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Synchrotron Microbeam Radiation Therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain
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Purpose

Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose x-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model.

Methods

Tissue responses to MRT (two orthogonal arrays (2×400 Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR_SO 2 ) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia.

Results

In tumors, MR_SO2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR_SO2, although vessel inter-distances increased slightly.

Conclusion

We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia.

Introduction

Synchrotron microbeam radiation therapy (MRT) uses high radiation doses delivered through near-parallel thin (25-75 µm) beams separated by few hundred microns (for review [START_REF] Brauer-Krisch | Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue[END_REF]). This unique irradiation modality slows, and sometimes ablates, brain tumors in rodents [START_REF] Laissue | Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays[END_REF]. The mechanisms underlying MRT efficiency are not fully understood. In a previous study [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF], we demonstrated that 9L tumor growth inhibition was correlated to a denudation of the tumor vascular endothelium, leading to significant decreases in tumor blood volume and vessel diameter [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]. This preferential effect of MRT on tumor vessels might induce tumor necrosis through a decrease in perfusion and oxygen supply. On the contrary, normal brain vessels exhibited a high radioresistance to spatially fractionated irradiations [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF], even for doses up to 1kGy [START_REF] Serduc | Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study[END_REF][START_REF] Serduc | In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature[END_REF] limited radiation damage occurred in unidirectionally irradiated normal brain tissues [START_REF] Laissue | Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays[END_REF][START_REF] Laissue | Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae[END_REF]. Australian teams recently suggested a new hypothesis to explain MRT efficiency, stating that heavily irradiated tumor cells ("peak cells") intermixing with sub-lethally exposed cells ("valley cells") may increase tumor control via cell communication [START_REF] Crosbie | Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues[END_REF]. The only molecular response in support of tumoral tissues reacting to MRT according to that hypothesis, to our knowledge, is the description, by Bouchet and colleagues [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF], of a high expression of the Vascular Endothelium Growth Factor (VEGF) in brain tumors exposed to MRT, but not in unirradiated tumors.

Increase in VEGF after X-ray exposure is extensively reported in the literature but its role in radiation response remains controversial [START_REF] Kim | Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy[END_REF][START_REF] Hovinga | Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines--a clue to radioresistance?[END_REF][START_REF] Brieger | VEGF-subtype specific protection of SCC and HUVECs from radiation induced cell death[END_REF][START_REF] Brieger | Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cells after irradiation and increase resistance to subsequent irradiation[END_REF]. Radio-induced VEGF originates from different sources, e.g., from endothelial cells, tumor cells, and extracellular matrix. Radical Oxygen Species (ROS) produced by irradiated tissue and hypoxia induce the production of Hypoxia Inducible Factor 1α (HIF1α), which in turn stimulates the expression of angiogenic factors such as VEGF. HIF1α is also expressed in tumors after radiation-induced vessel necrosis and appears to regulate apoptotic molecular pathways [START_REF] Magnon | Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1alpha-mediated tumor apoptotic switch[END_REF]. Monitoring tumor hypoxia before and after treatment becomes relevant in patients with glioblastoma since recurrent tumors are often hypoxic [START_REF] Kioi | Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice[END_REF] and less radiosensitive. Indeed, tumor response to Xrays is linked to local tumor oxygenation [START_REF] Moeller | Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules[END_REF][START_REF] Zhao | Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor[END_REF][START_REF] Fyles | Oxygenation predicts radiation response and survival in patients with cervix cancer[END_REF].

In this work, we characterized oxygenation changes induced by MRT on a rat brain model, 9L gliosarcoma (9LGS). We used a recently developed MR method [START_REF] Christen | Evaluation of a quantitative bold approach to map local blood oxygen saturation[END_REF] to measure local blood oxygen saturation (MR_SO 2 ). Evolving changes in blood oxygen saturation were correlated to morphological modifications of the tumor vascular network and to the expression of GLUT-1 (GLUcose Transporter 1, a cellular hypoxia marker [START_REF] Le | Clinical biomarkers for hypoxia targeting[END_REF]), as assessed by immunohistology.

.

Methods

Procedures related to animal care conformed to the Guidelines of the French Government (licenses #380325/#380321, authorized labs A3818510002/A3851610008/ A3851610004). Rats were anesthetized with an intraperitoneal injection of xylazine/ketamine (64.5/5.4 mg.kg -1 for tumor implantations and irradiations) and with 2.5% isoflurane in air for each MRI session.

Tumor implantations and MRT

9LGS cells (n=10 4 ) were implanted in rat brains as previously described [START_REF] Serduc | First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy[END_REF]. Nine days after inoculation, rats underwent an anatomical MR imaging (T 2 weighted) in order to sort them into 2 groups of similar tumor size. On day 10 (D10), one group of rats was irradiated in microbeam mode at the European Synchrotron Radiation Facility (ID17, Grenoble, France). The detailed irradiation setup is described in [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]. Briefly, the synchrotron X-rays beam was collimated into a lattice of parallel, 50 µm-wide, microbeams separated on center by 200 µm. Two arrays of 40 microbeams, each 10 mm-high and ≈8 mm-wide, one anteroposterior, one lateral, were crossfired at the center of the tumor with an entrance dose of 400 Gy each. The peak and valley doses were 350/700 Gy and 12.5/25 Gy in the unidirectionally/bidirectionally irradiated parts of the brain, respectively, as in the previous study [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF].

MR_SO 2 Measurements

MRI was performed at 4.7 T (Avance III console; Bruker) of the Grenoble MRI facility IRMaGe. Individual blood oxygen saturation maps were obtained in all rats listed under "MRI" in table 1, using a multi-parametric quantitative Blood Oxygen Level Dependent (BOLD) approach. This protocol, fully detailed in [START_REF] Christen | Evaluation of a quantitative bold approach to map local blood oxygen saturation[END_REF], uses several MR sequences to extract the oxygenation information from a baseline T2* weighted signal. The MR protocol duration was about 30 min per animal for a spatial resolution of 234x234x1000 μm 3 . Blood samples of each rat were collected via the tail vein before and after each MRI session and examined in a blood gas analyzer (ABL 510, Radiometer, Copenhagen, Denmark). The MR_SO 2 maps of each unirradiated rat and rats exposed to MRT (table 1, "MRI") were superimposed on T 2 -weighted MRI images acquired at different times after 9LGS implantation (Fig. 1a). To obtain the mean values shown in Fig. 1 b, we calculated the mean pixel value of MR_SO 2 per individual rat in tumors and contralateral tissues. The mean values (of the mean pixel values obtained for individual rats) obtained for each group at different time points were plotted versus time (Fig. 1b) and compared by use of two way ANOVA Bonferroni post-tests.

Histological procedures and quantitative immunohistology

Vessel examination and hypoxia quantifications

The evolution of vessel morphology and GLUT-1 expression were analyzed on, 18µm-thick frozen sections of brains sampled at D9, D18 and D55 after implantation. Briefly, after fixation and saturation, brain sections were incubated overnight at 4 °C with primary antibodies (anti Type-IV collagen, (SouthernBiotech F5205-N795, 1/1000), anti RECA-1 (AbDserotec MCA970R, 1/300) and anti GLUT-1 (ThermoScientific PA5-16793, 1/500)).

Sections were washed and exposed to the secondary antibodies for 2h at room temperature.

The sections were examined with a Nikon Eclipse E600 microscope equipped for epifluorescence.

Image analysis was performed using a home-made macro on ImageJ. After band pass filtering, colocalization maps were built using images corresponding for Type-IV collagen and RECA-1 reactivity. The resulting images were pre-filtered (median) and segmented using an automatic thresholding technique [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. The voronoi diagrams were calculated on the ultimate erodes of the vessels. The number of voronoi cells gave the number of vessels. The half distances between vessels (hDV) were derived from the resulting voronoi images. GLUT-1 positive areas (GLUT-1+) were manually delineated on microscopic images and expressed in percentage of the total surface images. The means (per experimental group and day after inoculation) of hDV, vessel densities and GLUT-1+ were compared using a non parametric Mann-Whitney test (significant for p<0.05).

Results

MRT reduced tumor oxygenation -MRI evaluation

Figure 1a shows representative maps of MR_SO 2 evolution in the tumor and contralateral hemisphere of unirradiated and of irradiated rats. The percentages of MR_SO 2 (means ± SD) in tumor and contralateral hemispheres are displayed in figure 1b. There were no significant changes in MR_SO 2 during 9LGS growth in unirradiated rats (mean MR_SO 2 : 72.0±9.9% (D9) and 70.2±3.2% (D18)). MRT induced a progressive and significant decrease of tumor MR_SO 2 starting on D18 after MRT (from 75.1±7.9% (D9) to 60.6±5.6% (D18), p=0.046 compared with values in unirradiated rats, Fig. 1b). Blood oxygen saturation in individual tumors continued to decrease until the last measurement point (D55), reaching 34.8±11.3% (p<0.001 compared with MRT group on D18). No significant changes of MR_SO 2 occurred in contralateral brain tissues of unirradiated rats (D9 -D18) nor of rats exposed to MRT (D9 -D55) during the whole experiment, although there was a slight decline around D25 in irradiated rats.

MRT-induced MR_SO 2 reduction correlates with endothelial denudation in tumors

In Figure 1c, we plotted the MR_SO 2 evolution in the tumor of rats exposed to MRT with respect to tumor Type-IV collagen/RECA-1 colocalization fraction calculated by Bouchet et al. 2010 [3]. The two parameters correlate significantly (linear fit r²=0.91, Standard-Deviation of Estimate (SDE): 0.07).

MRT induced tumor vessel spatial redistribution, increased vessel inter-distances and GLUT-1 overexpression

Contralateral hemisphere, unidirectionally irradiated

Whatever the observation delay, RECA-1 and GLUT-1 were expressed on endothelial cells and were detected in every Type-IV collagen positive entity (not shown). Slight changes in contralateral vessel morphology were observed during MRT. Indeed, the hDV (Fig. 2a), measured between RECA-1/Type-IV collagen positive structures in the unidirectionally irradiated slice of the contralateral hemisphere in the MRT group augmented from 25.8±8.6 to 33.7±16.2µm (D9 and D55, respectively) (p<0.001) while no changes were detected in corresponding hemispheres of unirradiated animals. Vessel density decreased significantly during the whole experiment in unidirectionally irradiated contralateral tissues (MRT group: 135±15, 110±22 vessels per field of view on D9 and D55 after implantation, respectively, p<0.05, Fig. 2c).

Unirradiated 9LGS

Figure 3 displays Type-IV collagen, RECA-1 and GLUT-1 pattern evolutions in unirradiated rats and rats exposed to MRT. As observed in normal tissue, each tumor vessel was positive for RECA, GLUT-1 and Type-IV collagen in unirradiated animals. Morphologic changes were observed (Fig. 3) and quantified (Fig. 2) during tumor growth: (i) the mean half distance between vessels (hDV) significantly increased from 35.4±13.2 to 42.6±31.2 µm between D9 and D18 (p<0.001, Fig. 2b) and (ii) the vessel density decreased from 86±24 to 40±19 vessels per FOV between D9 and D18 (p<0.001, Fig. 2d).

Irradiated 9LGS

The effects of MRT on tumor vessels are shown on figure 3. The density of tumor vessels assessed by Type IV collagen labeling was progressively reduced with the delay after MRT: from D18 the proportion of RECA-1/GLUT-1 positive entities decreased.

Consequently, the mean hDV at D18 increased from 42.6±31µm in unirradiated tumors to 86.9±83.4µm in tumors exposed to MRT (p<0.001, Fig. 2b). The median hDV were 33.8 µm and 67.6 µm respectively. hDV continued to increase until 151.4±143.5µm on D55 (p<0.001 compared with D18, Fig. 2b). Vessel density was significantly reduced in tumors exposed to MRT compared with unirradiated tumors on D18 and further decreased until D55 (p<0.05 and p<0.001, respectively, Fig. 2d). GLUT-1 immunoreactivity was observed in some tumor vessels but also in tumor cells distant from RECA-1-positive vessels (Fig. 3). In the MRT group, the percentage of GLUT-1 positive tumor areas increased with the delay after irradiation (Fig. 2e). Eight days after MRT (D18), 16.4% of the tumor area was GLUT-1 positive, versus 5.6% in tumors of the time matched unirradiated group. This proportion reached 27.4% on D25 and 85.1% on D55. When MR_SO 2 is plotted against GLUT-1 positive areas (Fig. 1d), the two parameters correlated with a R²=0.82 (exponential fit).

Discussion

We studied the effects of MRT on the oxygenation and the vascular networks of 9LGS. We showed that microbeam irradiation induced a significant decrease in tumor MR_SO 2 but not in the unidirectionally irradiated coronal slice of the normal hemisphere. This reduction in MR_SO 2 strongly correlated with endothelial cell rarefaction and increased inter-vessel distances. The progressive diminution in oxygenation induced tumor hypoxia.

The latter was confirmed by GLUT-1 overexpression which non-linearly correlated with the MR_SO 2 parameter. These results give new evidence for a preferential effect of MRT on tumor vessels versus normal vessels, and a novel insight in biological/physiological tumor responses to MRT.

In the last decades, MRI appeared as a powerful tool for mapping brain tumors in clinical cancer diagnosis and treatment response. MRI allows the measurements of multiple physio/pathological parameters of tumors, such as cellularity, necrosis, blood volume, vessel size index, vessel permeability. The present study showed that, MR_SO 2 measurements also give some information about brain tumor hypoxia since a strong correlation was found between MR_SO 2 and GLUT-1 expression. An analogous evaluation of the MR estimates of tissue oxygenation has been described in another study on gliosarcoma treated by an antiangiogenic drug [START_REF] Lemasson | Evaluation of the Relationship between MR Estimates of Blood Oxygen Saturation and Hypoxia: Effect of an Antiangiogenic Treatment on a Gliosarcoma Model[END_REF]. Furthermore, our results suggest that MR_SO 2 depicted tumor vessel regression after MRT. Indeed, we calculated a 0.91 correlation coefficient between MR_SO 2 levels and endothelial cell rarefaction in irradiated tumors. Such correlation had not been found in unirradiated tumors [START_REF] Christen | Is T2* enough to assess oxygenation? Quantitative blood oxygen level-dependent analysis in brain tumor[END_REF]. This observation might have a clinical impact since MR_SO 2 measurements alone would help in the evaluation of glioma radiation response by describing, non-invasively, multiple vascular and physiological parameters which were until now only discernible by immunohistologic studies.

Several studies gave evidence for normal brain tissue resistance to spatially fractionated irradiations [START_REF] Brauer-Krisch | Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue[END_REF][START_REF] Laissue | Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays[END_REF][START_REF] Laissue | Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae[END_REF]. This has been attributed to the particular radio-tolerance of normal vascular networks which supply nutrients to exposed cerebral tissue [START_REF] Serduc | Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study[END_REF][START_REF] Serduc | In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature[END_REF] and reduce radiation-induced hypoxia / ischemia. In this study, we show that despite an increase in vessel inter-distances (+8µm) and a decrease in vessel density (~18%) in the subacute stage after MRT (45 days post irradiation), irradiated tissues in the contralateral hemisphere remained homogenously and sufficiently perfused. Indeed, mean inter-vessel distances measured in unidirectionally irradiated contralateral rat brains (25.8±8.6 to 33.7±16.2 µm) remained in the range of the one given for normal human grey matter, i.e. around 32 µm [START_REF] Mintun | Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data[END_REF]. As shown by Bouchet et al. [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF] and confirmed in this study, normal brain capillaries exposed to X-ray microbeams are still immunoreactive for RECA-1 and GLUT-1 thus proving the presence of endotheliocytes after MRT. The integrity of the endothelium maintains an adequate supply in oxygen and nutrients to unidirectionally irradiated tissues in the contralateral hemisphere and precludes hypoxia whatever the delay after irradiation. Furthermore, the structural modifications of the normal vascular network are not surprising since the radiation dose delivered in the present study was undeniably high enough to induce endothelial cell death and vascular remodeling [START_REF] Lyubimova | Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiationinduced CNS injury[END_REF][START_REF] Lyubimova | In vivo radioprotection of mouse brain endothelial cells by Hoechst 33342[END_REF]. These changes matched the previously shown maximum overexpression of VEGF in contralateral hemispheres on D55 but our previous work showed that VEGF could be detected by western blot as soon as 8 days after MRT [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]. Because in unidirectionally irradiated parts of the contralateral hemisphere we observed (i) no changes of the MR_SO 2 , (ii) only minor morphometric changes of vessels, (iii) no cerebral cells other than endothelial cells displaying GLUT-1 labeling and (iv) because GLUT-1 is regulated by HIF-1α [START_REF] Harris | Hypoxia--a key regulatory factor in tumour growth[END_REF], the overexpression of VEGF after MRT was presumably not related to tissular hypoxia. The dose dependent VEGF production in normoxia after radiation has been documented in different cell lines [START_REF] Brieger | VEGF-subtype specific protection of SCC and HUVECs from radiation induced cell death[END_REF][START_REF] Brieger | Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cells after irradiation and increase resistance to subsequent irradiation[END_REF][START_REF] Lund | Differential regulation of VEGF, HIF1alpha and angiopoietin-1, -2 and -4 by hypoxia and ionizing radiation in human glioblastoma[END_REF]. Brieger et al. hypothesised that the release of VEGF protects the endothelium thereby increasing its radiation resistance [START_REF] Brieger | Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cells after irradiation and increase resistance to subsequent irradiation[END_REF]. The in vivo source of VEGF after MRT remains unknown but VEGF might help in protecting normal tissue from the effects of MRT. Indeed, no drastic changes and no major damage were observed in normal brain vessels in HE-stained sections of unidirectionally irradiated rat brains [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF].

Our previous study showed that identical irradiation of 9LGS leads to 80% tumor control on D55 after irradiation [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]. The present follow-up study current gives more insight into physiological mechanisms involved in tumor response to MRT; the results confirm the differential effect exerted by MRT on tumor vessels compared to normal vessels. Indeed, MRT induced a progressive hypoxia of the gliosarcoma, starting one week after irradiation. This was associated with a significant decrease in the number of tumor vessels and a significant increase in tumoral intercapillary distances. On D18, half of the intervessel distances were wider than ~134 µm in irradiated tumors while unirradiated tumors exhibited median intervessel distances of ~66 µm. Our observations are in accordance with previous results (between 42.5 and 105µm [START_REF] Yoshii | Intercapillary distance in the proliferating area of human glioma[END_REF]) measured in 9LGS. Median distances between tumor vessels even reached ~246 µm on D55 while the maximum oxygen diffusion limit is 100 µm according to Carmeliet and Jain [START_REF] Carmeliet | Angiogenesis in cancer and other diseases[END_REF]. MRT caused a spatial redistribution of tumor vessels that probably led to inhomogeneous perfusion of the tumor. Indeed, long inter-vessel distances cannot warrant an adequate diffusion of oxygen to tumor cells [START_REF] Carmeliet | Angiogenesis in cancer and other diseases[END_REF] thus, MRT induced local hypoxia as detected on D55 by the presence of distinct areas of GLUT-1 positive tumor cells. The decrease in oxygen saturation was linearly related to endothelial cell rarefaction in tumor vessels and indirectly to the decrease in tumor blood volume (Fig. 1 and [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]). Altogether, our last studies characterize new relevant tumoricidal mechanisms of MRT.

We assume that a three-step process might describe the tumor response to X-ray microbeam irradiation. During the first week after exposure, after a G2/M blockade [START_REF] Bouchet | Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors[END_REF], the tumor progressively shrinks due to radiation-induced mitotic cell death, pyknosis and abnormal replicative processes such as endoreplication and aberrant mitoses [START_REF] Bouchet | Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors[END_REF]. In the meantime, ionizing radiation also induces tumor endothelium denudation, but blood supply is still maintained via damaged and permeable vessels [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]. During the first week after irradiation, MRT increases VEGF production and causes vascular remodeling, doubling the distance between tumor vessels. From D18 on, the significant decrease in tumor blood volume [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF] induces hypoxia in 9LGS exposed to MRT, as shown by the increasing GLUT-1 immunolabeling. The low standard deviations obtained for any measurement performed until D25, i.e., 15 days after MRT, show that the behavior of all the tumors was comparable in terms of tumor size, blood volume, vessel size, MR_SO 2 , vessel denudation and VEGF expression (see [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]). However, despite this homogenous early response, 1 tumor out of 5 studied on D55 recurred [START_REF] Bouchet | Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks[END_REF]. The D25-D55 delay range appears critical for tumor outcome; a non-coplanar re-irradiation [START_REF] Serduc | First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy[END_REF] delivered at this time might be instrumental in killing resistant tumor cells responsible for the recurrence. Nevertheless, our study demonstrates that the additional biological mechanisms that occur in the sub-acute stage after exposure determine tumor outcome after MRT. These processes have to be identified; the role of radiation-induced hypoxia in tumor and its biological implication in recurrence needs to be studied in detail: the treatment of recurrent hypoxic tumors might be problematic because of their high radio-and chemo-resistance [START_REF] Lund | Differential regulation of VEGF, HIF1alpha and angiopoietin-1, -2 and -4 by hypoxia and ionizing radiation in human glioblastoma[END_REF][START_REF] Cuisnier | Chronic hypoxia protects against gammairradiation-induced apoptosis by inducing bcl-2 up-regulation and inhibiting mitochondrial translocation and conformational change of bax protein[END_REF]. Depending on the extent of the radiationinduced hypoxia, different and even opposite effects on cell survival/cell death could be observed: tumor cells can either adapt to acute and mild hypoxia or initiate apoptosis in case of severe hypoxia [START_REF] Greijer | The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis[END_REF]. 
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