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Abstract: In this paper, the quaternion Bessel-Fourier moments are introduced. The significance 

of phase information in quaternion Bessel-Fourier moments is investigated and an accurate 

estimation method for rotation angle is described. Furthermore, a new set of invariant descriptors 

based on the magnitude and the phase information of quaternion Bessel-Fourier moments is 

derived. Experimental results show that quaternion Bessel-Fourier moments lead to better 

performance for color image reconstruction than the other quaternion orthogonal moments such 

as quaternion Zernike moments, quaternion pseudo-Zernike moments and quaternion orthogonal 

Fourier-Mellin moments. In addition, the angles estimated by the proposed moments are more 

accurate than those obtained by using other quaternion orthogonal moments. The proposed 

invariant descriptors show also better robustness to geometric and photometric transformations. 
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1. Introduction 

Moments and moment invariants have been widely used in image processing for pattern 

recognition [1-3] and image analysis [4-7]. Recently, a new orthogonal moment, the 

Bessel-Fourier moment, was reported by Xiao [8], wherein the rotation invariance is discussed. 

However, most of the works reported so far focused on the magnitude coefficients of moments to 

achieve the rotation invariance and disregarded their corresponding phase information. Unlike the 

previous works, Li [9] proposed the invariant Zernike moment (ZM) descriptors by combining 

the ZM magnitude and their phase coefficients as the shape features, which perform better than 

those described by magnitude-only when applied to noisy image retrieval. Along the same line, 

another Zernike descriptor preserving the invariance to rotation was described in [10] and used 

for 2D/3D object recognition. Chen [11] also introduced a ZM phase descriptor, where the ZM 

magnitude coefficients served as the weighting factors. These works mainly concentrated on gray 

images or single-channel images. 

The quaternion, which can be viewed as the generation of traditional complex number, was 

introduced by Hamilton in 1843 [12]. The advantage of using the quaternion theory to handle 

color image is that the existing correlation between color components can be taken into 

consideration. In the past decades, some quaternion-based techniques have been successfully used 

for color image processing, for instance the quaternion Fourier transforms [13, 14] applied to 

motion estimation [15] and color image registration [16], the dual-tree quaternion wavelets for 

multiscale image processing [17]. A set of invariants with respect to geometric transformations 

(rotation, scaling and translation), based on the magnitude of quaternion Fourier-Mellin moments, 

has been originally derived by Guo [18]. More recently, the quaternion Zernike moments as well 

as the quaternion pseudo-Zernike moments and their corresponding invariants were introduced in 

[19, 20], respectively. 

Quaternion Bessel-Fourier moments (QBFMs) and their invariant descriptors are here 

addressed. This paper is organized as follows. Section 2 first provides some preliminaries about 
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the conventional Bessel-Fourier moments for gray image and the quaternion theory. The 

quaternion Bessel-Fourier moments for color image and their algorithms are detailed in section 3. 

The significance of phase information in the QBFMs is investigated in section 4. Moreover, a 

new set of quaternion Bessel-Fourier moment descriptors based on angle estimation is specified. 

Several experiments are carried out in section 5 to show the performance of quaternion 

Bessel-Fourier moments and the proposed descriptors by contrast with a family of quaternion 

orthogonal moments including quaternion Zernike moments, quaternion pseudo-Zernike moments 

and quaternion orthogonal Fourier-Mellin moments as well as their corresponding invariants. 

 

2. Preliminaries 

In this section, we briefly review the conventional orthogonal Bessel-Fourier moments for gray 

image and some basic properties of the quaternion. 

2.1. Bessel-Fourier moments 

Considering a gray image f(!, ") defined in polar coordinates, the Bessel-Fourier moment of 

order n with repetition m is defined as [8] 
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where the Bessel functions of the first kind are defined as [21] 
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Here ! (! ! 0) is the order of the function and !(x) the gamma function, #n is the n-th zero of the 

Bessel polynomial and 2
1[ ( )] 2n v na J !+=  is the normalization constant. 

  By using Euler’s formula, Eq. (1) can be expressed as 

, , ,( ) Re( ( )) Im( ( ))n m n m n mB f B f j B f= + ,                         (3) 

where Re(x) represents the real part of the complex x, and Im(x) the imaginary part. 
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2.2. Quaternion 

A quaternion q with one real part and three imaginary parts is given by 

q a ib jc kd= + + + ,                                  (4) 

where a, b, c, d are real numbers and i, j, k are orthogonal imaginary units obeying the following 

rules 

2 2 2 1, , ,i j k ij ji k jk kj i ki ik j= = = ! = ! = = ! = = ! = .                   (5) 

As shown in (5), the quaternion multiplication is not commutative. If a = 0, then q = ib + jc + kd 

is called a pure quaternion. 

The conjugate of a quaternion q is q a ib jc kd= ! ! ! . For any two quaternion numbers p and q, 

we have p q q p! = ! . The quaternion q can also be expressed into polar form as [22]: Iq q e != , 

where 2 2 2 2q a b c d= + + +  is called norm, 
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represent the eigenaxis and the eigenangle, respectively. 

 

3. Quaternion Bessel-Fourier Moments 

3.1. Definitions 

Let f(!, ") be an RGB color image defined in polar coordinates. By taking the red, green and 

blue channels as three imaginary parts, then a quaternion-based model for color image can be 

represented as 

( , ) ( , ) ( , ) ( , )R G Bf if jf kf! " ! " ! " ! "= + + .                         (6) 

Due to the non-commutative property of quaternion multiplication, there are two types of 

quaternion Bessel-Fourier moments (QBFMs) based on the Bessel function of the first kind. The 

right-side QBFMs are defined by 
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Correspondingly, the left-side QBFMs are given by 
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where µ is a unit pure quaternion. In this paper, ! is set to 1 and ( ) 3i j kµ = + + . 

  According to the anti-involution property of quaternion conjugation, the left-side and right-side 

QBFMs for the same color image have the following relationship 

2 1

,
0 0

2 1

0 0

,

1( ) ( ) ( , )
2

1 ( ) ( , )
2

( ).

l m
n m v n

n

m
v n

n

r
n m

B f e J f d d
a

J f e d d
a

B f

!
µ "

!
µ "

# $ $ " $ $ "
!

# $ $ " $ $ "
!

%

%

=

= %

= %

& &

& &                        (9) 

In the following sections, the QBFMs refer to the right-side type. 

 It can be easily verified that the inverse transform of (7) is given by 
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When only a finite number of the QBFMs with order up to P is used, (10) is approximated by 
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For digital images, the double integral in Eq. (7) is substituted by a double summation. Its 

discrete form is given by 
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where N is the number of pixels in each coordinate axis of the image, the parameters ! and " are 

computed by the mapping transformation as follows [7] 
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3.2. Algorithm 
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  Substituting (6) into (7) and combining (3), we have 
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Here Bn, m(fR), Bn, m(fG) and Bn, m(fB) are the conventional Bessel-Fourier moments of the red, green 

and blue channels, respectively. From (14), one can conclude that the computation of QBFMs can 

be implemented via the conventional Bessel-Fourier moments of three single-channel images. 

To compute one , ( )
r
n mB f  of an RGB image f(!, ") with N " N pixels, the proposed algorithm 

using (14) only needs 3N2+5 additions and 6N2+4 multiplications while the direct algorithm based 

on (7) requires 9N2–1 additions and 12N2+1 multiplications. 

 

4. The invariant quaternion Bessel-Fourier moment descriptors 

4.1. The significance of phase in quaternion moments 

As pointed out in [23], the signal phase in Fourier domain plays an important role. Here, its 

significance in the QBFMs for color image is investigated. The color image Lion king cup, with 

size 144 " 192 (shown in Fig. 1 (a)) selected from Amsterdam library of object images [24], was 

used for reconstruction purpose using QBFMs of order up to 9 with and without the phase 
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information. It can be seen from Fig. 1 that the phase coefficients of the QBFMs not only embody 

the contour but also the color components. Theoretically, when only magnitude coefficients of the 

QBFMs are used for reconstructing color image, according to the odd-even property, (11) can be 

simplified as 

,
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  The result of (15) is a real matrix, in other words, it is a gray image as displayed in Fig. 1, 

where the color information cannot be retrieved. The same conclusions can also be drawn for 

other quaternion orthogonal moments such as quaternion Zernike moments, quaternion 

pseudo-Zernike moments and quaternion orthogonal Fourier-Mellin moments. 

 

4.2. The proposed invariant descriptors 

From the above analysis, the phase information in quaternion Bessel-Fourier moments appears 

as more informative when compared to their corresponding magnitude coefficients. In [11], the 

ZM phase descriptor for gray image or single-channel image was introduced. To deal with a 

rotated color image in a whole vector, a robust estimation method of rotated angles through 

quaternion Bessel-Fourier moments is presented and the invariant descriptors are also introduced. 

Let fr(!, ") represent the reference image and ft(!, ") the transformed image with rotation angle 

$, respectively. The relationship between the QBFMs of the two images is given by 

, ,( ) ( )r r m
n m t n m rB f B f e µ !"=                                (16) 

where m ! 1 and $ " [0, 2#]. Like the traditional Bessel-Fourier moments, the QBFM 

magnitudes are invariant to image rotation, i.e., , ,( ) ( )r r
n m t n m rB f B f= . Meanwhile, the phase 

difference is 

, ,( )mod(2 ), (0,2 ]n m n mm! " # ! #= $                       (17) 

where 



8 
!

,
,

, ,

( )1arg ( ) arg .
( ) ( )

r
n m rr

n m rr r
n m t n m t

B f
m B f

B f B f
!

" # " #
= $% & % &% & % &' ( ' (

 

The symbol ‘#’ is due to the noncommutativity of quaternion multiplication, and arg(·) denotes 

the phase of quaternion. 

By using any two adjacent %n, m–1, and %n, m (m " 0), the rotation angle $ can be estimated as 

follows 

, , , 1 , 1
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                         (18) 

As pointed out by Chen and Sun [11], there are many ways to calculate the rotation angle. They 

proposed a robust approach to obtain the angle value which consists of weighting the estimated 

angles by the individual magnitude of the moments. Here, we adopt the same strategy: an iterative 

algorithm to compute the rotation angle !̂  weighted by the individual magnitude ,
r
n mB  with 

different orders (n, m) is described in Fig. 2. For more details, we refer to [11]. 

For the reference image fr(!, ") and its transformed image ft(!, "), if there exists a rotation 

angle $ between them, then , ˆ( )mod(2 )n m m! " #$  is equal to 0, otherwise , ˆ( )mod(2 )n m m! " #$  

has a nonzero value ranging from 0 to 2#, where !̂  represents a putative angle and is estimated 

through the proposed algorithm. Then, the normalized similarity distance based on phase 

information of quaternion Bessel-Fourier moments is defined as 

, ,ˆ ˆmin{ ( )mod(2 ) ,2 ( )mod(2 )}
( , ) .n m n mang

r t
m n

m m
d f f

! " # # ! " #
#

$ $ $
=%%           (19) 

  Combining the normalized magnitude coefficients that will serve as weighting factors, a 

similarity measure based on the weighted and normalized phase descriptors can be defined as 
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where 
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  The similarity measure d(fr, ft) defined in (20) is quasi invariant to image rotation. In fact, 

when an image is rotated with an angle $, the weighting factors '
,n m!  are independent to image 

rotation because only the magnitude is used in their definition. On the other hand, the estimated 

value ˆ mod 2m! " obtained by the proposed approach is very close to the true value %n, m. That 

means that the value of the numerator in (20) is nearly equal to zero. 

When an image undergoes both rotation and translation, the translation invariance can be 

achieved by locating the origin of the coordinate system at the common centroid defined in [25]. 

Thus the proposed descriptors are invariant to both image rotation and translation. However, they 

are not invariant to image scaling. To obtain the scaling invariance, the normalization process is 

required. Notice that the algorithm described above can also be applied to other quaternion 

moments such as quaternion Zernike moments, quaternion pseudo-Zernike moments or 

quaternion orthogonal Fourier-Mellin moments. 

 

5. Experimental results 

To illustrate the interest of the quaternion Bessel-Fourier moments for color image 

reconstruction and the robustness of proposed descriptors against geometric and photometric 

transformations, some experiments were carried out. As aforementioned, both the quaternion 

Zernike moments and the quaternion pseudo-Zernike moments and their corresponding invariants 

have been reported in [19] and [20], respectively. To make a full comparison in the following 

experiments, we also extended the conventional orthogonal Fourier-Mellin moments originally 

reported in [3] for gray image to the quaternion domain for color image (named quaternion 

orthogonal Fourier-Mellin moments hereafter) and derived their corresponding invariants by 

using the approach developed for quaternion Zernike moment-based and quaternion 
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pseudo-Zernike moment-based invariants (for more details, we refer to [19] and [26]). 

 

5.1. Color image reconstruction 

This experiment was conducted to evaluate the reconstruction capability of QBFMs for color 

images. The tested images consist of 100 color images with size 144 " 192 (images samples are 

shown in Fig. 3) selected from Amsterdam library of object images [24]. The standard normalized 

image reconstruction error (NIRE) is used to compute the difference between the original image 

f(x, y) and the reconstructed image ( , )f x y!  [3] 

21 1

0 0
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0 0
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N N
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N N

x y

f x y f x y
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f x y

! !

= =

! !

= =

!
=
""

""

!

.                           (22) 

The comparison of NIRE values obtained with different orders of quaternion Zernike moments 

(QZMs) [19], quaternion pseudo-Zernike moments (QPZMs) [20] and quaternion orthogonal 

Fourier-Mellin moments (QOFMMs) is shown in Fig. 4. For each of 100 tested color images, 19 

reconstructed images are obtained by using any one of four quaternion moments, where the 

moment orders are from 3 to 57 with an increment 3, resulting in total 7600 (=100"19"4) 

reconstructed images and some of them are shown in Fig. 5. It can be clearly seen that: (1) the 

value of NIRE decreases when increasing the moment order, and the error values corresponding 

to the QBFMs are always smallest; (2) the inspection of the reconstructed images shows that the 

QBFMs with P = 48 lead to a better visual restitution of the object (this qualitative analysis is 

fully coherent with the NIRE quantitative index where the performance of QOFMMs is the 

closest to QBFMs).  

 

5.2. Accuracy of rotation angle estimation 

The accuracy of rotation angle estimation by the QBFMs was tested in another experiment and 
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compared with the ones obtained with the QZMs, the QPZMs and the QOFMMs. The set of 100 

color images employed in section 5.1 were reused. To obtain the entire transformed image after 

rotation, the actual size of tested images in this section is 256 " 256 by zero padding. All the 

images were rotated from 10˚ to 350˚ with an increment 10˚, forming a set of 35 tested images for 

each sample. The rotation angles were estimated on the 3500 (=100"35) resulting images using 

the proposed QBFMs, the QZMs, the QPZMs and the QOFMMs, respectively. The root mean 

square (RMS) error e1 and the maximum error e2 of estimated angles are defined as [27] 

2
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{ ,1 },
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k k
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k k

e
M

e max k M
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! !
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= "

= " # #
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                              (23) 

where M is the number of rotation angles, k!  is the rotation angle and k!! the estimated one. 

The average RMS error and maximum error are listed in Table 1, where the numbers of 

QBFMs are respectively 21 (with order from 1 to 6), 28 (with order from 1 to 7), 36 (with order 

from 1 to 8), while the numbers of QZMs are 20 (with order from 1 to 8), 30 (with order from 1 

to 10), 36 (with order from 1 to 11) and the numbers of QPZMs and QOFMMs are the same as 

those of QBFMs. Note that the moments with repetition m = 0 have not been used because they 

are not affected by image rotation. Note also that the constraint |m| % n was imposed for both 

QBFMs and QOFMMs in order to ensure that the same number of moments can be chosen as that 

of QPZMs. It can be seen that: (1) the estimated angles become more accurate as the number of 

QBFMs increases, the same phenomenon is also observed for the QZMs, the QPZMs and the 

QOFMMs; (2) both the RMS error and maximum error of estimated angles by using the QBFMs 

are much smaller. These results indicate that the rotation angles estimated by the proposed 

QBFMs are more accurate than those obtained with other quaternion orthogonal moments. 

 

5.3. Object recognition 

To test the robustness of the proposed QBFM descriptors (QBFMD) against geometric 
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(rotation, scaling and translation, RST) and photometric (noise and blur) transformations, a set of 

100 color images selected from Columbia University Image Library [28] with size 86 " 86 was 

used in this experiment (image samples are shown in Fig. 6). To obtain the entire transformed 

image after rotation, the tested images have been zero padded to get a 128 " 128 format. A 

comparison with the quaternion moment-based invariants including quaternion Zernike moment 

invariants (QZMIs), quaternion pseudo-Zernike moment invariants (QPZMIs) and quaternion 

orthogonal Fourier-Mellin moment invariants (QOFMMIs) was conducted. 

The testing set is then constructed as follows: each sample image was scaled with the factor # 

"{0.5, 1.0, 1.5}, and rotated from 15˚ to 255˚, with an increment 30˚; then each image was 

translated by ($x, $y) = (3, 5) (other values can also be chosen). The final RST testing set is 

therefore composed of 2700 (=100"3"9"1) images. To test the robustness of different descriptors, 

we have also added Gaussian noise (zero mean and varying standard deviation $), smooth 

distortions with variable size s, and salt-and-pepper noise with different densities d to the testing 

set. Some examples of tested images corrupted by different types of noise or smooth distortions 

are displayed in Fig. 7. The nearest neighbor classifier based on Euclidean distance is used to 

measure the correct classification percentage (CCP), which is defined by 

Number of correctly classified images= 100%.
Total number of used images in testing set

! "                (24) 

Note that, because the proposed descriptors are only invariant to image translation and rotation, 

the normalization process is required when image scaling is concerned, such a process, however, 

is not necessary for other invariant descriptors. The recognition results are depicted in Fig. 8, 

where the central QBFMs are used for the proposed QBFMD and the number of the moments is 

respectively 21 and 36. For comparison purpose, we have chosen 21 central QZMIs defined in 

[19] among 25 of order up to 8, and 36 of order up to 10; 21 central QPZMIs defined in [20] of 

order up to 5, and 36 of order up to 7; and 21 central QOFMMIs among 25 of order up to 5, and 

36 of order up to 7, respectively. From these results, it can be seen that: (1) When the number is 
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21, the QBFMDs provide higher recognition accuracy under RST transformations, additive noise 

with different levels and smooth distortions with variable size; (2) When increasing the number 

up to 36, an important feature also observed is that the performance of QBFMDs remains stable 

with the increase of the noise level while the behavior of other three quaternion moment-based 

invariants degrades with different degrees. The results show clearly that the proposed descriptors 

could be useful as a new feature descriptor for object recognition. 

 

6. Conclusion 

This paper has introduced the quaternion Bessel-Fourier moments in order to improve image 

reconstruction and pattern recognition by simultaneously handling the three image color channels. 

The significance of phase information in quaternion Bessel-Fourier moments has been 

investigated and an accurate estimation method for rotation angle throughout the new moments 

has been proposed. Furthermore, a new set of invariant descriptors, not only using the magnitude 

coefficients of quaternion Bessel-Fourier moments but also their corresponding phase information, 

have been elaborated and applied to color object recognition for validation. Experimental results 

show that the quaternion Bessel-Fourier moments have a better performance in terms of color 

image reconstruction than the other quaternion orthogonal moments such as quaternion Zernike 

moments, quaternion pseudo-Zernike moments and quaternion orthogonal Fourier-Mellin 

moments. In addition, the estimated angles by quaternion Bessel-Fourier moments are more 

accurate than those obtained by other three quaternion orthogonal moments employed above and 

the recognition accuracy indicates that the quaternion Bessel-Fourier moment descriptors are 

more robust against geometric and photometric transformations when compared to quaternion 

moment-based invariants such as quaternion Zernike moment invariants, quaternion 

pseudo-Zernike moment invariants as well as quaternion orthogonal Fourier-Mellin moment 

invariants. Future work will concentrate on the application of the proposed descriptors to other 

color image processing area such as texture analysis and registration. 
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Fig. 1. Examples of the reconstructed images by the QBFMs: the first row uses magnitudes alone, 

the second one contains phase coefficients. The moment orders range from 3 to 9. 
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Fig. 2. The algorithm for computing the rotation angle 
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Fig. 3. Some examples of color images selected from Amsterdam Library of Object Images [24] 

for reconstruction 
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(d)                         (e) 

Fig. 4. NIRE values of reconstructed image for quaternion Bessel-Fourier moments (QBFMs), 

quaternion Zernike moments (QZMs), quaternion pseudo-Zernike moments (QPZMs) and 

quaternion orthogonal Fourier-Mellin moments (QOFMMs): (a)-(d) show the average and stand 

deviations (STD) of NIRE, (e) show the overall average NIRE. 
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Fig. 5. Examples of reconstructed image by different types of quaternion moments 

 

 

 

Fig. 6. Some examples of color images selected from Columbia University Image Library [28] 
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(a) #=0.5, %=15˚, 

 $=3.0  

(b) #=1.5, %=75˚, $=8.0 

 

(c) #=1.0, %=135˚,  

s=6 

 

(d) #=1.5, %=165˚, s=9 

 

(e) #=0.5, %=225˚,  

d=0.5% 

 

(f) #=1.0, %=255˚, 

d=0.8% 

 

Fig. 7. Examples of image with different noise and smooth distortions: (a) and (b) correspond to 

Gaussian noise, (c) and (d) to smooth distortion, (e) and (f) to salt-and-pepper noise. 
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(e)                                  (f) 

 
Fig. 8. Comparison of CCP for object recognition using the proposed descriptors and different 

quaternion moment invariants: (a) and (b) correspond to Gaussian noise, (c) and (d) to smooth 

distortion, (e) and (f) to salt-and-pepper noise 
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Table 1  

The average RMS error and maximum error of estimated angles 

Moments No. 
error 

Moments No. 
error 

1e  2e  1e  2e  

QBFMs 

21 0.0612˚ 0.1277˚ 

QZMs 

20 0.0744˚ 0.1508˚ 

28 0.0543˚ 0.1181˚ 30 0.0639˚ 0.1348˚ 

36 0.0515˚ 0.1097˚ 36 0.0576˚ 0.1199˚ 

QPZMs 

21 0.0660˚ 0.1302˚ 

QOFMMs 

21 0.0878˚ 0.1810˚ 

28 0.0589˚ 0.1220˚ 28 0.0859˚ 0.1747˚ 

36 0.0562˚ 0.1155˚ 36 0.0830˚ 0.1707˚ 

 


