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ABSTRACT

Diffusion MRI is a tool of choice for the analysis of the brain
white matter fiber pathways. When translated to clinics, the
short acquisition time leads to low angular resolution diffu-
sion (LARD) images. Fiber pathways are then inferred as-
suming Gaussian diffusion (a.k.a. DTI) that provides one
fiber orientation per voxel. In the past decade, recent re-
searches highlight more intricate intra-voxel fiber configura-
tions using higher angular resolution diffusion images.

In this paper, we introduce a novel non-Gaussian paramet-
ric modeling of the diffusion that accounts for multiple intra-
voxel fiber orientations, while being compatible with LARD
acquisitions. It can indeed be estimated from standard clinical
diffusion images with a crossing angle resolution of 30°.

Index Terms— diffusion MRI, non-Gaussian parametric
EAP, crossing fibers.

1. INTRODUCTION

A widespread application of diffusion magnetic resonance
imaging (dMRI) is the study of the brain white matter fiber
pathways into which diffusion is restricted along the neuronal
pathways. Learning the distribution of the induced random
motion, known as the ensemble average propagator (EAP),
thus allows the inference of fibers geometry.

In clinical brain imaging, dMRI sequences usually con-
sist in acquiring ng ≤ 30 diffusion-weighted (DW) images
resulting from the application of ng magnetic field gradients
with common low intensity encoded via the b-value (b ≤
1500s/mm2) and ng different directions {gi}i∈J1,ngK. To the
best of our knowledge, these low angular resolution diffusion
(LARD) images are analyzed in clinics only through diffu-
sion tensor imaging (DTI) [1], which relies on the assump-
tion that the EAP follows a centered 3D Gaussian distribution
with covariance matrix proportional to the diffusion tensor.
This model allows one to determine a single fiber orientation
(FO) per voxel. Yet, in research context, higher angular res-
olution samplings (ng ≥ 60) [2], including multiple b-values
[3, 4, 5], have revealed multiple intra-voxel FO.

In this work, we introduce a non-Gaussian parametric
modeling of the EAP that accounts for multiple intra-voxel

FOs while being compatible with classical clinical dMRI se-
quences. The parametric distribution is presented in Section
2.1 and its estimation from DW images is outlined in Section
2.2. Validation on both synthetic and real data is given in
Section 3, showing in particular the ability of the model to
estimate crossing fibers from LARD images.

2. THEORY

2.1. Parametric modeling of the EAP

In the same vein as DTI [1], the displacements of water
molecules in a given voxel are represented by a random vari-
able x =

√
2τy, where τ is the diffusion time between two

successive magnetic field gradients, and the random variable
y is modeled hereafter.

Single-compartment model. Let us first consider a sin-
gle FO ±µ per voxel, ‖µ‖ = 1. The displacements of water
molecules along direction1 µ are represented by a random
variable w which is modeled as the sum of two independent
random variables, w = v + z, where:
• v follows a von Mises & Fisher probability distribution
on the 2-dimensional sphere of radius R > 0 with mean
direction µ and concentration parameter κ ≥ 0. The higher
the concentration parameter, the more likely water molecules
are to diffuse along direction µ; when it is nil, the direc-
tion of molecular displacements is uniformly distributed over
the sphere; µ can thus be interpreted as the direction of
diffusion, whereas κ can be interpreted as a measure of
anisotropy of the diffusion. The von Mises & Fisher prob-
ability distribution admits a pdf on the 2-dimensional sphere
of radius R which is given by2:

fv(v;µ, κ, R) = κ(4πR3 sinhκ)−1 exp
{
κR−1µ′v

}
, (1)

for any v ∈ R3 such that ‖v‖ = R.
• z follows a centered Gaussian probability distribution de-
fined on R3 and parametrized by a cylindrically constrained
covariance matrix D, akin to the diffusion tensor, completely
determined by the ratio, set to κ + 1, of its largest non-zero
eigenvalue to its smallest non-zero eigenvalue and the value

1An orientation±µ is characterized by two opposite directions µ and−µ
2To distinguish a random variable from one realization of it, we adopt sanserif and

curvilinear types to designate the former and the latter respectively.



of its largest eigenvalue set to R2 with associated eigenvector
set to µ. Hence, D = R2(κ + 1)−1 (I3 + κµµ′), where I3
is the 3x3 identity matrix. If κ → +∞, then D = R2µµ′

and thus R represents the mean radial displacement along
the direction of diffusion µ; if κ → 0, then D = R2I3 and
thusR represents the mean radial displacement. The centered
“cylindrical” Gaussian pdf reads:

fz(z;µ, κ, R) = (κ+ 1)
(
R
√

2π
)−3

× exp

{
− (κ+ 1)‖z‖2 − κ(µ′z)2

2R2

}
, for any z ∈ R3.

(2)

• v and z are statistically independent.
The pdf of the random variable w then amounts to a convolu-
tion of the von Mises & Fisher pdf (1) and the Gaussian pdf
(2). It is a 4-parameter pdf given by:

fw(w;µ, κ, R) = C exp

{
−

(κ+ 1)w2
⊥ + w2

�

2

}

×
∫ 1

−1

exp
{κ

2
t2 + (κ+ w�)t

}
I0
(

(κ+ 1)w⊥
√

1− t2
)

dt,

(3)

for anyw ∈ R3, where I0 is the zero-th order modified Bessel
function and

(w�, w⊥) := R−1
(
µ′w,

√
‖w‖2 − (µ′w)2

)
,

C :=
κ(κ+ 1)

√
2

8π3/2R3 sinhκ
exp

{
−κ+ 1

2

}
.

Finally, in a fiber pathway with FO ±µ, water molecules are
assumed to diffuse along directions µ and −µ in equal pro-
portions so that the pdf of y is given by:

fy(y;±µ, κ, R) =
1

2
fw(y;µ, κ, R) +

1

2
fw(y;−µ, κ, R). (4)

Multi-compartment model. Assuming M putative FO
{±µi}i=1,...,M per voxel, the pdf of y is modeled as a mix-
ture of M + 1 pdfs f0, f1, . . . , fM as pioneered in [2]:
• f0 characterizes water molecules subject to isotropic dif-
fusion; it is a 1-parameter pdf given by Eq.(4) with κ = 0
and parameter R0 > 0; its associated weight a0 ∈ [0, 1] is a
parameter of the model;
• for any i ∈ J1,MK, fi characterizes the diffusion along FO
±µi; it is a 4-parameter pdf given by Eq.(4) with parameters
(±µi, κi, Ri), ‖µi‖ = 1, κi ≥ 0 and Ri > 0; its associated
weight ai is set proportional to κi.
The covariance matricesDi involved in each compartment are
akin to diffusion tensors. The largest and smallest eigenval-
ues, R2

i and R2
i /(κi + 1) respectively, can thus be interpreted

as the principal and transverse diffusivities of each compart-
ment, respectively. Based on the argument that nerve fibers
share similar geometries, these quantities are often assumed
identical in each compartment [6, 7]. We follow the same
lines for the transverse diffusivity but we let each compart-
ment have its own principal diffusivity to robustify the es-
timation of the associated FO. For any i ∈ J1,MK, we set
R2

i = (κi + 1)λ, where λ > 0 is the transverse diffusivity.

In our multi compartment model, the EAP thus amounts to:

fy
(
y; {±µi, κi}i∈J1,MK, λ, a0

)
= a0f0

(
y;
√
λ
)

+
1− a0∑M
`=1 κ`

M∑
i=1

κifi
(
y;±µi, κi,

√
(κi + 1)λ

)
.

(5)

It is thus parametrized by 3M + 2 parameters (e.g., 5 param-
eters for a single fiber, 8 for crossing fibers), namely:
• the spherical coordinates (θi, φi) ∈ [0, π] × [0, 2π[ of the
putative fiber orientation ±µi, for any i ∈ J1,MK;
• the concentration of water molecules κi ≥ 0 around the
putative fiber orientation ±µi, for any i ∈ J1,MK;
• the transverse diffusivity λ > 0, identical for each FO;
• the proportion a0 ∈ [0, 1] of water molecules that are sub-
ject to isotropic diffusion.

2.2. Estimation of the EAP from noisy DW images

The theoretical DW intensity A(b, g) in each voxel of a DW
image depends on the intensity (b) and direction (g) of the cor-
responding magnetic field gradient and is the Fourier trans-
form (FT) of the EAP [8]:

A(b, g)

A(0)
= FT[fx]

(√
b

τ
g

)
= FT[fy]

(√
2bg
)
,

whereA(0) is the theoretical DW intensity in absence of mag-
netic field gradient.

Assuming that the pdf of y is given by Eq.(5), we get:
A (b, g; {±µi, κi}i≤M , λ, a0)

A(0)
= a0 FT[f0]

(√
2bg
)

+
1− a0∑M
`=1 κ`

M∑
i=1

κi FT[fi]
(√

2bg
)
,

(6)

where the FT of fy modeled by Eq.(4) is given by [9]:

FT[fy](t) = exp

{
− R2

2(κ+ 1)

(
‖t‖2 + κ(µ′t)2

)}

× κ

sinhκ


sin
√
R2‖t‖2−κ2√

R2‖t‖2−κ2
, t ∈ Ω,

α sinhα cos β+β coshα sin β
α2+β2 , t /∈ Ω,

with α =
√

(Re z + |z|)/2, β = Im z/
√

2(Re z + |z|),
z = κ2 − R2‖t‖2 + 2iκRµ′t and Ω = {t ∈ R3 s.t. ‖t‖ ≥
κ/R and t ⊥ µ}, if κ > 0, or Ω = R3, if κ = 0.

Given a set of DW images, we estimate the parameters
that define the EAP in Eq.(5) by a least squares fitting of the
raw DW intensities to the theoretical ones given by Eq.(6).
This is performed using the derivative-free NEWUOA opti-
mization algorithm [10].

Remarks. When all the κi’s go to zero at the same rate,
the theoretical DW intensity is modeled as in DTI for low b-
values. When all the κi’s go to infinity at the same rate and
the transverse diffusivity goes to zero, the theoretical DW in-
tensity is modeled as in [11], where a spherical deconvolution
approach using Watson pdfs is employed to describe the the-
oretical DW intensity itself.



3. EXPERIMENTAL VALIDATION

3.1. Experimental setup

3.1.1. Crossing angle resolution of the model

The crossing angle resolution (CAR) is the minimum de-
tectable angle between two different FOs. We performed its
evaluation on the 2-fiber model (M = 2) using synthetic data
on a single voxel. We generated the simulated data sets ac-
cording to the spherical deconvolution method proposed in
[12]. They simulate multiple FOs assuming that the fiber ori-
entation distribution function is a sum of equally weighted
delta functions. They perform its convolution with the kernel
proposed in [13], which models restricted diffusion within a
cylindrical fiber of radius ρ = 5µm and length L = 5mm. We
chose this method because (i) they implemented it on-line, as
part of the fanDTasia toolbox3, (ii) this method has been used
in more than 20 papers and (iii) the spherical deconvolution
in its discrete version is close to multi-compartment models.

We simulated five data sets of DW images with b = 1500
s/mm2 and respectively ng = 15, 30, 41, 64 and 200 encoding
gradient directions uniformly distributed on the hemisphere.
For a given ng , we generated several configurations of the
FOs and we corrupted each data set with twelve increasing
noise levels ranging from a signal-to-noise ratio (SNR) of 60
dB to 0 dB. The configurations of FOs were defined as fol-
lows. The first fiber was set to five different values (θ, φ),
with θ = 90° and φ = 0°, 30°, 45°, 60°, 90°. The second fiber
was set to 25 different values (θ, φ + ∆φ) for each value of
the first fiber, with ∆φ going from 90° to 60° by 10° steps,
from 60° to 30° by 5° steps and from 30° to 0° by 2° steps.

The simulated data sets with ground truth crossing angle
of 0° are single fiber cases. The upper bound of the 95%
confidence interval of the estimated crossing angle, referred
to as the 95% confidence angle, is thus a fair approximation
of the CAR since any voxel in which the estimated crossing
angle drops below this value has a significant probability to
contain only one single fiber. We thus resampled each data
set 100 times and computed the 95% confidence angle using
the percentile method. In order to minimize the effect of the
sensitivity of the NEWUAO algorithm to the initialization, we
define the CAR as the minimum 95% confidence angle over
the different fiber configurations that we simulated.

3.1.2. Real data acquisition

We aim at demonstrating that our model permits to estimate
crossing fibers from LARD images with low spatial resolu-
tion. To this end, we scanned a healthy adult male on a 3T
Achieva Philips MRI Scanner with an 8-channel head coil,
TR = 10000 ms, TE = 64 ms, τ = 22.1 ms, b = 800 s/mm2,
ng = 15 and 2x2x2mm3 voxels. This set of DW images
represents a typical case of LARD images with low spatial

3http://www.cise.ufl.edu/ abarmpou/lab/DWMRI.simulator.php

resolution. We first denoised the raw DW intensities using
the Rician-adapted Non-Local Means filter [14] available
on-line4. Then, we performed the estimation of the EAP as
described in Section 2.2. The denoising step allows us to
consider that the mean of the denoised raw DW intensity
matches the corresponding theoretical one, which legitimates
the estimation procedure described in Section 2.2.

3.2. Results

3.2.1. Estimation of the CAR of the model

Figure 1 shows that the CAR of our model improves as SNR
increases and as the number ng of encoding gradient direc-
tions increases. Even in absence of noise, the model cannot
distinguish two FOs that are separated by an angle smaller
than 1.4° (for a clinical value of ng = 30). Also, for low
SNRs, increasing drastically ng does not seem to improve sig-
nificantly the CAR. Last, we read in Fig.1 that, for standard
clinical dMRI data sets (SNR = 20 dB and ng = 30), the CAR
of our model is about 30°.

Fig. 1. Crossing angle resolution in ° of our model (y-axis)
for various SNRs in dB (x-axis). Each curve corresponds to a
specific number of encoding gradient directions (cf. legend).

3.2.2. Real data experiments

We propose the cone glyph to visualize the parameters that
define the EAP in Eq.(5). In each voxel of the image, we dis-
play M cones, where M is the number of fiber compartments
that we included in the model. The axis of each cone lies
on the estimated FO ±µ in the corresponding compartment.
The radius of the cone is inversely proportional to the mea-
sure of anisotropy κ + 1 (meaning that, the more anisotropic
the compartment, the thinner its corresponding cone) and the
height of the cone is proportional to the mean squared ra-
dial displacement (κ + 1)λ (meaning that the longer water
molecules diffuse in the compartment, the longer its corre-
sponding cone). A line thus represent a trustworthy estimated

4https://www.irisa.fr/visages/benchmarks/



FO while a disk indicates the contrary. Figure 2 shows that
our model is capable of accurately estimating crossing fibers
from LARD images with low spatial resolution.

Fig. 2. Cone visualization of the EAP on the 42-th axial slice
of the subject’s brain. Zoom on an extremity of the corpus
callosum known to contain crossing fibers. Colors encode the
FO: left/right (red), front/back (green), top/bottom (blue).

4. DISCUSSION & PERSPECTIVES

In this paper, we proposed a new parametric mixture model
for the EAP based on non-Gaussian pdfs. It can be es-
timated from LARD images with low spatial resolution
(b= 1500s/mm2, ng= 30, 2x2x2 mm3 voxels). The cor-
responding CAR of about 30° outperforms the CAR ob-
tained with the current standard method Q-Ball Imaging
[15] for the estimation of crossing fibers, which is around
60° at a higher angular resolution (ng= 81). Since our
model is adapted to clinical brain imaging, it can be used
to re-analyze all the DW data sets acquired over the past
years. Quantities akin to the fractional anisotropy (FA) and
the mean diffusivity (MD) [16] can also be derived from
the Gaussian part of our model and by analogy with DTI:

FA = κ
(
(κ+ 1)2 + 2

)−1/2
and MD = (1 + κ/3)R2(κ+ 1)−1.

Some complementary analyses however remain to be
carried out and will be the object of a future work to get:
(i) a deeper comparison with the most popular state-of-the-
art methods, (ii) some statistical assessment of the above-
mentioned versions of FA and MD, and (iii) a model se-
lection procedure for the choice of the number M of fiber
compartments.
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