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Abstract 

Purpose  

Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based 

on spatial fractionation of a high-dose x-ray beam into lattices of microbeams. The increase in 

lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological 

consequences of MRT on blood vessels have not been described. In this manuscript, we 

evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. 

Methods 

Tissue responses to MRT (two orthogonal arrays (2×400 Gy)) were studied using magnetic 

resonance-based measurements of local blood oxygen saturation (MR_SO2) and quantitative 

immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. 

Results 

In tumors, MR_SO2 decreased by a factor of 2 in tumor between day 8 and day 45 after 

MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, 

increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did 

not change normal brain MR_SO2, although vessel inter-distances increased slightly.   

Conclusion 

We provide new evidence for the differential effect of MRT on tumor vasculature, an effect 

that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain 

exposed to MRT remains sufficiently perfused to prevent any hypoxia. 
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Introduction 

 Synchrotron microbeam radiation therapy (MRT) uses high radiation doses delivered 

through near-parallel thin (25-75 µm) beams separated by few hundred microns (for review 

[1]). This unique irradiation modality slows, and sometimes ablates, brain tumors in rodents 

[2]. The mechanisms underlying MRT efficiency are not fully understood. In a previous study 

[3], we demonstrated that 9L tumor growth inhibition was correlated to a denudation of the 

tumor vascular endothelium, leading to significant decreases in tumor blood volume and 

vessel diameter [3]. This preferential effect of MRT on tumor vessels might induce tumor 

necrosis through a decrease in perfusion and oxygen supply. On the contrary, normal brain 

vessels exhibited a high radioresistance to spatially fractionated irradiations [3], even for 

doses up to 1kGy [4, 5] limited radiation damage occurred in unidirectionally irradiated 

normal brain tissues [2, 6]. Australian teams recently suggested a new hypothesis to explain 

MRT efficiency, stating that heavily irradiated tumor cells (“peak cells”) intermixing with 

sub-lethally exposed cells (“valley cells”) may increase tumor control via cell communication 

[7]. The only molecular response in support of tumoral tissues reacting to MRT according to 

that hypothesis, to our knowledge, is the description, by Bouchet and colleagues [3], of a high 

expression of the Vascular Endothelium Growth Factor (VEGF) in brain tumors exposed to 

MRT, but not in unirradiated tumors.  

Increase in VEGF after X-ray exposure is extensively reported in the literature but its 

role in radiation response remains controversial [8–11]. Radio-induced VEGF originates from 

different sources, e.g., from endothelial cells, tumor cells, and extracellular matrix. Radical 

Oxygen Species (ROS) produced by irradiated tissue and hypoxia induce the production of 

Hypoxia Inducible Factor 1α (HIF1α), which in turn stimulates the expression of angiogenic 

factors such as VEGF. HIF1α is also expressed in tumors after radiation-induced vessel 

necrosis and appears to regulate apoptotic molecular pathways [12]. Monitoring tumor 
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hypoxia before and after treatment becomes relevant in patients with glioblastoma since 

recurrent tumors are often hypoxic [13] and less radiosensitive. Indeed, tumor response to X-

rays is linked to local tumor oxygenation [14–16]. 

In this work, we characterized oxygenation changes induced by MRT on a rat brain 

model, 9L gliosarcoma (9LGS). We used a recently developed MR method [17] to measure 

local blood oxygen saturation (MR_SO2). Evolving changes in blood oxygen saturation were 

correlated to morphological modifications of the tumor vascular network and to the 

expression of GLUT-1 (GLUcose Transporter 1, a cellular hypoxia marker [18]), as assessed 

by immunohistology. 

. 
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Methods 

 Procedures related to animal care conformed to the Guidelines of the French 

Government (licenses #380325/#380321, authorized labs A3818510002/A3851610008/  

A3851610004). Rats were anesthetized with an intraperitoneal injection of xylazine/ketamine 

(64.5/5.4 mg.kg
-1

 for tumor implantations and irradiations) and with 2.5% isoflurane in air for 

each MRI session.  

 

Tumor implantations and MRT  

 9LGS cells (n=10
4
) were implanted in rat brains as previously described [19]. Nine 

days after inoculation, rats underwent an anatomical MR imaging (T2 weighted) in order to 

sort them into 2 groups of similar tumor size. On day 10 (D10), one group of rats was 

irradiated in microbeam mode at the European Synchrotron Radiation Facility (ID17, 

Grenoble, France). The detailed irradiation setup is described in [3]. Briefly, the synchrotron 

X-rays beam was collimated into a lattice of parallel, 50 µm-wide, microbeams separated on 

center by 200 µm. Two arrays of 40 microbeams, each 10 mm-high and ≈8 mm-wide, one 

anteroposterior, one lateral, were crossfired at the center of the tumor with an entrance dose of 

400 Gy each. The peak and valley doses were 350/700 Gy and 12.5/25 Gy in the 

unidirectionally/bidirectionally irradiated parts of the brain, respectively, as in the previous 

study [3].  

 

MR_SO2 Measurements  

MRI was performed at 4.7 T (Avance III console; Bruker) of the Grenoble MRI 

facility IRMaGe. Individual blood oxygen saturation maps were obtained in all rats listed 

under “MRI” in table 1, using a multi-parametric quantitative Blood Oxygen Level Dependent 

(BOLD) approach. This protocol, fully detailed in [17], uses several MR sequences to extract 
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the oxygenation information from a baseline T2* weighted signal. The MR protocol duration 

was about 30 min per animal for a spatial resolution of 234x234x1000 μm
3
.  

Blood samples of each rat were collected via the tail vein before and after each MRI 

session and examined in a blood gas analyzer (ABL 510, Radiometer, Copenhagen, 

Denmark). The MR_SO2 maps of each unirradiated rat and rats exposed to MRT (table 1, 

“MRI”) were superimposed on T2-weighted MRI images acquired at different times after 

9LGS implantation (Fig. 1a). To obtain the mean values shown in Fig. 1 b, we calculated the 

mean pixel value of MR_SO2 per individual rat in tumors and contralateral tissues. The mean 

values (of the mean pixel values obtained for individual rats) obtained for each group at 

different time points were plotted versus time (Fig. 1b) and compared by use of two way 

ANOVA Bonferroni post-tests.  

 

 

Histological procedures and quantitative immunohistology 

 Vessel examination and hypoxia quantifications 

The evolution of vessel morphology and GLUT-1 expression were analyzed on, 

18µm-thick frozen sections of brains sampled at D9, D18 and D55 after implantation. Briefly, 

after fixation and saturation, brain sections were incubated overnight at 4
°
C with primary 

antibodies (anti Type-IV collagen, (SouthernBiotech F5205-N795, 1/1000), anti RECA-1 

(AbDserotec MCA970R, 1/300) and anti GLUT-1 (ThermoScientific PA5-16793, 1/500)). 

Sections were washed and exposed to the secondary antibodies for 2h at room temperature. 

The sections were examined with a Nikon Eclipse E600 microscope equipped for 

epifluorescence.  

 Image analysis was performed using a home-made macro on ImageJ. After band pass 

filtering, colocalization maps were built using images corresponding for Type-IV collagen 
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and RECA-1 reactivity. The resulting images were pre-filtered (median) and segmented using 

an automatic thresholding technique [20]. The voronoi diagrams were calculated on the 

ultimate erodes of the vessels. The number of voronoi cells gave the number of vessels. The 

half distances between vessels (hDV) were derived from the resulting voronoi images. GLUT-

1 positive areas (GLUT-1+) were manually delineated on microscopic images and expressed 

in percentage of the total surface images. The means (per experimental group and day after 

inoculation) of hDV, vessel densities and GLUT-1+ were compared using a non parametric 

Mann-Whitney test (significant for p<0.05). 
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Results 

 

MRT reduced tumor oxygenation – MRI evaluation 

Figure 1a shows representative maps of MR_SO2 evolution in the tumor and 

contralateral hemisphere of unirradiated and of irradiated rats. The percentages of MR_SO2 

(means ± SD) in tumor and contralateral hemispheres are displayed in figure 1b. There were 

no significant changes in MR_SO2 during 9LGS growth in unirradiated rats (mean MR_SO2: 

72.0±9.9% (D9) and 70.2±3.2% (D18)). MRT induced a progressive and significant decrease 

of tumor MR_SO2 starting on D18 after MRT (from 75.1±7.9% (D9) to 60.6±5.6% (D18), 

p=0.046 compared with values in unirradiated rats, Fig. 1b). Blood oxygen saturation in 

individual tumors continued to decrease until the last measurement point (D55), reaching 

34.8±11.3% (p<0.001 compared with MRT group on D18). No significant changes of 

MR_SO2 occurred in contralateral brain tissues of unirradiated rats (D9 – D18) nor of rats 

exposed to MRT (D9 – D55) during the whole experiment, although there was a slight decline 

around D25 in irradiated rats. 

 

MRT-induced MR_SO2 reduction correlates with endothelial denudation in tumors 

In Figure 1c, we plotted the  MR_SO2 evolution in the tumor of rats exposed to MRT 

with respect to tumor Type-IV collagen/RECA-1 colocalization fraction calculated by 

Bouchet et al. 2010 [3]. The two parameters correlate significantly (linear fit r²=0.91, 

Standard-Deviation of Estimate (SDE): 0.07).  

 



Bouchet et al. 2013 

 9 

MRT induced tumor vessel spatial redistribution, increased vessel inter-distances and 

GLUT-1 overexpression 

  Contralateral hemisphere, unidirectionally irradiated  

Whatever the observation delay, RECA-1 and GLUT-1 were expressed on endothelial cells 

and were detected in every Type-IV collagen positive entity (not shown). Slight changes in 

contralateral vessel morphology were observed during MRT. Indeed, the hDV (Fig. 2a), 

measured between RECA-1/Type-IV collagen positive structures in the unidirectionally 

irradiated slice of the contralateral hemisphere in the MRT group augmented from 25.8±8.6 to 

33.7±16.2µm (D9 and D55, respectively) (p<0.001) while no changes were detected in 

corresponding hemispheres of unirradiated animals. Vessel density decreased significantly 

during the whole experiment in unidirectionally irradiated contralateral tissues (MRT group: 

135±15, 110±22 vessels per field of view on D9 and D55 after implantation, respectively, 

p<0.05, Fig. 2c).  

 

Unirradiated 9LGS 

 Figure 3 displays Type-IV collagen, RECA-1 and GLUT-1 pattern evolutions in 

unirradiated rats and rats exposed to MRT. As observed in normal tissue, each tumor vessel 

was positive for RECA, GLUT-1 and Type-IV collagen in unirradiated animals. Morphologic 

changes were observed (Fig. 3) and quantified (Fig. 2) during tumor growth: (i) the mean half 

distance between vessels (hDV) significantly increased from 35.4±13.2 to 42.6±31.2 µm 

between D9 and D18 (p<0.001, Fig. 2b) and (ii) the vessel density decreased from 86±24 to 

40±19 vessels per FOV between D9 and D18 (p<0.001, Fig. 2d). 
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Irradiated 9LGS 

The effects of MRT on tumor vessels are shown on figure 3. The density of tumor 

vessels assessed by Type IV collagen labeling was progressively reduced with the delay after 

MRT: from D18 the proportion of RECA-1/GLUT-1 positive entities decreased. 

Consequently, the mean hDV at D18 increased from 42.6±31µm in unirradiated tumors to 

86.9±83.4µm in tumors exposed to MRT (p<0.001, Fig. 2b). The median hDV were 33.8 µm 

and 67.6 µm respectively. hDV continued to increase until 151.4±143.5µm on D55 (p<0.001 

compared with D18, Fig. 2b). Vessel density was significantly reduced in tumors exposed to 

MRT compared with unirradiated tumors on D18 and further decreased until D55 (p<0.05 and 

p<0.001, respectively, Fig. 2d). GLUT-1 immunoreactivity was observed in some tumor 

vessels but also in tumor cells distant from RECA-1-positive vessels (Fig. 3). In the MRT 

group, the percentage of GLUT-1 positive tumor areas increased with the delay after 

irradiation (Fig. 2e). Eight days after MRT (D18), 16.4% of the tumor area was GLUT-1 

positive, versus 5.6% in tumors of the time matched unirradiated group. This proportion 

reached 27.4% on D25 and 85.1% on D55. When MR_SO2 is plotted against GLUT-1 

positive areas (Fig. 1d), the two parameters correlated with a R²=0.82 (exponential fit). 
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Discussion 

 We studied the effects of MRT on the oxygenation and the vascular networks of 

9LGS. We showed that microbeam irradiation induced a significant decrease in tumor 

MR_SO2 but not in the unidirectionally irradiated coronal slice of the normal hemisphere. 

This reduction in MR_SO2 strongly correlated with endothelial cell rarefaction and increased 

inter-vessel distances. The progressive diminution in oxygenation induced tumor hypoxia. 

The latter was confirmed by GLUT-1 overexpression which non-linearly correlated with the 

MR_SO2 parameter. These results give new evidence for a preferential effect of MRT on 

tumor vessels versus normal vessels, and a novel insight in biological/physiological tumor 

responses to MRT. 

  

In the last decades, MRI appeared as a powerful tool for mapping brain tumors in 

clinical cancer diagnosis and treatment response. MRI allows the measurements of multiple 

physio/pathological parameters of tumors, such as cellularity, necrosis, blood volume, vessel 

size index, vessel permeability. The present study showed that, MR_SO2 measurements also 

give some information about brain tumor hypoxia since a strong correlation was found 

between MR_SO2 and GLUT-1 expression. An analogous evaluation of the MR estimates of 

tissue oxygenation has been described in another study on gliosarcoma treated by an 

antiangiogenic drug [21]. Furthermore, our results suggest that MR_SO2 depicted tumor 

vessel regression after MRT. Indeed, we calculated a 0.91 correlation coefficient between 

MR_SO2 levels and endothelial cell rarefaction in irradiated tumors.  Such correlation had not 

been found in unirradiated tumors [22]. This observation might have a clinical impact since 

MR_SO2 measurements alone would help in the evaluation of glioma radiation response by 

describing, non-invasively, multiple vascular and physiological parameters which were until 

now only discernible by immunohistologic studies. 
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 Several studies gave evidence for normal brain tissue resistance to spatially 

fractionated irradiations [1, 2, 6]. This has been attributed to the particular radio-tolerance of 

normal vascular networks which supply nutrients to exposed cerebral tissue [4, 5] and reduce 

radiation-induced hypoxia / ischemia. In this study, we show that despite an increase in vessel 

inter-distances (+8µm) and a decrease in vessel density (~18%) in the subacute stage after 

MRT (45 days post irradiation), irradiated tissues in the contralateral hemisphere remained 

homogenously and sufficiently perfused. Indeed, mean inter-vessel distances measured in 

unidirectionally irradiated contralateral rat brains (25.8±8.6 to 33.7±16.2 µm) remained in the 

range of the one given for normal human grey matter, i.e. around 32 µm [23]. As shown by 

Bouchet et al.[3] and confirmed in this study, normal brain capillaries exposed to X-ray 

microbeams are still immunoreactive for RECA-1 and GLUT-1 thus proving the presence of 

endotheliocytes after MRT. The integrity of the endothelium maintains an adequate supply in 

oxygen and nutrients to unidirectionally irradiated tissues in the contralateral hemisphere and 

precludes hypoxia whatever the delay after irradiation. Furthermore, the structural 

modifications of the normal vascular network are not surprising since the radiation dose 

delivered in the present study was undeniably high enough to induce endothelial cell death 

and vascular remodeling [24, 25]. These changes matched the previously shown maximum 

overexpression of VEGF in contralateral hemispheres on D55 but our previous work showed 

that VEGF could be detected by western blot as soon as 8 days after MRT[3]. Because in 

unidirectionally irradiated parts of the contralateral hemisphere we observed (i) no changes of 

the MR_SO2, (ii) only minor morphometric changes of vessels, (iii) no cerebral cells other 

than endothelial cells displaying GLUT-1 labeling and (iv) because GLUT-1 is regulated by 

HIF-1α [26], the overexpression of VEGF after MRT was presumably not related to tissular 

hypoxia. The dose dependent VEGF production in normoxia after radiation has been 

documented in different cell lines [10, 11, 27]. Brieger et al. hypothesised that the release of 
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VEGF protects the endothelium thereby increasing its radiation resistance [11]. The in vivo 

source of VEGF after MRT remains unknown but VEGF might help in protecting normal 

tissue from the effects of MRT. Indeed, no drastic changes and no major damage were 

observed in normal brain vessels in HE-stained sections of unidirectionally irradiated rat 

brains [3]. 

Our previous study showed that identical irradiation of 9LGS leads to 80% tumor 

control on D55 after irradiation [3]. The present follow-up study current gives more insight 

into physiological mechanisms involved in tumor response to MRT; the results confirm the 

differential effect exerted by MRT on tumor vessels compared to normal vessels. Indeed, 

MRT induced a progressive hypoxia of the gliosarcoma, starting one week after irradiation. 

This was associated with a significant decrease in the number of tumor vessels and a 

significant increase in tumoral intercapillary distances. On D18, half of the intervessel 

distances were wider than ~134 µm in irradiated tumors while unirradiated tumors exhibited 

median intervessel distances of ~66 µm. Our observations are in accordance with previous 

results (between 42.5 and 105µm [28]) measured in 9LGS. Median distances between tumor 

vessels even reached ~246 µm on D55 while the maximum oxygen diffusion limit is 100 µm 

according to Carmeliet and Jain [29]. MRT caused a spatial redistribution of tumor vessels 

that probably led to inhomogeneous perfusion of the tumor. Indeed, long inter-vessel 

distances cannot warrant an adequate diffusion of oxygen to tumor cells [29] thus, MRT 

induced local hypoxia as detected on D55 by the presence of distinct areas of GLUT-1 

positive tumor cells. The decrease in oxygen saturation was linearly related to endothelial cell 

rarefaction in tumor vessels and indirectly to the decrease in tumor blood volume (Fig. 1 and 

[3]). Altogether, our last studies characterize new relevant tumoricidal mechanisms of MRT. 

We assume that a three-step process might describe the tumor response to X-ray microbeam 

irradiation. During the first week after exposure, after a G2/M blockade [30], the tumor 
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progressively shrinks due to radiation-induced mitotic cell death, pyknosis and abnormal 

replicative processes such as endoreplication and aberrant mitoses [30]. In the meantime, 

ionizing radiation also induces tumor endothelium denudation, but blood supply is still 

maintained via damaged and permeable vessels [3]. During the first week after irradiation, 

MRT increases VEGF production and causes vascular remodeling, doubling the distance 

between tumor vessels. From D18 on, the significant decrease in tumor blood volume [3] 

induces hypoxia in 9LGS exposed to MRT, as shown by the increasing GLUT-1 

immunolabeling. The low standard deviations obtained for any measurement performed until 

D25, i.e., 15 days after MRT, show that the behavior of all the tumors was comparable in 

terms of tumor size, blood volume, vessel size, MR_SO2, vessel denudation and VEGF 

expression (see [3]). However, despite this homogenous early response, 1 tumor out of 5 

studied on D55 recurred [3]. The D25-D55 delay range appears critical for tumor outcome; a 

non-coplanar re-irradiation [19] delivered at this time might be instrumental in killing 

resistant tumor cells responsible for the recurrence. Nevertheless, our study demonstrates that 

the additional biological mechanisms that occur in the sub-acute stage after exposure 

determine tumor outcome after MRT. These processes have to be identified; the role of 

radiation-induced hypoxia in tumor and its biological implication in recurrence needs to be 

studied in detail: the treatment of recurrent hypoxic tumors might be problematic because of 

their high radio- and chemo-resistance [27, 31]. Depending on the extent of the radiation-

induced hypoxia, different and even opposite effects on cell survival/cell death could be 

observed: tumor cells can either adapt to acute and mild hypoxia or initiate apoptosis in case 

of severe hypoxia [32]. 
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Figure 1: MRT induced MR_SO2 decrease in intracerebral 9LGS tumors which 

correlates with endothelium denudation and GLUT-1 overexpression. a- MR_SO2 maps 

superimposed on T2-weighted MRI images acquired in unirradiated rats and rats exposed to 

MRT at different delays after 9LGS implantation. b- MR_SO2 evolution in unirradiated and 

irradiated 9LGS, in unirradiated contralateral hemispheres, and in tissues of contralateral 

hemispheres exposed to MRT, at different delays after tumor inoculation. MRT was 

performed at D10 after implantation. Significantly different from D9 in the same group, 

* p<0.01, ** p<0.001, two way ANOVA Bonferroni post-tests. c and d- Correlation plots 

between MR_SO2, RECA-1/Type-IV collagen fraction (a) and GLUT-1 positive areas (%, b) 

in MRT irradiated 9LGS. SDE: Standard Deviation of Estimate.  

 

Figure 2: MRT increases tumor intervessel distances, reduces tumor vessel density and 

induces hypoxia in 9LGS. Distribution of half distances between vessels positive for RECA-

1/Type-IV collagen, derived from Voronoi cells, measured in normal contralateral 

hemispheres of unirradiated rats (a) and tumoral tissues of rats exposed to MRT (9LGS) (b). 

Mean number (±SEM) of vessels per field of view (FOV) measured in normal contralateral 

hemispheres of unirradiated (black bars) or irradiated (white bars) rats (c) and tumoral tissues 

(9LGS) (d) of unirradiated rats (black bars) or rats exposed to MRT (white bars). e- 

Percentage of GLUT-1 positive areas measured in tumors of both unirradiated rats (black 

bars) and rats exposed to MRT (white bars). 

    

Figure 3: MRT induces tumor vascular remodeling. MRT induces tumor vascular 

remodeling. Temporal immunohistological follow-up of unirradiated or irradiated normal and 

tumoral brain vessels. MRT = microbeam radiation therapy. Type IV collagen (blue) and 

RECA-1 (red) immunolabeling observed in tumors at different times (D = days after 
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implantation, T = days before and after MRT). Voronoi diagrams were calculated and 

represented on merged RECA-1/Type-IV collagen images (merge + vor). Temporal evolution 

of GLUT-1 expression is shown in green on merged RECA-1/Type-IV collagen images. Scale 

bar: 200µm. 

 

Table 1: Number of tumor-bearing animals studied by MRI and quantitative 

immunohistology in unirradiated (control) and MRT-treated groups of rats. “D” denotes the 

days after tumor implantation (on day 0), “T” the days before or after MRT (on day 10). N.a. 

= not applicable, as no rats survived.    

 

 

 



 

 
 D9T-1 D12T2 D15T15 D18T8 D25T15 D55T45 

MRI 
Unirradiated 6 8 8 6 n.a. n.a. 

MRT 4 7 8 7 8 5 

IMMUNOHISTOLOGY 
Unirradiated 4 3 3 4 n.a. n.a. 

MRT 4 3 3 3 3 3 
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