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Abstract 

Parkinson’s Disease (PD) involves the degeneration of dopaminergic (DA) neurons in the 

substantia nigra pars compacta (SNc) that is thought to cause the classical motor symptoms of this 

disease. However, motivational and affective impairments are also often observed in PD patients. 

These are usually attributed to a psychological reaction to the general motor impairment and to a loss 

of some of the neurons within the ventral tegmental area (VTA). We induced selective lesions of the 

VTA and SNc DA neurons that did not provoke motor deficits, and showed that bilateral dopamine 

loss within the SNc, but not within the VTA, induces motivational deficits and affective impairments that 

mimicked the symptoms of PD patients. Thus, motivational and affective deficits are a core impairment 

of PD, as they stem from the loss of the major group of neurons that degenerates in this disease (DA 

SNc neurons) and are independent of motor deficits.  
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Main text: 

 

Parkinson’s disease (PD) is mainly characterized by a progressive degeneration of midbrain 

dopaminergic (DA) neurons along a caudorostral and lateromedial gradient, with a marked loss of 

neurons in the substantia nigra pars compacta (SNc)1, projecting to the dorsal striatum along the 

nigrostriatal pathway2, and a more modest loss in the ventral tegmental area (VTA)1, projecting to 

limbic and cortical areas along the mesolimbic and mesocortical pathways2, respectively. 

In addition to the classical motor symptoms, several neuropsychiatric symptoms, such as 

depression, anxiety and motivational deficits (apathy), are frequently observed in PD patients3, 4. The 

underlying pathological mechanisms have not yet been elucidated, but these motivational and 

affective impairments are generally attributed to the patient’s psychological reaction to the profound 

motor deficit and to the associated loss of dopaminergic neurons in the VTA4, 5. This 

pathophysiological concept stems from a dichotomous vision of the functional role of mesencephalic 

DA neurons, in which motor function is attributed to the nigrostriatal system, originating from the SNc, 

and motivational and affective functions are attributed to the mesocorticolimbic system, originating 

from the VTA2, 6, 7. 

Most of the data that have been used to ground this dichotomous vision of VTA-SNc neurons 

implication in PD symptoms have been generated using lesions of these neurons, involving various 

degrees of destruction of bordering zone of the VTA and SNc. Therefore, large SNc lesions inducing 

profound motor deficits also involve the lateral part of the VTA. Conversely, the VTA lesions used to 

attribute motivational properties to this structure always involve destruction of the medial part of the 

SNc6, 8. Consequently, the origins of the motivational symptoms in PD remain unresolved, not least 

because disentangling the potential motivational and mood-related deficit alterations from motor 

impairments remains a challenging issue in animal models of PD9. 

We have developed a lesional model, based on the stereotaxic injection of the 

catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) into precise areas of the rat brain, in 

which degenerations of the DA mesocorticolimbic and nigrostriatal systems can be clearly separated 
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and in which the motor skills of the animals are preserved. We evaluated several aspects of behavior 

and found that bilateral dopamine loss within the SNc, but not within the VTA, caused motivational 

deficits and affective impairments resembling some of the neuropsychiatric symptoms observed in PD 

patients.  
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Results 

 

Bilateral partial lesions of the mVTA or SNc result in distinct, non overlapping, complementary 

patterns of DA denervation 

mVTA  and SNc lesions produce two distinct, non overlapping, complementary, patterns of bilateral 

DA denervation throughout the striatum, as revealed by decreases in tyrosine hydroxylase (TH)-

immunoreactivity (IR) and striatal DA contents (Fig. 1 and Fig. S1). The mVTA lesions preferentially 

affected the ventral part of the striatum, resulting in a 40 to 60% decrease in TH-IR density within the 

nucleus accumbens. The extent of the mVTA lesions therefore mimicked the loss of dopaminergic 

innervation observed in the ventral head of the caudate nucleus in PD patients10. The SNc lesion was 

associated with a similar decrease in TH-IR density, along the rostrocaudal extent of the dorsal 

striatum, predominantly in its lateral portion (~70%). 

 

Bilateral partial DA lesions of the mVTA or SNc do not induce locomotor deficits 

 As expected with such partial striatal DA denervation11, neither SNc nor mVTA lesions impaired 

sensorimotor coordination on an accelerating rotarod or spontaneous locomotor activity (Fig. 2A, B). 

Furthermore, despite a slight alteration of stepping adjustment in SNc DA-lesioned rats (Fig. 2C), no 

impairment was observed with regards to fine-motor velocity or ambulatory coordination in an 

automated laboratory gait analysis system (Fig. 2D). 

 

Bilateral partial DA lesions of the SNc, but not of the mVTA, decrease general behavioral 

activity 

The lack of a major motor deficit after partial lesioning of the SNc allowed us to study specifically the 

role of the DA nigrostriatal system in motivational processes, in the absence of the usual potential bias 

related to locomotor alterations. Apathy is one of the major non motor symptoms of PD3, 4. Apathy is 

defined as a lack of motivation, or a reduction in “goal-directed behaviors”12, with a global deficit in self-

initiation and maintenance of voluntary and purposeful behavior, resulting in low levels of activity and a 
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loss of interest in sources of reinforcement13-15. Interestingly, the mVTA lesions had no significant effect 

on general consummatory responses, measured as water and food intake over a 24-hour period, 

whereas SNc lesions decreased these behaviors (Fig. 3A and B) and were associated with a slower 

weight gain (Fig. 3C), sometimes associated with a transient starvation state after surgery (see online 

Methods). Like apathetic patients12, 13, rats with DA lesions of the SNc, but not of the mVTA, displayed 

a decrease in social interaction (Fig. 3D) that could not be attributed to an olfactory deficit, since neither 

attraction to an appetitive odor (coconut, Fig. 3E) nor avoidance from an aversive (acetic acid, Fig. 3F) 

odor was altered by the DA lesions. 

 

Bilateral partial DA lesions of the SNc, but not of the mVTA, specifically impair motivated 

behaviors 

 This aspect of behavior was investigated further, in various non operant and operant tasks, including 

place preference, instrumental responding and runway tasks for palatable food. The use of this 

approach made it possible to distinguish between the effects of the lesion on preparatory and 

consummatory components of motivated behaviors. Specifically, the acquisition of a runway task 

(progressive reduction in the latency to reach and to start to eat a palatable food at the end of a 

straight alley) was similar in all conditions, demonstrating an absence of learning deficits (Fig. 4A). 

However, SNc DA lesions decreased asymptotic performance, essentially due to a greater number of 

interruptions and route reversals in SNc-lesioned than in sham rats, resulting in a smaller number of 

direct runs to the goal (Fig. 4A). These observations are consistent with a weaker motivation to reach 

the goal16 or an approach/avoidance conflict17, that cannot be attributed to deficits in Pavlovian 

associative processes or in the reinforcing properties of the palatable food, as neither type of lesion 

affected performance in conditioning place preference (CPP) for the same food (Fig. 4B). 

 An effect of SNc lesion on preparatory behavior was further demonstrated by a dramatic 

impairment of instrumental responding for a sucrose solution in SNc lesioned rats as compared to 

both sham and mVTA lesioned rats (Fig. 4C and S3A-B), the latter even tending to outperform 

controls, both during acquisition and when the workload required to obtain the reward increased 

exponentially under a progressive ratio schedule of reinforcement, an index of motivation18 (Fig. S3C). 
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The reduced behavioral responses of SNc-lesioned rats cannot be attributed to an impairment in 

instrumental learning, as their capacities to discriminate between the active and inactive (control) lever 

throughout the task were preserved (Fig. S3B), or to a decrease in sensitivity to the motivational 

properties of sucrose, as demonstrated by their clear preference for the same sucrose solution in a 

two-bottle choice procedure (Fig. 4D and S4A). Similar results were obtained with saccharin, a non 

caloric sweetener (Fig. S4B), excluding an effect of potential metabolic confounding factors. In this test, 

lesioned animals were also able to differentiate between two saccharin concentrations and to shift their 

preference toward the concentration supplying the greatest reward (Fig. S4C). Thus, the poorer 

operant performances of the SNc lesioned animals do not result from a learning deficit or a change in 

reward or hedonic processing. Instead, they reflect a profound decrease in motivation to work to obtain 

the reward. 

 This deficit in the motivational preparatory responding also affects novelty-seeking, 

operationalized by the acquisition of instrumental conditioning reinforced only by contingent 

presentations of a “novel” cue-light19. As shown on Fig. 4E, this cue-light acted as a robust positive 

reinforcer in both sham groups and mVTA-lesioned rats, but not in SNc-lesioned animals. This result is 

of particular interest because neither mVTA nor SNc lesions impaired preference for a novel 

environment in a non instrumental novelty preference procedure (Fig. 4F), thereby suggesting that 

interest for novelty was unaffected. Again, a marked motivational deficit was observed specifically in 

animals with SNc DA lesions, when an instrumental preparatory action was required. 

 These between-subject differences specific to the SNc lesioned rats were further supported by 

dimensional analyses. Thus, whereas linear regression analyses yielded no significant 

correlations in the runway (data not shown), robust negative correlations were found 

between operant performances in the sucrose (Figure 4C) and cue-light self-administration 

procedure (Figure 4E) and the loss of TH immunoreactivity within the dorsal striatum for the 

SNc group. Interestingly, these correlations were not found within the NAc for the VTA group. 

These data therefore strengthen the implication of nigrostriatal DA in motivated behaviors. 
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Bilateral partial DA lesions of the SNc, but not of the mVTA, induce depressive and anxiety-

related behaviors 

This generalized lack of motivation seems to present face validity with regards to the pathophysiology 

of PD, which is frequently accompanied by mood disorders related to DA denervation, including 

depression and anxiety3-5. Consistent with observations in humans, SNc-lesioned rats also displayed a 

depressive-like behavior, as revealed by an increase in the time they spent immobile in the forced-

swim test, whereas no such effect was observed in mVTA-lesioned rats (Fig. 5A and S5A). Similarly, 

anxiety-related behaviors, reflected by a reduced latency to enter in the dark side of a light/dark 

apparatus (Fig. 5B and S5B) and a decreased time spent in the open arms of an elevated plus-maze 

(Fig. 5C and S5C), were seen in SNc-, but not mVTA-lesioned animals. Therefore, only SNc DA 

lesions affected mood-related behaviors. 

 For these affective-related behaviors, a significant negative correlation was found 

between the latency to enter into the dark chamber in the light/dark avoidance test and loss 

of TH immunoreactivity within the dorsal striatum (Figure 5B) suggesting that the observed 

increase in anxiety is related to the degree of striatal dopamine depletion. However, no 

similar correlations were found in the elevated plus-maze and the forced-swim test (Figure 

5A,C).  

 

Reversion of the behavioral deficits resulting from nigrostriatal DA denervation by 

pharmacological DA agents 

To further investigate the role of DA and validate our experimental approach, we tested whether 

subchronic administration of pharmacological DA agents classically used in PD could reverse some of 

the behavioral impairments induced by SNc lesions. The depressive- and anxiety-like behaviors 

displayed by SNc-lesioned rats were reversed by the D2/D3 agonist ropinirole and by L-dopa (Fig. 6A-

B and S6A-B). Both pharmacological DA agents have been shown to have beneficial effects on 

apathetic symptoms and mood in PD3, 15. These findings thereby provide an interesting predictive 

validity for this model, in terms of the causal implication of DA. In addition, ropinirole clearly improved 

motivated behaviors of SNc-lesioned rats, in an operant sucrose self-administration procedure (Fig. 
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6C and S6C-D). The selective serotonin reuptake inhibitor (SSRI) citalopram had no effect on 

motivated and depressive-like behaviors in lesioned animals (Fig. 6A and C, and S6), consistent with a 

selective role for DA, although the effect of this drug on anxiety-like behaviors (Fig. 6B) suggests a 

possible interaction with the serotoninergic system. 
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Discussion 

This study provides new insights into the pathophysiological mechanisms underlying the 

neuropsychiatric symptoms of PD. Indeed, our data clearly demonstrate that selective bilateral and 

partial lesions of the SNc, but not of the mVTA, induce a profound deficit in motivated behaviors and 

related affective changes. These behavioral deficits were selectively reversed by L-dopa and by the 

direct activation of the D2/D3 receptors with ropinirole, confirming the critical role played by DA. 

Studying the non motor functions of the DA nigrostriatal system has remained a critical issue, 

due to the potential influence of motors deficits on the behavioral performances of the animals and the 

difficulty of targeting this pathway specifically. For example, large lesions of the DA nigrostriatal system 

and genetically-induced complete DA depletion lead to the so-called “lateral hypothalamic syndrome”, 

characterized by a dramatic aphagic and adipsic state6, 20, 21, a phenotype in some ways similar to the 

decrease in consummatory responses we observed in SNc-lesioned animals. However, it was not 

clear whether these impairments resulted from a pure motivational deficit or from the strong akinesia 

induced by the lesion, and whether they were specific to the nigrostriatal system. Similarly, previous 

studies attempting to model cognitive dysfunctions and neuropsychiatric symptoms in PD with 

unilateral or bilateral 6-OHDA lesions in rats or MPTP-lesioned monkeys, have rarely been able to 

circumvent possible motor confounding factors and did not systematically aim to target the DA 

nigrostriatal system selectively9, 22, 23. In the present study, with the use of partial and bilateral DA 

denervation, we were able to disentangle the non motor from the motor function, an approach that 

was further confirmed by the lack of specific relationship between individuals presenting no or mild 

motor deficits and their behavioral performances (data not shown). Thus, the lack of effect of the 6-

OHDA lesions on several aspects of sensorimotor and ambulatory behavior suggests that motor 

alterations cannot account for the strong phenotype associated with partial DA denervation of the 

nigrostriatal system evidenced in this study.  

These results therefore clearly demonstrate that selective bilateral lesions of the SNc, but not 

of the mVTA, induce a profound deficit in motivated and affective-related behaviors. While the lack of a 

robust correlation between affective-related deficits and dorsal striatum DA depletion suggests a 

potential role of extra-striatal regions receiving DA inputs from the SNc such as the amygdala or the 
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orbitofrontal cortex2 in such behaviors, the clear-cut correlation between deficits in operant 

performances and the degree of TH loss in the dorsal striatum univocally emphasizes the predominant 

role of the DA nigrostriatal system in specific motivational processes.  This result is particularly striking 

as, by contrast, a partial DA lesion of the mVTA, an area known to be involved in reinforcement and 

motivational processes6, 24-26, did not modify any of the non motor behaviors evaluated here. 

Interestingly, sensitivity to reward and Pavlovian processes, which are dependent on the DA 

mesocorticolimbic system24, 26, were unaffected by the lesion, which seems to alter the preparatory 

aspect of instrumental responses in a specific manner. Consistent with these findings, the SNc is 

located at the interface between the neurobiological systems underlying goal-directed and habitual 

control of behavior24, 27, 28, where DA neurons encode crucial motivational and reward-related signals30. 

The lesion generated is therefore likely to strongly interfere with the chain of processes that increase 

motivation and energize actions for a specific goal. 

The behavioral phenotype induced by the SNc DA lesion is also reminiscent of apathy and 

related neuropsychiatric symptoms observed in PD patients4, 5, suggesting that the DA nigrostriatal 

system plays a primary role in non motor deficits in PD. It has been suggested that apathy in PD may 

result from a corticostriatal dysfunction linked to the loss of nigrostriatal DA tone13. Furthermore, a 

recent study using an implicit incentive task14 reported an association of apathy in PD and non PD 

patients with changes in the motivational processes normally responsible for translating expected 

reward into effort and action, with no change in the perception of reward value. These findings are 

therefore strikingly similar to the motivational deficits observed in our experimental model and its 

underlying neurobiological substrate. 

 The adverse phenotype induced by the SNc lesion is reversed, at least partly, by 

pharmacological DA agents known to have positive effects on apathetic symptoms and mood in PD3, 

15. While both L-dopa and ropinirole completely reversed depressive- and anxiety-related behaviors, 

only ropinirole significantly improved motivated behaviors in lesioned animals. This may reflect the 

differences in the pharmacological properties of the two DA drugs, with L-dopa acting presynaptically 

on a denervated system and ropinirole having a stronger effect through the direct activation of 
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postsynaptic receptors, including, in particular, the D3 receptor, a potent regulator of mood and 

motivated behaviors29. Indeed, it has been suggested that D2/D3 agonists such as ropinirole, may be 

more effective than other DA agents for the treatment of apathy, due to their high affinity for D2 and D3 

receptors3, 15. By contrast, the SSRI citalopram had no beneficial effect on motivated and depressive-

like behaviors, consistent with several clinical observations suggesting that SSRIs are much less 

effective than DA agonists for reducing depressive symptoms in PD30, 31 and may even have a 

deleterious effect on apathy32. These data strengthen the validity of our experimental approach in 

regard to PD-related neuropsychiatric symptoms and the critical role of DA. 

The effect of citalopram on anxiety-related behaviors indicates however a possible implication 

of the serotoninergic system. Electrophysiological and neurochemical studies have reported a strong 

interaction between the dopaminergic and serotoninergic systems, with a prominent modulation of 

midbrain DA neuronal activity by the raphe nuclei33. Moreover, complex interactions between the 

serotoninergic and dopaminergic system has been reported in PD34 and related animal models35. 

Such interactions may account for the complex influence of serotonin on the DA dysfunction 

highlighted by the present data. 

In conclusion, this study highlights a critical role in motivation for the SNc that had been 

previously largely neglected and attributed to the DA mesoaccumbal pathway2, 27. These data also 

demonstrate that motivational and affective deficits are a core impairment of PD, independent of the 

motor deficits and resulting from the loss of the major neuronal group known to degenerate in this 

disease (DA SNc neurons). This new insight into the pathophysiological mechanisms of mood and 

motivational dysfunctions in PD will facilitate the design of new treatments through a more balanced 

approach taking into account the entire spectrum of deficits observed in this brain disease.  
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Figure legends 

 

Fig. 1. Bilateral partial lesions of the mVTA or SNc result in distinct, non overlapping, 

complementary patterns of DA depletion throughout striatal territories. (A and B) 

Representative photomicrographs of coronal sections stained for TH in striatal (+1.7 to 0.7 mm 

anterior to bregma) (A) and mesencephalic (-5 to -5.8 mm anterior to bregma) (B) regions according to 

the stereotaxic atlas of Paxinos and Watson36, 37.  Bar = 1 mm. The intensity of the gradient of color 

(white to green or white to blue) in schematic sections corresponds to the measured DA lesioned area 

in the different brain structures studied for each lesion performed. mVTA lesion are shown in green 

and SNc lesion in blue. The highest intensity of green or of blue color (100%) indicates that all animals 

had lesions in the corresponding area, whereas the lowest color intensity (white, 0%) corresponds to a 

non lesioned or denervated area. (C and D) Quantification of the loss of TH staining in the different 

mesencephalic (C) and striatal (D) structures, expressed as percentage of the mean value obtained 

for sham-operated animals. Two-way ANOVAs revealed significant interactions between the lesion 

and the brain region considered (Fs > 9.49, Ps < 0.001). n = 22-28, *P < 0.05, **P < 0.01, ***P < 

0.001. mVTA, medial ventral tegmental area; NAc, nucleus accumbens; SNc, substantia nigra pars 

compacta.  

 

Fig. 2. Bilateral partial 6-OHDA lesions of either the mVTA or SNc do not impair locomotion. (A, 

B) DA lesions did not affect the latency to fall from an accelerating rotarod (A) (Ps > 0.42, n = 22-28), 

or horizontal ambulatory activity (B) during a 20 minutes period in an open area (no effect of lesion: Fs 

< 0.91, Ps > 0.35 and no lesion x time interaction: FS < 0.64, Ps > 0.88, n = 11-18). (C) A two-way 

ANOVA showed a marginal effect of the SNc lesions (F1,144 = 4.04, P = 0.05) and lesion x paw 

interaction (F3,144 = 2.54, P = 0.06) on the number of adjusting steps. No such effects were found for 

the mVTA lesions (Fs < 1.91, Ps > 0.18), n = 22-28. (D) SNc lesions had no effect on gait parameters 

analyzed with an automated gait analysis system (no effect of lesion: Fs < 2.37, Ps > 0.14 and no 

lesion x paw interaction: Fs < 0.92, Ps > 0.43, n = 12-14). 
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Fig. 3. Bilateral partial 6-OHDA lesions of the SNc, but not of the mVTA, decrease 

consummatory responses, weight gain and social interaction without affecting olfaction. (A, B) 

Water (A) and food (B) intake in the homecage were measured over a 24-hour period. (B) Both 

lesions resulted in a loss of weight after surgery, but mVTA-lesioned animals recovered during the 

three weeks following surgery, whereas SNc-lesioned animals continued to gain less weight than the 

controls (Effects of lesion: Fs > 4.48, Ps < 0.05 and significant lesion x day interaction: Fs > 5.16, Ps < 

0.001). (D) SNc lesions reduced the time spent in social interaction with a congener. (E, F) 6-OHDA 

lesions did not affect attraction toward an appetitive (coconut, E) or avoidance from an aversive (acetic 

acid, F) odor n = 12-18. *P < 0.05, **P < 0.01, ***P < 0.001, Sham-operated vs. Lesioned. 

 

Fig. 4. Bilateral partial 6-OHDA lesions of the SNc, but not of the mVTA, impair motivated 

behaviors. (A, B) SNc (lesion x session interaction: F6,108 = 2.65, P < 0.02, n = 19-22) but not mVTA 

(lesion x session interaction: F6,66 = 0.84, P = 0.55, n = 12-15) lesions increased the latency to reach a 

palatable food in a runway paradigm at the asymptotic level (A), with no incidence on CPP for the 

same reward (B, effect of conditioning: FS  > 11.61, Ps < 0.001, no effect of lesion: FS  < 0.50, Ps > 0.48 

and no interaction: FS  < 0.16, Ps > 0.69, n = 10-17). (C, D) SNc (*P < 0.05) but not mVTA (P = 0.41) 

lesions decreased operant sucrose self-administration (C, representation of the mean of the three last 

FR1 sessions (first graph) and linear regressions between sucrose deliveries and the loss of TH in the 

NAc (second graph) and the dorsal striatum (third graph) for mVTA and SNc lesions respectively, n = 

6-9), while having no significant effect on sucrose preference in a two-bottle choice procedure (D, Ps > 

0.08, n = 12-19).  (E) SNc but not mVTA lesions (Effect of lesion: F1,98 = 14.1, P < 0.01 and F1,91  = 0.01, 

P = 0.94 respectively, n = 7-8) reduced self-activation of a cue-light during an operant procedure. 

Linear regressions between cue-light deliveries and the loss of TH in the NAc and the dorsal striatum 

for mVTA and SNc lesions respectively. (F) No effects of the 6-OHDA lesions were found on the 

preference for a novel environment (Ps > 0.73), n = 6-8.*P < 0.05, **P < 0.01, Sham-operated vs. 

Lesioned. 
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Fig. 5. Bilateral partial 6-OHDA lesions of the SNc, but not of the mVTA, cause a broad 

spectrum of affective impairments. (A-C) SNc-lesioned rats displayed increased immobility in the 

forced-swim test (A, effect of lesion: (F1,47 = 4.71, p < 0.05), no effect of site: (F1,47 < 1) and a 

significant interaction between both factors: (F1,47 = 4.15, p < 0.05, n = 12-19), and anxiety-like 

behaviors, as reflected by a reduction in the latency to enter into the black compartment in a light/dark 

avoidance test (B, effect of lesion: (F1,59 = 4.73, p < 0.05), no effect of site: (F1,59 < 1) and no 

significant interaction: (F1,59 = 2.07, p = 0.15, n = 12-19) and in the time spent in the open arms of 

an elevated plus-maze (C, marginal effect of the lesion: (F1,71 = 3.79, p = 0.06), no effect of site: 

(F1,71 = 0.06, p = 0.80), but a significant interaction between both factors: (F1,71 = 4.37, p < 

0.05), n = 15-22). No significant linear regressions were found in the forced-swim test (A) and 

in the elevated plus-maze (C) while a significant negative correlation was found between the 

latency to enter into the dark chamber in the light/dark avoidance test and loss of TH within 

the dorsal striatum (B). **P < 0.01, Sham-operated vs. Lesioned. 

 

Fig. 6. Effects of L-dopa, ropinirole and citalopram on the behavioral changes induced by the 

SNc DA lesion. Effects of chronic intraperitoneal administration of L-dopa (12.5 mg/kg), ropinirole (1 

mg/kg) or citalopram (10 mg/kg) evaluated in the forced-swim test, (A) the elevated plus-maze and (B) 

in an operant sucrose self-administration procedure (C). Significant lesion x treatment interactions 

were found for (A) and (B) (Fs > 2.94, Ps < 0.05) but not for (C) (significant effect of lesion: F1,63 = 

16.53, P < 0.001, but no interaction: F3,63 = 0.78, P = 0.51). n = 6-11. *P < 0.05, **P < 0.01, ***P < 

0.001, Sham-operated vs. Lesioned. 
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Online Methods 

Animals 

Experiments were performed on male Sprague Dawley rats (Janvier, Le Genest-Saint-Isle, France) 

weighing 180 g (6 weeks old) at the time of surgery. Animals were housed four per cage until the 

second week after surgery and then transferred to individual cages until the end of the study, under 

standard laboratory conditions (12 h light/dark cycle, with lights on at 7:00 am) with food and water 

available ad libitum, unless otherwise stated. Protocols used complied with the European Community 

Council Directive of 24 November 1986 (86/609/EEC) for the care of laboratory animals, French 

Ministry of Agriculture regulations (authorization no. 38-R1001) and French guidelines for the use of 

living animals in scientific investigations. They were approved by the Grenoble-Institut des 

Neurosciences ethics committee, under agreement number 004. 

 

Bilateral 6-OHDA lesions 

All animals were anesthetized with a mixture of xylazine (15 mg/kg i.p.) and ketamine (100 mg/kg, i.p.) 

and treated with desipramine hydrochloride (25 mg/kg s.c.; Sigma, St Quentin-Fallavier, France) to 

protect noradrenergic neurons38, 30 min before 6-OHDA injection. Rats were secured in a Kopf 

stereotaxic apparatus (Phymep, Paris, France) and 6 µg of 6-OHDA dissolved in 2.3 µl of sterile 0.9% 

NaCl with 0.2% ascorbic acid (Sigma, St Quentin-Fallavier, France) were injected bilaterally, at a flow 

rate of 0.5 µl/min. The solution was delivered to the medial plane, to target the medial ventral 

tegmental area (mVTA group), or into the medial part of the substantia nigra pars compacta (SNc 

group). The stereotaxic coordinates of the injection site relative to bregma were as follows, according 

to the stereotaxic atlas of Paxinos and Watson (1998)36: (1) mVTA lesion: anteroposterior (AP), -

5.6 mm; lateral (L), +1.0 mm, with a 10° angle toward the midline, and dorsoventral (DV), -8.1 mm; (2) 

SNc lesion: AP, -5.4 mm; L, ±1.8 mm and DV, -8.1 mm, with the incisor bar at +3.2 mm below the 

interaural plane. After each injection, the cannula was left in position for 5 min to allow the injected 

solution to be absorbed and to minimize the spread of the toxin along the needle tract. An identical 

procedure was used for sham-operated controls, but with 2.3 µl of vehicle (0.9% NaCl, 0.02% ascorbic 
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acid). After recovery from anesthesia, animals returned to the facility for three weeks, to allow the 6-

OHDA lesion to develop and stabilize38, before the beginning of the behavioral experiments. 

Transient starvation states occurred two to three days after surgery in a subset of SNc-lesioned 

animals (around 20%). These animals received supplementation with a high-caloric liquid diet and 

palatable food for 1 to 2 weeks. Animals that did not recover (< 5%) were discarded from the 

experimental procedure. This phenotype was never observed in the Sham and mVTA lesions groups. 

 

Histological analysis 

Immunohistochemistry. Immunohistochemical analysis was carried out as previously described39. 

Briefly, rats were killed under chloral hydrate anesthesia at the end of the behavioral experiments, 

perfused intracardially with paraformaldehyde and brains removed. Free-floating 30 µm-thick coronal 

sections from the mesencephalon and the striatum were incubated with an anti-TH antibody (mouse 

monoclonal MAB5280, Chemicon, Temecula, USA; 1:2500), and then with a biotinylated goat anti-

mouse IgG antibody (BA-9200, Vector Laboratories, Burlingame, CA, USA; 1:500). Immunoreactivity 

was visualized with avidin-peroxidase conjugate (Vectastain ABC Elite, Vector Laboratories, 

Burlingame, CA, USA).  

 

Quantification of the extent of the mesencephalic DA lesion and of striatal DA denervation. 

TH-immunolabelling detection of DA neurons and terminals were evaluated under a light microscope 

(Nikon, Eclipse 80i) coupled to the ICS FrameWork computerized image analysis system (TRIBVN, 

2.9.2 version, Châtillon, France).  

For quantification, six selected TH-labeled coronal sections for each experimental animal, 

corresponding to three antero-posterior levels of the striatum (+0,7 to 1.7 mm anterior to bregma) and 

of the mesencephalon (-5 to -5.8  mm anterior to bregma), were digitized with a camera (Pike F-421C, 

ALLIED Vision Technologies, Stadtroda, Germany). For each section, six subregions within the 

striatum and three subregions within the mesencephalon were chosen, taking into account the 

topography of DA innervation2, 40, as indicated in Fig. S1A and B. 
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For all quantitative measurements, masks from these different striatal and mesencephalic subregions 

were drawn with the computer analysis system to ensure that appropriate comparisons were made 

between homologous anatomical regions. Optical densities (OD) were measured for each striatal and 

mesencephalic subregion, and the mean OD was calculated with ICS FrameWork software (TRIBVN, 

2.9.2 version, Châtillon, France). OD values were measured for the denervated and non denervated 

territories of the lesioned animals for each section analyzed and were compared with those for the 

homologous regions in sham-operated animals. The OD value obtained for an unlabeled area (the 

corpus callosum) was used as the background and was subtracted from each of the OD values 

measured.  

A simplified and classic subdivision of mesencephalic and striatal areas is shown in Fig. 1, for 

conciseness and to take the nigrostriatal and mesolimbic projections into account. 

 

Brain tissue dopamine determination 

Three weeks after surgery, dorsal striatum and NAc were dissected out and processed as previously 

described41, for the determination of DA concentration with a liquid chromatography system 

(Shimadzu, France) coupled to an electrochemical detector (Decade, Antec Leiden, the Netherlands) 

and a C18 reverse-phase microcolumn (Aquasil, RP-18, 150×1 mm, 3 µm particle size, 

ThermoHypersil, maintained at 30°C). The mobile phase (50 mM NaH2PO4, 0.1 mM EDTA-Na2, 1.7 

mM sodium octyl sulfate, 4.5 mM KCl and 5% acetonitrile (vol/vol), adjusted to pH 3.10) was run at a 

flow rate of 0.06 ml/min. DA contents were determined by comparing DA peaks with external 

standards and were expressed as the amount of DA, in ng per mg of brain tissue. 

 

Behavioral procedures  

All rats were subjected to a sequence of behavioral tests, as summarized in Fig. S2. Different groups 

of animals were exposed to different sequences, as some combinations of tests, such as operant 

sucrose self-administration and cue-light self-administration or conditioned place preference (CPP) 

and novelty-preference, could not be performed on the same animal. However, all animals were 
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tested for potential locomotor deficits on the rotarod and in the stepping test. When animals were 

subjected to a long sequence of behavioral tests or pharmacological treatment, two subgroups of 

animals were constituted, and the order of the tests was reversed in the second subgroup (see group 

A and B in Fig. S3A and B), to ensure that the effects of the lesion or of a pharmacological treatment 

did not change over the course of the study. No effect of order was found, in any of the conditions 

tested (data not shown). In each experiment, all conditions (lesions and/or pharmacological 

treatments) were counterbalanced among the different test chambers according to a Latin-square 

design. Each apparatus was cleaned with 10% ethanol and 2% H2O2, and dried with a paper towel 

after each trial or session. 

 

Accelerating rotarod. Animals were first trained to remain on a rotarod (Harvard Apparatus, Holliston, 

MA, USA) turning at 4 rpm for more than 30 s. The rotation speed of the rod was then gradually 

increased, at a rate of 1 rpm every 8 s. Latency to fall from the rod was recorded three times for each 

rat. 

 

Stepping test. Animals were moved sideways along a smooth-surfaced table number of forelimb 

adjusting steps measured, as described by Olsson et al., 199542. The test was carried out three times 

for each paw, by two experimenters blind to the experimental conditions. 

 

Gait analysis. Gait was analyzed with an automated gait analysis system (GaitLab, Viewpoint S.A., 

Champagne au Mont d'Or, France). Rats were imaged from below, with a high-speed camera (~150 

frames per second), while they ran on a narrow glass corridor (7 × 90 cm), to identify paw step 

positions and moving speed. Different metrics were calculated, including speed, stride length, stance 

time, swing time and number of strides per second. After a period of training of one week, gait and 

ambulatory behaviors were recorded three times for each rat, on a final test day. 
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Locomotor activity. Rats were placed in a dimly lit white Perspex™ open arena (50×50×40 cm) and 

horizontal distances traveled were recorded with a video-tracking system (Viewpoint S.A., 

Champagne au Mont d'Or, France), over a 20-minute period. 

 

Olfactory tests. Tests were carried out in a dimly lit white open arena, with a video-tracking system. 

Olfactory avoidance and preference behaviors were evaluated by comparing the time the rats spent 

near two filter papers soaked in 40% acetic acid or in 50% coconut milk with the time spent near two 

filter papers soaked in distilled water. Acetic acid and coconut milk were used as they have been 

shown to be potent olfactory aversive43 and attractive44 cues, respectively. 

 

Runway task for food. Food-restricted rats (90% of their free-feeding weight) were trained to run from 

a start box (20x15x40 cm) to the end of a Perspex™ alley (100x15x40 cm) to obtained a palatable 

food (salted, cheese-flavor cookies, Belin, France) presented in a plastic bowl. Ambulatory pattern was 

recorded, together with the latency to reach the food at the end of the runway and to start to eat it, with 

a video-tracking system. Animals were allowed to eat for less than 30 s, to prevent early satiation16. A 

120 s cut off was used when animals did not complete the task. This procedure was repeated three 

times per day over a period of seven days. Performances were represented as a completion score16:  

(120 – latency to reach food)/120 x 100. 

 

Conditioned place preference for food. CPP chambers consisted of two compartments (40x33x35 

cm) differing in wall colors and floor texture, separated by a small (10 cm length) compartment45. A 

video-tracking system was used to measure the time spent in each compartment. During a 

preconditioning session, food-restricted rats (90% of their free-feeding weight) were placed in the CPP 

chamber and allowed to freely explore the three compartments for 15 minutes. Conditioning took 

place over eight consecutive days. During these sessions, animals were confined alternatively to one 

compartment with palatable food (Belin, France) for the paired condition, or without food for the 

unpaired condition, and to the other without food for both the paired and unpaired conditions. For 
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testing, rats were allowed to explore the entire chamber for 15 minutes, as during the preconditioning 

session. Preference scores were expressed as the difference between the time spent in the food-

paired compartment during the CPP test and the preconditioning test. 

 

Evaluation of sucrose preference. Rats were given 24-h concurrent access in their home cage to 

two graduated 250 ml plastic bottles (Techniplast, France), for three days. One of these bottles 

contained tap water, whereas the other contained 2% sucrose (Sigma, St Quentin-Fallavier, France) 

in tap water. Rats and bottles were weighed daily, with the position of the bottles (left or right) 

alternated, to control for side preference. The first day was used as an acclimation period. The 

volumes of sucrose solution and water consumed on the second and third days were averaged to 

determine sucrose, water and total fluid intake (ml/kg), and preference for sucrose over water (sucrose 

intake/total intake, expressed as a percentage). 

 

Evaluation of saccharin preference. Rats were given 24-h concurrent access to a bottle containing 

tap water and another containing 0.002% saccharin (Sigma, St Quentin-Fallavier, France) in tap 

water, using a procedure similar to that for sucrose. Rats were then given access to two bottles, 

containing 0.002% and 0.02% saccharin, respectively, for the next three days. 

 

Operant sucrose self-administration. Rats were first habituated to voluntary consume 2% sucrose 

solution in a two-bottle choice procedure, as described above. They were then trained to self-

administer a 2% sucrose solution in operant chambers (Med Associates, St. Albans, VT, USA) as 

previously described46, under a fixed ratio 1 reinforcement schedule (FR1), with an active, reinforced, 

lever, for which presses resulted in the delivery of 0.2 ml of the sucrose solution, and an inactive, non 

reinforced, lever. Once performances had stabilized (less than 20% performance variation over three 

consecutive sessions), rats were subjected to a progressive ratio schedule session, in which the 

number of active lever presses required for a reward increased exponentially after each reward, 

according to Roberts’ equation47. The session ended when the rat failed to complete a response 
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requirement (i.e., a ratio) within one hour. The breakpoint was defined as the final ratio completed by 

the animal47. 

 

Cue-light self-administration. A naive set of rats (i.e., that had not been subjected to the operant 

sucrose self-administration procedure) was tested daily for 1 h, during 8 days, for lever responses to 

the contingent presentation of a 6 s cue-light (FR1), located 4 cm above the active lever, in the self-

administration chambers described above. The sides on which the inactive and active levers were 

located (right or left), were distributed evenly between the different conditions. 

 

Novelty preference. This procedure was adapted from a method described elsewhere48. We used 

the same place preference chambers as described above for the CPP for food, with the same video-

tracking system set-up. Rats were pseudorandomly exposed for 20 min to one compartment 

(‘familiar’). At the end of this habituation phase, animals were allowed to explore the whole chamber 

(familiar and new compartments) for 15 min. A novelty preference index was calculated as follows: 

time spent in the new compartment/(time spent in the new compartment + time spent in the familiar 

compartment) x 100. 

 

Social interaction. Rats were placed in a dimly lit white Perspex™ arena (50x50x45 cm), for 10 min, 

for acclimatization to their surroundings. An unfamiliar male congener was then introduced into the 

arena and social interaction was video-recorded for 10 min. The total time that the test rats spent 

engaging in social interaction behaviors (listed and defined in49) was scored by two observers blind to 

the experimental conditions. 

 

Elevated plus-maze. The elevated plus-maze (Viewpoint S.A., Champagne au Mont d'Or, France) 

consists of two opposing open arms and two opposing arms enclosed by 40 cm high walls, and was 

placed in a dimly lit room. Each arm was 50 cm long and 10 cm wide and made of black Perspex™, 

suspended 55 cm above the floor. The rats were placed in the center of the maze and their behavior 
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was recorded for 5 minutes with a video-tracking system. Number of entries into and total time spent in 

the open and closed arms were quantified by the video-tracking system. 

 

Light/dark avoidance test. The apparatus was made of Plexiglas and consisted of a light and a dark 

chamber (38x33x35 cm each), separated by an opaque Plexiglas wall with a 7 x 7 cm aperture, to 

allow the animals to move freely between the chambers. The light chamber was made of white walls, 

opened at the top, and was lit with a white incandescent light (100 watts) located 70 cm above the 

floor of the chamber. By contrast, the dark chamber was made of black walls, closed at the top, and 

was not lit. The animals were placed in the center of the light chamber, facing away from the opening 

toward the dark chamber, and were video-recorded for 5 min. Latency to the first entry into the dark 

chamber and the total amount of time spent in the light chamber were determined by two observers 

blind to the experimental conditions. 

 

Forced swim test. Rats were placed in a cylinder of 40 cm high and 20 cm in diameter, filled with 

water (24±1°C) to a depth of 30 cm, for 15 min. Twenty four hours later, they were placed in the same 

cylinder for 5 min. Animal activity was detected and recorded with a video-tracking system. 

 

Pharmacological procedures. Three weeks after 6-OHDA infusion, we initiated a sequence of 

behavioral tests on mSNc-lesioned rats, as described in Fig. S2B. Intraperitoneal administration of 

12.5 mg/kg of L-dopa (together with 15 mg/kg of benserazide), 1 mg/kg of ropinirole, 10 mg/kg of 

citalopram, or vehicle (0.9% NaCl), at a volume of 1 ml/kg, began two days before the start of the 

behavioral tests sequence. Injections were carried out 30 min before the beginning of each behavioral 

session. 

 

Data and statistical analysis 

Data were analyzed by t-tests or two-way ANOVAs, depending on the experimental design. When 

indicated, post-hoc analyses were carried out with the Bonferroni’s correction procedure or the method 

of contrasts. Dimensional analyses were performed by parametric simple linear regressions. 
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