MC approach, elastic rebounds of CA on the surface of obstacles
were considered [34]. Diffusion with both approaches was simulated within the same geometry, N = 5
and R = 3µm. The apparent diffusion coefficient of Gd was set to D0. Due to the computation time of
the MC approach, we simulated the diffusion process during 3s. The CA was initially positioned at the
center of the grid: 1mM in a single pixel for the kernel simulations, 500, 000 particles randomly spread
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out within the same pixel for the MC simulations. To allow comparison between the two approaches, the
total amount of matter of each approach was equalized afterwards.

Blood flow and CA Permeability
To investigate the validity of the approach used to model the permeability, we fitted the concentration
profiles with the classic modified Tofts model [8] using a nonlinear Levenberg-Marquardt algorithm.

[CA](t) = BV f.cv(t) + kpe.ve

∫ t

0

cv(τ)e−kpe(t−τ) dτ (13)

We eventually compared the estimate of kpe, k
Fit
pe , with the theoretical kpe, k

Th
pe , introduced as an input

of the simulation at step (b.2). We denoted BV FFit the estimate of BV f .

Magnetic Field Perturbations
To validate the 2D technique used to compute the magnetic field perturbations, we balanced the corre-
sponding 3D model (magnetic field perturbations induced by isotropic distributed cylinders in space and
orientation [35]) with 3 different 2D approaches: 1 unique vessel in 1 B0 orientation, N vessels in 1 B0

orientation, N vessels in 3 B0 orientations (Fig.6a-d). For each approach, we simulated and averaged the
free induction decays (FID) provided by a set of 70, randomly obtained, geometries (only 1 geometry
for the first 2D approach (Fig.6a)), and we estimated RGE2 by a mono-exponential function fitted to the
mean FID with a nonlinear Levenberg-Marquardt algorithm. Each geometry had the same properties:
BV f = 2.9%, R = 3µm, N = 1 or N = 5 for the 2D approach, N = 12 for the 3D approach. To match
the conditions described by [35], the magnetic susceptibility difference between the vessels and the tissue
was set to ∆χ = 0.231ppm.

Relaxation changes vs vessel radius
To further investigate the validity of the proposed approach, we simulated the dependency of the gradient-
echo (GE) and spin-echo (SE) relaxation rates (∆RGE2 and ∆RSE2 ) with the radius of the vessels as
previously described [36–38]. For a given vessel radius, we randomly generated a set of 10 different
geometries with N = 5 vessels that occupy 2% of a plane. To match these constraints, the plane size was
adjusted to the vessel radius. Eighteen vessel radii were simulated, between 1 and 100µm. To match the
conditions used by Boxerman et al. [37], the diffusion of water was set to 1000µm2.s−1, B0 to 1.5T and
∆χ to 0.1ppm. The MR signal was simulated at TE = 60ms for gradient-echo type experiment and at
TSEE = 100ms for spin-echo type experiment. The relaxation rates were computed with Eq.[14]:

∆RGE2 ,∆RSE2 = − 1

TE
ln(

S(TE)

S(0)
) (14)

Impact of Diffusion, Permeability and Echo Time

The concentration c(t) was derived from the MR signal S(t) as described in [26]:

c(t) =
1

r1
(R1(t)−R0

1) (15)

with

R1(t) = − 1

TR
ln(1− S(t)

S(0)
(1− exp(−R0

1.TR))) (16)

This equation is valid only under certain assumptions (TR � T ∗2 , TR � T2 (no stimulated echoes),
TE � T ∗2 , π/2 flip angle, no inflow, etc.). We then fitted either [CA](t) or c(t) with the bi-compartment
model (Eq.[13]) to derive the errors on estimated permeability constant: (kFitpe − kThpe )/kThpe .
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Results

For sake of simplicity, unless mentioned otherwise, the results presented in this study are obtained with
no cells positioned in the extravascular space and in the limit of high flow (F.δt > BV f), i.e. cv(t) = ca(t).

As an illustration, Fig.3 shows the changes in C(t) and ∆B(t) throughout the simulation together with
the input AIF (t) and the output S(t) at two gradient-echo times: TE = 0ms and TE = 40ms, with
kpe = k0 and DCA = D0.

Validation

Contrast Agent Diffusion

Fig.4a presents the geometry lattice Gv and the injection site. Fig.4c and Fig.4d show the diffusion maps
obtained with the MC and the kernel approaches respectively. Due to low SNR for the MC approach, the
displayed lattices were smoothed to ease their visualization. Fig.4b shows the correlation graph between
the two approaches. The two maps are in good agreement (R2 = 0.994) with a slightly faster diffusion
process observed in the MC approach (slope = 0.992).

Blood flow and CA Permeability
The results of this section were obtained with δt = 25ms. Fig.5a shows the concentration profiles
obtained for different blood flow values when kpe = 0. When Fδt ≥ BV f , the flow is high enough to
renew the blood volume at each time step δt and cv(t) = ca(t). When F.δt < BV f , i.e F < 1.2s−1 in our
experimental conditions, the concentration profiles are modified accordingly to the dilution of the arterial
input within the vascular compartment. This situation corresponds to a single compartment model with
a mono-exponential residue function with characteristic time BV f/F .

Fig.5b illustrates the time courses of ca(t) and [CA](t) when kpe = k1 for different blood flows F :
3.10−3 − 15.10−3s−1 (equivalent to 19 − 90mL/min/100mL). ca(t) is an input to the simulation (step
b.1) and [CA](t) is the output of block b. As depicted by the concentration curve shapes [CA](t), the
uptake of CA is limited when the blood flow decreases.
We simulated the change in [CA](t) for 4 permeability values, 4 blood flows and with DCA = Dfree

(to mimic an infinite diffusion coefficient as assumed by a bi-compartmental model). The Tofts model
properly fits the data for the range of permeabilities and blood flow simulated (Fig.5b). Fig.5c presents
the results of the estimated parameter kFitpe . For high flow, a linear correlation between kFitpe and kThpe is

observed (R2 = 0.999994). The slope is slightly lower than 1 and demonstrates that kFitpe underevaluates

kThpe when the CA diffusion is slightly constrained (DCA <∞). As already reported, for lower blood flow
values, the CA leakage is limited by the inlet and the model fails to distinguish the blood flow from the
permeability [8].

Magnetic Field Perturbations
Fig.6e presents the mean normalized FID obtained with each approach. The single vessel approach re-
sults in a very short decay (1/RGE2 = 7.5ms) whereas the N vessels averaged over 3 directions approach
(1/RGE2 = 18.3ms) presents a decay similar to what is obtained with the 3D approach (1/RGE2 = 18.4ms).
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Relaxation changes vs vessel radius
Fig.7 shows the dependence of ∆RGE2 and ∆RSE2 on the vessel radius. The results of our simulation are
in very good agreement with similar works obtained with other approaches [37,38]. We also observe that
the standard deviation is larger for the GE experiments than for the SE experiments.

Impact of Diffusion, Permeability and Echo Time

We simulated a whole DCE experiment with various CA diffusion coefficients (D0/4, D0/2, D0, 2×D0, 4×
D0, 10×D0, Dfree), various permeabilities to CA (k0, k0/2, k1) and various TE (20 echoes, ∆TE = 2ms).

Fig.8 illustrates S(t) obtained for different DCA values and kThpe values. As expected, kThpe strongly impacts
the shape of S(t) (Fig.8a). Conversely, the CA diffusion coefficient has a small impact on the shape of
S(t). The highest deviation appears when the CA concentration in the vessels is maximum.

Fig.9a presents the permeability estimates derived from [CA](t). The higher the permeability, the larger
the error on kFitpe . The faster the CA diffusion, the smaller the error on kFitpe . For the range of CA diffusion
coefficients used in this simulation, the error never exceeded 10%. The highest error was obtained for
the lowest DCA coefficient (Fig.9a). This means that when the CA leaves slowly the vessel periphery,
the vessel permeability is underestimated. As expected, this underestimation becomes smaller as DCA

increases.

When the permeability estimates are derived from S(t) at TE = 0ms, the behavior of the error on kFitpe

remains unchanged (Fig.9b). For high DCA and low kThpe , the errors become negative, in agreement with
the result observed on Fig.5b (slope smaller than one). The error on the permeability estimate remaines
below 5%. However, a difference between the permeability estimates obtained from [CA](t) and S(t)
appears for high DCA values : the error is independent of kThpe when one analyzes [CA](t) and becomes a

function of kThpe when one analyzes S(t). This difference may be ascribed to the R0
1 value used in Eq.[16]

which assumes a slow exchange regime across the vessel wall (the effective R0
1 could not be computed

since the water permeability was not controlled for in our model).

Fig.10a shows the variation of the error on kFitpe (kFitpe as a function of TE for different kThpe and DCA). For
short TE , the error is minimum and the larger the CA diffusion, the lower the error as already observed
in Fig.9b. For kThpe = k1, the error increases with TE . For kThpe = k0 and kThpe = k0/2 the evolution of the

error is no longer proportional to TE and ranges from 25% (for kThpe ) up to 200% (for BV fFit). Fig.10b

shows BV fFit as a function of TE for different kThpe and DCA. This error is the largest for long TE . This
deviation from the input BV f is ascribed to the post-processing: the T ∗2 effects which are maximum at
peak concentration are not taken into account in Eq.[16] (Fig.8a). At this echo time, the data processing
yields an erroneous estimate of BV f (Fig.10b). For kThpe = k0/2, we note that BV fFit appears sensitive
to DCA for long echo times.

The effect of the echo time on the permeability error is much stronger than that of DCA. Going from 0
to 10ms may increase the error from 2% to 8%. This impact is even more serious on the BV f estimate:
the same increase in echo time yields an underestimation of BV fFit by a factor 2. This is likely related
to the competition which occurs between the varying susceptibility gradients at the vessel wall and the
increasing R1 in the extravascular space. This balance depends on TE and on DCA.
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Versatility

Realistic microvasculature network
To illustrate the potential of the proposed simulation tool, Fig.11 shows the results obtained with a
vasculature network extracted from a biological tissue. The geometry was acquired with a two-photon
laser scanning microscope with 5µm z-step [35]. Image size was 560 × 560 pixels with a field of view
of 300 × 300 µm. Morphological processing (erosion / dilatation) were used to fill holes in the vessels
and to remove isolated pixels. A threshold was used for image segmentation (blood/tissue). A repre-
sentation of the vascular network as the 2D binary lattice Gv was eventually obtained. In Fig.11, the
blood vessels occupy BV f = 1.92% of the surface. The simulation was performed with kThpe = k0 and
DCA = D0. The lattices C(t) (Fig.11a) and ∆B(t) (Fig.11b) are presented at t = TF . The concentration
profiles derived from the simulated MR signal using Eqs.[15-16] are shown for 3 different TE on Fig.11c.
The Toft model was eventually fitted to the data. The estimates were in agreement with the input
values when TE = 0ms (kFitpe = 0.017s−1, BV FFit = 3.0%) and biased for longer TE (at TE = 40ms,

kFitpe = 0.017s−1, BV FFit = −1.6%).

Porosity of the extravascular space
Fig.12 presents the results obtained with cells positioned in the extravascular space. Vessel geometry
was the same as displayed on Fig.3. The simulation was performed with Π = 20%, kThpe = k0 and
DCA = Dfree. The lattices C(t) (Fig.12a) and ∆B(t) (Fig.12b) are presented at t = tF . The concen-
tration profiles derived from the simulated MR signal using Eqs.[15-16] are shown for 3 different TE on
Fig.12c. The Toft model was also fitted to the corresponding data and the results were in agreement
with previously described ones (at TE = 0ms, kFitpe = 0.018s−1, BV FFit = 3.33%) and biased for longer

TE (at TE = 40ms, kFitpe = 0.023s−1, BV FFit = −1.7%)). The difference in the concentration scale is
due to the reduced interstitial volume. For long echo times, the additional magnetic field perturbations
that arose at the cell membranes reduce the enhancement effect and inflection points can be noticed in
the concentration profiles (Fig.12a at TE = 40ms and TE = 70ms).

Discussion

In this study we proposed, to our knowledge, the most complete tool to simulate a DCE-MRI experiment
with intravenous CA injection and altered BBB. The simulation tool takes into account the blood flow,
the CA extravasation via a controlled vessel wall permeability, the CA diffusion within the extravascular
space, the water diffusion, the vessels and CA susceptibility effects together with the relaxivity effects.
Each important step of the simulation was validated and we discuss the deviation observed in the follow-
ing. At various echo times, the impact of the CA diffusion on the permeability estimate was investigated
in the limit of high flow. The versatility of the algorithm was finally demonstrated with geometries based
on a realistic vascular network or space constrained by cells. The results obtained were in agreement
with previously described in vivo experiments.

Fourier based approaches
The simulation benefits from the extensive used of the FFT for the computation of the magnetic field
perturbations, the diffusion of the CA and the diffusion of the water molecules. In addition to the gain
in speed compared to classic convolution algorithms, we take advantage here of the intrinsic properties
of the discrete Fourier transform: the spatial sampling yields a spatial periodization. Thereby, with
the diffusion kernel approach, the CA which leaves the lattice on one edge comes back on the opposite
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edge, as if the lattice was surrounded by similar lattices. Consequently, our model takes into account
the contribution of the CA movements due to diffusion and arriving from adjacent voxels [39]. Inter-
estingly, this approach, which is also relevant in 3D, can be extended to any geometries with obstacles
such as extravascular cells (Fig.12). This property also applies to the magnetization carried by the water
molecules, which freely diffuse within the voxel, and to the magnetic field computation. Note also that
the Gibbs artifacts at the border were here avoided thanks to the periodization of the 2D vasculature.
These artifacts usually arose at the border of 3D voxel simulation and compel to reject the spoiled outer
volume of the 3D lattice for the signal computation.

CA diffusion
The main asset for using the kernel approach to model diffusion is its computational efficiency. The
diffusion process appeared however slightly slower than with the MC approach. This reduction is related
to the use of the weighted lattice WCA: the amount of CA that diffuses from a pixel located within
the interstitium to pixels located inside a vessel or a cell is sent back to it initial position. This differs
from the MC approach where elastic collisions are considered. Thus, the CA diffusion modeled with the
kernel approach is more hindered at the vicinity of vessels and cells than with the MC approach. From
a physiological point of view, note that it has been proposed that diffusion near cells could be reduced
beyond elastic collision due to electrostatic interactions with cell membranes [40,41].

The kernel must also be narrow enough to avoid ’jumps’. When the kernel width, σ, is larger than the
characteristic obstacle size, sm, the CA diffusion becomes blind to obstacles. To avoid this behavior, one
must observe σ < sm. This ’no-jump’ condition was respected in this study: σ =

√
2Dfreeδt ≈ 0.5µm

and sm = 2.R = 6µm. This condition may be fulfilled for a large range of DCA values and obstacle sizes
by adapting δt accordingly.

It is also worth noting that, by adding kurtosis or skewness terms to the kernel, the kernel approach
offers the opportunity to model non-Gaussian diffusion and/or active transport.

Magnetic field perturbations
The approach used in this study to compute the magnetic field perturbations is based on the Fourier
transform of the magnetic susceptibility lattice [20,21]. Most works employed the analytical form of the
magnetic field perturbations generated by an infinite straight cylinder [23, 36, 37, 42, 43]. However, this
latter technique, computationally efficient, fails at computing smooth susceptibility variations and more
realistic vasculatures which vessel calibers, vessel densities and tortuosity may be significantly modified as
in tumors [2, 24, 44]. Another approach, based on the perturbation produced by a single pixel convolved
with a geometry lattice (Gv in our study) [38], has been proposed. This latter approach is adapted for
arbitrary vessel geometry, but not for arbitrary susceptibility distribution.

By adapting the Fourier based approach to 2D, we decreased the computation time by about 400 times
compared to the analytical approach. In 2D, the single vessel geometry yielded a T ∗2 shorter than what
was obtained with multiple vessels. Note that, due to the FFT, the single vessel geometry actually models
a periodic vessel distribution. It thus appears that the regularity of the vessel arrangement has an impact
on the eventual T ∗2 of the voxel. With a single vessel arrangement, the dipolar effect is spread uniformly
over the plane and does not overlap with that of other vessels. Additionally, the distance between any
pixel of the plane and a vessel is minimized. Thereby, one maximizes the dipolar effects of the vessel
over every points of the lattice. T ∗2 appears sensitive to the vessel arrangements (with constant BV f), as
observed on Fig.7 where the standard deviation on T ∗2 arises from ten different vessel arrangements. Note
that this standard deviation is relatively modest (about 7%), despite the use of only 5 vessels in each
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arrangement. Further studies are required to determine the optimal number of vessels per arrangement
and the optimal number of arrangements to obtain reliable results in an optimized computation time.
Single or multi-vessel, 2D, geometries yielded shorter T ∗2 than 3D vascular geometries with comparable
BV f (Fig.6). This difference comes from the fact that the magnetic field perturbation depends on the
vessel orientation within B0. When all vessels are perpendicular to B0, the magnetic field perturbation
is maximized and the T ∗2 is reduced compared to what would be obtained with a random distribution
of vessel orientations. Interestingly, we observed that averaging the signal from three orthogonal planes
yielded T ∗2 comparable to what was obtained with 3D approaches. One should keep in mind that this
pseudo-3D approach requires the use of microvascular characteristics representative of the 3D distribution
(BV f , vessel diameter, vessel arrangements).

Limitations
The main limitation of the 2D approach is related to the simulation of the flow within the voxel. Since
only a plane is considered in our approach, one can not model plug-flow where CA concentration varies
along the capillary bed. The study of the residue function is also harshly limited in our approach. The
dispersion of the bolus brought by limited flow and the leakage can be modeled but the dispersion along
the vascular tree can not be taken into account easily. With a sufficient number of vessels spread out
within the plane, one way to overcome this limitation might be to define different residue functions for
each vessel which would model the dispersion of the bolus at different length along the vascular paths.
That is to take a section of a 3D voxel with mixture of arterioles, capillaries and venules as the one used
in [45].
As the expense of computational time, these two restrictions can be overcome by extending our approach
to a 3D voxel. In that case, vessels are usually modeled by straight cylinders. One could also used 3D
microvascular networks, such as the one recently studied by Guibert et al [46]. However, the periodic
boundary condition does not stand any longer in 3D. One usually deals with this limitation by consid-
ering only the MR signal provided by an inner volume where water molecules have not undergoe harsh
distortion of the magnetic field caused by discontinuity at the border. However, this can not be used
with a reasonable voxel size in the scope of long DCE-MRI simulation where transport of the water and
the CA must remain coherent for several minutes. Recently, an elegant solution to this problem has been
considered in modeling the vascular network generated by a random walker moving with a significant
inertia under periodic boundary conditions [47].
Another strong assumption of our model is related to the free diffusion of water molecules. The perme-
ability of the membranes to water affects the contrast of the MR signal. Different regimes have been
considered into the past [7] and means to measure water permeability at the vascular wall are still under
development [48]. Based on the approach used for CA transport in this study, the water transport across
membranes could be modeled. Thereby, transcytolemnal water exchange could be accounted for [49] at
the expense of computational time.
To be more practical the simulation should incorporate a noise model for the signal. Given the small
impact of the CA diffusion on the permeability, it might be worthwhile to confirm if the effect observed
are still observed in presence of a realistic noise.
The MR simulation strategies proposed in this study could also be associated to other physiological
simulation environments which take into account more complex and realistic compartment models (for
instance MMID4, Multiple indicator, Multiple path, Indicator Dilution 4 region model, National Simula-
tion Resource, Department of Bioengineering, University of Washington, Seattle, WA, USA). Extensions
of the algorithm to the fields of DSC-MRI or arterial spin labeling could also be considered.
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Conclusion

We proposed a versatile 2D simulation tool to model the MR signal in DCE-MRI experiments. We
presented how we combined the compartment approach used for DCE-MRI analysis with the physical
mechanisms involved in MR contrast. Additionally, we provided a mean to efficiently simulate the
diffusion of the CA in presence of impermeable compartments. While our results are consistent with in
vivo results, some improvements and optimizations are still required. The variability of the MR signal
across different sets of vascular networks must be studied (number of vessels and distribution in space).
The impact of the blood flow and the effect of the arising magnetic field perturbations due to extravascular
cell interfaces and CA leakage requires further investigations.
Many other perfusion studies may be foreseen using the proposed approach. Different MRI sequences
can be investigated. Different biophysical models used to analyze DCE experiments can be compared.
Various techniques employed to correct for CA extravasation in DSC experiments can be evaluated. The
shape of the AIF can also be optimized. These studies may be performed at all magnetic fields and for
different tissue types, adjusting parameters such as cell porosity, cell magnetic susceptibility, vessel radius
or density. These numerical approaches, in addition to providing a mean to deepen our understanding of
DCE-MRI, are extremely desirable from an ethical and a financial points of view.
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Figure 2. Illustration of the weighting lattices S and WCA. (a) Zoom in the diffusion weighting
lattice WCA. The diffusion appears restricted near the membranes. (b) Illustration of the geometry
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Table 1. List of main parameters used in the algorithm

Name Definition Units

N Number of vessels -
BV f Blood Volume fraction %
R Radius of the vessel µm

DCA Diffusivity of the CA µm2.s−1

Gv Vessel lattice -
Gc Cells lattice -
S Contact surface lattice -

Wperiph Permeability weighting lattice -
WCA Diffusion weighting lattice -
ca(t) Arterial input function mM.s−1

F Blood flow %.s−1

kpe Permeability rate s−1

cv(t) Plasma CA concentration mM
C(t) CA concentration lattice mM

[CA](t) Mean CA concentration in C(t) mM
B0 Static magnetic field T
ADC Apparent Diffusivity of the water µm2.s−1

α RF flip angle rad
φ RF phase angle rad
χm Molar magnetic susceptibility of the CA ppm.mM−1

∆χblood−tissue Original Magnetic susceptibility between blood and tissue ppm
S(t) MR signal -
Ri(t) Relaxation rates lattices s−1

B(t) Magnetic field lattice T
Mi(t) Magnetization lattices -
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magnetic field perturbations ∆B(t) are presented at five times points labeled (1) to (5). For this longer
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(point (2)) and the enhancement produced by the R1 relaxation effect of the CA which extravasates
into the tissue (points (3) to (5)). At the last simulation time point (t = TF ) (5), cv(t) is lower than
[CA](t) (not shown) and the concentration in the extravascular space begins to decrease. Note the log
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blood flows, the model failed to distinguish the flow from the permeability and kFitpe is underestimated.
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Figure 6. Impact of various magnetic field computations on the FID simulation. (a) 1 vessel in 1 B0

orientation (b) N vessels in 1 B0 orientation (c) N vessels in 3 B0 orientations (d) N vessels in 3D. The
vessel arrangement is presented in 3D and for display, the magnetic field perturbation is only presented
on each face of the cube but is computed in 3D. (e) Normalized FID for approaches (a)-(d) (averaged
across the geometries for approaches (b-d)).
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Figure 7. Vessel radius dependence of ∆RGE2 and ∆RSE2 for BV f = 2%, ADC=1000µm2s−1,
B0 = 1.5T and ∆χ = 0.1ppm. Mean± σ across 10 geometries. The data presented here are in excellent
agreement with those reported in [37].
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Figure 8. Change in the MR signal for different kThpe and DCA values. (a) S(t) at TE = 40ms for 3 kThpe
values: k1, k0 and k0/2 with DCA = D0/4. (b) S(t) at TE = 40ms for 7 DCA values: D0/4, D0/2, D0,
2D0, 4D0, 10D0 and Dfree with kThpe = k0.
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Figure 9. Error on the permeability estimate when modeling the outputs of blocks b and c with
Eq.[13] for various kThpe and DCA values: (a) Error on kThpe when modeling [CA](t). (b) Error on kThpe
when modeling S(t) for TE = 0ms with Eqs.[15-16].
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Figure 10. Impact of the echo time on the estimation of kThpe and BV f . (a) Evolution of the error on

the parameter kThpe estimated from S(t) at different TE for various DCA and various kThpe . (b) Evolution

of the parameter BV fFit estimated from S(t) at different TE , for various DCA and for kThpe = k0/2 or
k1 .
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Figure 11. Example of the simulation with a vascular geometry extracted from in vivo microvascular
microscopy. The simulation parameters are kpe = k0 and DCA = D0. Concentration map C (a) and
magnetic field perturbation ∆B (b) are represented at the last simulation time point (t = TF ). (c)
Concentration profiles derived from the simulated MR signal using Eqs.[15-16] at 3 different TE . The
black lines correspond to the fit obtained with the Toft model. Plane size 300× 300µm2.
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Figure 12. Example of the simulation with impermeable cells placed in the extravascular space. The
simulation parameters are: kpe = k0 and DCA = Dfree. At t = TF (a) Concentration map C(TF ) with
vessels in black and cells in grey. (b) Magnetic field perturbation ∆B(TF ). (c) Concentration profiles
derived from the simulated MR signal and using Eqs.[15-16] at 3 different TE . The black lines
correspond to the fit obtained with the Toft model. Note the fluctuations in the concentration profiles
obtained at long TE . This can be ascribed to the additional magnetic field perturbations induced by the
cell interfaces which balance the signal enhancement. Plane size 70× 70µm2.


