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Abstract

Introduction: Haemorrhagic shock is associated with an inflammatory response consecutive to ischaemia-reperfusion

(I/R) that leads to cardiovascular failure and organ injury. The role of and the timing of administration of hydrogen

sulphide (H2S) remain uncertain. Vascular effects of H2S are mainly mediated through K+ATP-channel activation. Herein,

we compared the effects of D,L-propargylglycine (PAG), an inhibitor of H2S production, as well as sodium

hydrosulphide (NaHS), an H2S donor, on haemodynamics, vascular reactivity and cellular pathways in a rat model of I/R.

We also compared the haemodynamic effects of NaHS administered before and 10 minutes after reperfusion.

Methods: Mechanically ventilated and instrumented rats were bled during 60 minutes in order to maintain mean

arterial pressure at 40 ± 2 mmHg. Ten minutes prior to retransfusion, rats randomly received either an intravenous bolus

of NaHS (0.2 mg/kg) or vehicle (0.9% NaCl) or PAG (50 mg/kg). PNU, a pore-forming receptor inhibitor of K+ATP
channels, was used to assess the role of K+ATP channels.

Results: Shock and I/R induced a decrease in mean arterial pressure, lactic acidosis and ex vivo vascular

hyporeactivity, which were attenuated by NaHS administered before reperfusion and PNU but not by PAG and

NaHS administered 10 minutes after reperfusion. NaHS also prevented aortic inducible nitric oxide synthase

expression and nitric oxide production while increasing Akt and endothelial nitric oxide synthase phosphorylation.

NaHS reduced JNK activity and p-P38/P38 activation, suggesting a decrease in endothelial cell activation without

variation in ERK phosphorylation. PNU + NaHS increased mean arterial pressure when compared with NaHS or PNU

alone, suggesting a dual effect of NaHS on vascular reactivity.

Conclusion: NaHS when given before reperfusion protects against the effects of haemorrhage-induced I/R by

acting primarily through a decrease in both proinflammatory cytokines and inducible nitric oxide synthase

expression and an upregulation of the Akt/endothelial nitric oxide synthase pathway.

Keywords: hydrogen sulphide, inflammation mediators, therapeutic use, shock, hemorrhagic/drug therapy,

haemodynamics/drug effects

Introduction
The reperfusion phase of haemorrhagic shock is associated

with an inflammatory response, including increased NF-

�B activation [1], increased inflammatory cytokine pro-

duction [2], increased nitric oxide (NO) production and

inducible nitric oxide synthase (iNOS) gene expression

[3,4], and increased activation of vascular K+
ATP channels.

These inflammatory responses are associated with hypo-

tension, vasodilation and hyporesponsiveness to vasopres-

sor agents and lead to ischaemia-reperfusion (I/R) organ

injury [5]. Treating and/or preventing I/R-induced organ

injury is therefore a major challenge.

Hydrogen sulphide (H2S) is recognised as a gasotrans-

mitter, similar to NO and carbon monoxide. However,

current knowledge relative to its role in physiology and

pathology remains under discussion [6]. Many effects of
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H2S are the subject of controversy [7]. Depending on

the chosen models, H2S has been reported to display

opposite effects in haemorrhagic shock conditions.

While inhaled H2S and intravenous sodium sulphide

and sodium hydrosulphide (NaHS) reportedly increased

survival [8], improved haemodynamics, attenuated meta-

bolic failure in rodents [9-11], exerted cardioprotective

effects [10,11] as well as protected against organ injury

[12], sodium sulphide did not exert any beneficial effects

in swine [13]. Moreover, in other studies, blocking H2S

biosynthesis with D,L-propargylglycine (PAG), a

cystathionine g-lyase inhibitor, improved haemody-

namics and attenuated systemic inflammation and organ

injury [14,15].

The fact that H2S injection was associated with an

increase in arterial pressure is intriguing. Currently

available data indicate that H2S relaxes blood vessels

[16] mostly, if not exclusively, by opening ATP-regu-

lated potassium channels in vascular smooth muscle

cells [17,18]. We hypothesised that H2S injected at the

time of reperfusion could decrease the consequences of

shock and reperfusion, that the use of an inhibitor of

endogenous H2S production leads to opposite effects,

and that adding a vascular K+
ATP-channel inhibitor

would improve the effects of H2S on systemic haemody-

namics. Using a previously published model of I/R

induced by haemorrhagic shock, we thus compared the

effects of H2S and of its inhibition as well as of K+
ATP-

channel inhibition on haemodynamics, vascular reactiv-

ity and cellular pathways.

Materials and methods
The study protocol was approved by the Nancy Institu-

tional Committee on Animal Care and Use. The experi-

ments were performed in conformity with the European

legislation on the use of laboratory animals.

Animals

Adult male Wistar rats, weighing 325 ± 15 g, were

housed under 12-hour light/dark cycles in the animal

facility of the University of Nancy 1 (France).

Surgical procedure

Animals were anaesthetised with intraperitoneal pento-

barbital (50 mg/kg body weight). Rats were placed on a

homeothermic blanket system to maintain rectal tem-

perature between 36.8 and 37.8°C for the duration of the

experiment. After local anaesthesia with lidocaine 1%

(AstraZeneca, Rueil-Malmaison, France}), a tracheotomy

was performed and animals were mechanically ventilated

(Harvard Rodent 683 ventilator; Harvard Instruments,

South Natick, MA, USA) throughout the experiment.

The ventilator was set to maintain carbon dioxide partial

pressure in the vicinity of 40 mmHg and oxygen was

added in order to maintain oxygen partial pressure above

100 mmHg. The left carotid artery was exposed and a

2.0 mm transit-time ultrasound flow probe (Transonic

Systems Inc., Ithaca, NY, USA) was attached to the artery

to continuously measure carotid blood flow (CBF).

Under local anaesthesia, the femoral artery was canu-

lated in order to measure the mean arterial blood pres-

sure (MAP) and heart rate (HR) on the one hand, and

to induce haemorrhagic shock on the other. The homo-

lateral femoral vein was canulated for retransfusion of

withdrawn blood, for fluid replacement and for bolus

infusion of either vehicle or drugs.

Induction of haemorrhagic shock and protocol design

Surgery was followed by a 20-minute stabilisation per-

iod. Thereafter, haemorrhagic shock was induced by the

graded withdrawal of blood from the femoral artery to a

reservoir until MAP decreased to 40 mmHg and main-

tained during 60 minutes by further blood withdrawal

or reinfusion of shed blood. At 60 minutes, shed blood

was retransfused via the venous line within 10 minutes.

Animals were continuously monitored for HR, MAP

and CBF during 300 minutes. Hydration was performed

with a perfusion of 0.9% NaCl at a rate of 1.2 ml/hour.

At the end of the experiment, rats were sacrificed and

blood samples were collected for arterial lactate mea-

surement, centrifuged (4,000 rpm, 15 minutes, 4°C) and

plasma aliquoted and stored at -80°C until biochemical

analysis. Organs (aorta, heart and liver) were also col-

lected and stored at -80°C until biochemical analyses.

Pharmacological modulation

The dehydrated NaHS powder (anhydrous, 2 g; Alpha

Aesar GmbH & Co, Ward Hill, MA, USA) was dissolved

in isotonic saline under argon gas bubbling until a con-

centration of 40 mM was obtained and intravenously

administered as a single bolus (0.2 mg/kg body weight)

10 minutes before retransfusion or 10 minutes after the

end of retransfusion (late NaHS). PNU-37883A (guani-

dine; 4-morpholinecarboximidine-N-1-adamantyl-N’-

cyclohexyl hydrochloride) (Sigma Aldrich, St Quentin

Fallavier, France) was dissolved in a 1:1 mixture of

dimethyl sulphoxide and intravenously administered as a

bolus (1.5 mg/kg) followed by 1 mg/kg/hour. The induci-

ble NO synthase inhibitor 1400W (Sigma Aldrich) was

administered intraperitoneally (20 mg/kg) at T0.

Study design

Eight groups of eight rats were studied, namely: sham

rats, haemorrhagic shocked rats, shock + PAG (CSE inhi-

bitor)-treated rats (50 mg/kg), shock + NaHS-treated

rats, shock + late NaHS-treated rats, shock + PNU-

37883A-treated rats, shock + PNU + NaHS-treated rats,

and shock + 1400W-treated rats.
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Monitoring and measurements

Arterial blood gases were controlled after the stabilisa-

tion period, in order to establish mechanical ventilation.

Measurements of blood gas and blood glucose were

recorded at baseline (t = 0 minutes at the beginning of

haemorrhagic shock) and at two critical periods, namely

at the end of reperfusion (t = 70 minutes) and at the

end of the experiment (t = 300 minutes). MAP, HR,

CBF and rectal temperature were recorded at baseline

and every 10 minutes thereafter during the observation

period.

Lactate concentrations were determined using an

automated blood gas analyser (ABL5 Radiometer;

Neuilly-Plaisance, France).

Biochemical analyses

Plasma levels of IL-6 and TNFa were measured in

duplicate with the use of rat IL-6 and TNFa ELISA kits

(Quantikine ELISA; R&D Systems Europe, LILLE,

France) according to the manufacturer’s instructions.

Results were expressed as picograms of the measured

cytokine per millitre of plasma.

Measurement of nitrite/nitrate

NO2
- and NO3

- are the primary oxidised products of NO

reacting with water, and therefore the total concentration

of NO2
-/NO3

- in plasma was used as an indicator of NO

production in vivo. Briefly, the nitrate in the supernatant

was first reduced to nitrite by incubation with nitrate

reductase (10 U/ml) and NADPH (629.2 µg/ml) at room

temperature for 30 minutes. Thereafter, total nitrite con-

centration in the samples was measured by Griess reaction

following the addition of 100 µl Griess reagent to 100 µl

sample in a 96-well plate with a flat transparent bottom.

The optical density at 550 nm was measured by an ELISA

microplate reader and normalised with the optical density

at 550 nm of standard saline solutions.

RNA extraction and quantitative RT-PCR

Primers for quantitative RT-PCR were obtained from

Eurogentec (Angers, France). Total RNA extraction was

carried out with the RNA Plus mini kit (Qiagen, Courta-

boeuf Cedex, France) according to the manufacturer’s

instructions. Total RNA was reverse-transcribed to cDNA

using the iScript One-Step RT-PCR Kit for Probes (Biorad,

Marnes-la-Coquette, France). cDNA obtained from the RT

reaction was subjected to quantitative PCR using iTaq Fast

SYBR Green Supermix with ROX (Biorad, Marnes-la-

Coquette, France). The primer and concentrations were

optimised according to the manufacturer’s guidelines.

Expression of, Kir6.1 mRNA and SUR2B mRNA were

measured using iTaq Fast SYBR Green Supermix (Biorad).

The PCR reaction parameters were as follows: incuba-

tion at 50°C for 2 minutes, incubation at 95°C for

10 minutes, and thereafter 40 denaturation cycles at

95°C for 15 seconds and annealing and extension at 60°

C for 1 minute. Each sample was determined in dupli-

cate. To determine the relative mRNA levels, a standard

curve for each gene was created using RNA isolated

from the haemorrhagic shock group. Isolated RNA was

reverse-transcribed, and dilution series of cDNA ranging

from 1 pg to 10 ng were subjected to real-time PCR.

The obtained threshold cycle values were plotted against

the dilution factor to create a standard curve. Relative

mRNA levels in test samples were then calculated from

the standard curve.

Vascular reactivity

For in vivo determination, basal and maximal MAP

values obtained after administration of 1 µg/kg bolus of

norepinephrine were recorded in the sham, haemorrha-

gic shock, haemorrhagic shock + PNU and haemorrha-

gic shock + 1400W groups.

For ex vivo determination, aortic rings and small

mesenteric arteries were carefully dissected and

mounted on a wire myograph (Danish Myo Technology,

Arhus, Denmark). The experiments were performed at

37°C in a physiological salt solution with the following

composition: NaCl 119 mM; KCl 4.7 mM; NaHCO3

14.9 mM; MgSO4·7H2O 1.2 mM; CaCl2 2.5 mM;

KH2PO4 1.18 mM; glucose 5.5 mM, continuously

bubbled with 95% O2 and 5% CO2.

After an equilibration period (at least 20 minutes) under

optimal passive tension, two successive contractions

in response to the combination of KCl depolarisation

(100 mM) and phenylephrine (PE) (10 µM) (Sigma-

Aldrich) were used in order to test the maximal contractile

capacity of the vessels. After a 20-minute washout period,

concentration-response curves to PE were elicited by

cumulative administration of this vasoconstrictor agonist

(1 nM to 100 µM) in order to determine the same concen-

tration producing an equal level of contraction in the

different groups. To study endothelium-dependent relaxa-

tion, aortic rings with functional endothelium were pre-

contracted with PE (1 µM) and then exposed to increasing

incremental concentrations of acetylcholine (1 nM to

100 µM; Sigma, St Louis, MO, USA). The presence of

functional endothelium was confirmed with acetylcholine

(1 µM), which elicited a relaxation superior to 50%.

Western blotting

Aorta and small mesenteric arteries (200 to 230 μm) were

homogenised and lysed. Proteins (20 µg) were separated

on 10% SDS-PAGE. Blots were probed with the following

antibodies: anti-iNOS (BD Biosciences, San Jose, CA,

USA), phosphorylated endothelial nitric oxide synthase

(p-eNOS) (rabbit anti-rat eNOS, phosphorylated

(ser1177); Cell Signaling Technology Saint Quentin
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Yvelines, France), phosphorylated-Akt (p-Akt) (rabbit

anti-rat Akt, phosphorylated (ser473); Cell Signaling

Technology), phospho-SAPK/JNK (mouse, anti-rat

SAPK/JNK, phosphorylated (Thr183/Tyr185); Cell Sig-

naling Technology), phospho-p38 mitogen-activated pro-

tein kinase (mouse, anti-rat p38 MAPK, phosphorylated

(Thr180/Tyr182); Cell Signaling Technology), and phos-

phor-p44/42 MAPK (Erk1/2) (rabbit anti-rat p44/p42

MAPK, phosphorylated (Thr1202/Tyr204); Cell Signaling

Technology). Proteins were transferred onto nitrocellu-

lose membranes and probed with a monoclonal mouse

anti-a-Tubulin antibody (Sigma-Aldrich).

Bound antibodies were detected with a secondary per-

oxidase-conjugated anti-mouse IgG (Promega, Madison,

WI, USA). The blots were visualised using an enhanced

chemiluminescence system (ECL Plus; Amersham, GE

Healthcare Europe, Velizy-Villacoublay, France).

Statistical analyses

Results are expressed as the median and interquartile

range for n experiments (n representing the number of

animals). Difference between groups was tested using a

Kruskal-Wallis test. When the relevant F values were sig-

nificant at the 5% level, further pairwise comparisons were

performed using a Dunn’s multiple comparison test. All

statistics were performed with the Statview software (ver-

sion 5.0 software; SAS Institute, Cary, NC, USA). P < 0.05

was considered statistically significant.

Results
Model characterisation

Shock and I/R-induced hypotension, lactic acidosis and

vascular hyporeactivity to norepinephrine

The HR, MAP and CBF remained stable throughout the

experiment in the control group (Figure 1; see Additional

file 1). In animals subjected to haemorrhagic shock and

retransfusion, blood withdrawal significantly decreased the

MAP, HR and CBF (Figure 1; see Additional file 1).

Haemorrhagic shock was associated with a marked eleva-

tion in plasma lactate (9 × 2 mmol/l) compared with the

sham group (2.1 × 0.5 mmol/l) (see Additional file 2),

while the increase in arterial pressure induced by a bolus

of 1 µg/kg norepinephrine was significantly decreased (P <

0.01) in the shock group compared with sham animals

(Figure 2).

Ischaemia-reperfusion is associated with overexpression/

activation of iNOS and vascular K+ATP and increased

proinflammatory cytokines

IR-induced vascular hyporeactivity to a bolus of 1 µg/kg

norepinephrine was completely restored following the

administration of 1400W, a selective inhibitor of iNOS,

as well as PNU-37883A, a pore-forming receptor inhibi-

tor of K+
ATP channels (Figure 2). I/R was associated with

an increase in aortic and mesenteric protein expression

Kir6.1 and SUR2B (Table 1). Plasma nitrite/nitrate

(NOx), TNFa and IL-6 were also increased in shock-only

rats (P < 0.05) (Figure 3).

Hemodynamic effects of NaHS administered 10 minutes

after the end of reperfusion

MAP, HR and CBF were not different when compared

between the late NaHS group and animals subjected to

haemorrhagic shock and retransfusion (Figure 4).

Comparative effects of NaHS and PAG

Hydrogen sulphide donor NaHS prevents I/R-induced

hemodynamic and metabolic dysfunction while PAG, an

inhibitor of endogenous H2S production, has no effects

NaHS but not PAG significantly attenuated the drop in

MAP induced by I/R (P < 0.05) (Figure 1) while CBF and

HR (data not shown) remained unaffected (Figure 1). All

animals treated with NaHS survived the haemorrhagic

shock, while haemorrhagic shocked rats and PAG-treated

rats had MAP < 40 mmHg (which we considered equiva-

lent to death) at the end of the experiment. Haemorrhagic

shock-induced hyperlactataemia was attenuated by NaHS

(HS-NaHS 5 × 2.3 mmol/l) (P < 0.05) but was not modi-

fied with PAG (P < 0.05) (see Additional file 2). Compared

with shock-only rats and shock + PAG rats, NaHS-treated

animals had a significantly improved pH (P < 0.05) at the

end of the experiment (T150) (see Additional file 2).

Sodium hydrosulphide improves vascular function in rat

aortic and small mesenteric vessels

PE induced a dose-dependent increase in tension in aortic

and small mesenteric vessels in control rats. In contrast,

haemorrhagic shock blunted PE-stimulated contraction

(P <0.01), whereas NaHS significantly restored the maximal

contractile capacity to control levels (P < 0.05) while PAG

had no effect (Figure 5A). Acetylcholine produced a con-

centration-dependent relaxation of isolated aortic and

small mesenteric vessels. Compared with the sham group,

vascular responses to acetylcholine decreased in the aorta

of shock-only rats (P < 0.05). The addition of NaHS

improved vascular response to acetylcholine while the inhi-

bitor PAG did not modify endothelial function (Figure 5B).

Effect of NaHS on inflammatory mediators in haemorrhagic

shock rats

Plasma nitrite/nitrate (NOx), TNFa and IL-6, which

were increased in shock-only, control rats (P < 0.05),

decreased in NaHS-treated rats (P < 0.05) and increased

in PAG-treated rats (P < 0.05) (Figure 3).

NaHS restores the phosphorylated Akt-to-Akt ratio and

phosphorylated eNOS-to-eNOS ratio, while reducing

haemorrhagic shock-induced upregulation of iNOS

expression

Expression levels of Akt and phosphorylated Akt (Akt

Ser473 phosphorylation) as well as phosphorylated Akt-

to-Akt ratio were decreased in the aorta of shock-only
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rats (Figure 6). NaHS treatment blunted this decrease

while PAG rather increased their expression levels (P <

0.05). Similar results were also found for phosphorylated

eNOS-to-eNOS ratio

The expression of iNOS protein, as assessed by wes-

tern blotting, increased in shock-only rats (compared

with rats from the sham group). This increase in iNOS

expression was significantly reduced following the

administration of NaHS (P < 0.05) but increased with

PAG (P < 0.05).

Effect of NaHS on alterations in p38 MAPK and JNK1/2

phosphorylation induced by haemorrhagic shock

NaHS reduced the phosphorylation of both p38 and JNK

(Figure 6D,E). Conversely, PAG increased this phosphory-

lation compared with NaHS. Neither PAG nor NaHS

influenced the phosphorylation of ERK (Figure 6F).

PNU-37883A, a pore-forming receptor inhibitor of K+ATP
channels, further increases the effects of NaHS

PNU-NaHS was associated with a further increase in

MAP when compared with NaHS alone (P < 0.05) (see
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Figure 1 Hemodynamic measurements. (A) Mean arterial blood pressure (MAP) and (B) carotid blood flow (CBF) in the sham (filled circles),

haemorrhagic shock + saline (crosses), haemorrhagic shock + sodium hydrosulphide (NaHS; triangles) and haemorrhagic shock + D,L-

propargylglycine (PAG; empty circles) groups recorded during a 300-minute monitoring period. *P <0.05, significantly different from sham. **P

<0.05 versus haemorrhagic shock + NaHS group.
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Additional file 3). PNU alone did not modify arterial pH

nor the lactate level, whereas PNU-NaHS was associated

with a decrease in lactate level and an increase in arter-

ial pH as opposed to no differences with NaHS alone

(P < 0.05) (data not shown).

Discussion
Herein, we illustrate the major role of NaHS in protect-

ing the body against the consequences of shock and I/R

[19]. Our findings revealed that the pharmacological inhi-

bition of the endogenous pathway of H2S production

during global I/R following a severe and reperfused hae-

morrhagic shock did not improve or worsen the conse-

quences of shock, suggesting that endogenous H2S

production per se is an active protective mechanism dur-

ing IR; and we confirm that NaHS, an exogenous donor

of H2S, is beneficial in terms of haemodynamics, tissue

oxygenation and vascular reactivity. The effects of NaHS

appear to be associated with a decrease in proinflamma-

tory cytokines and a reduced expression of iNOS conco-

mitant with a restoration of the eNOS pathway. These

beneficial effects of NaHS appear to be more related to

anti-inflammatory effects rather than to any specific vas-

cular effect secondary to vascular K+
ATP activation since

selective inhibition of vascular K+
ATP channels further

improved haemodynamics and lactate metabolism in

NaHS-treated rats. Furthermore, the effects of NaHS

were not due to NaHS-induced hibernation since the ani-

mal’s body temperature was continuously maintained.

Finally, H2S when given after reperfusion was not

efficient.

Our model was characterised by profound and ulti-

mately lethal hypotension, decreased blood flow, lactic

acidosis and vascular hyporesponsiveness to vasopressor

agents. These haemodynamic disturbances were asso-

ciated with iNOS upregulation, proinflammatory cyto-

kine production and activation/upregulation of vascular

K+
ATP channels. The present findings confirmed that

H2S given prior to retransfusion limited the I/R-induced

decrease in MAP without changing carotid blood flow

and heart rate when compared with shock-only rats.

Given that H2S is usually considered an endogenous

vasodilator acting through activation of vascular K+
ATP,

the role of this activation was further assessed with the

Figure 2 Mean arterial pressure after administration of norepinephrine. Mean arterial pressure (MAP) after administration of a bolus of

1 µg/kg norepinephrine in the haemorrhagic shock (HS) + saline, HS + 1400W (treated intraperitoneally with 1400W) and HS + PNU (treated

with a 1-hour infusion of PNU-37883A; 1.5 mg/kg bolus followed by 1 mg/kg/hour) groups. *P <0.05, significantly different between HS + saline

and all groups.

Table 1 mRNA expression of Kir6

Haemorrhagic shock

Kir6.1 Aorta 21 × 5*

Mesenteric 7 × 2*

SUR2B Aorta 12 × 7*

Mesenteric 3 × 0.3*

n = 7 in each group. *P < 0.05, significantly different between haemorrhagic

shock and sham groups.
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selective vascular K+
ATP blocker, PNU-37883A. Our

results first demonstrated that K+
ATP channels were over-

activated and overexpressed both at the gene and protein

levels in this model, indicating that vascular K+
ATP is

implicated in vascular hyporesponsiveness to vasopressor

agents. Secondly, rats treated with H2S + PNU exhibited

a higher mean arterial pressure and a better vasoreactiv-

ity to norepinephrine. This may explain why H2S, which

Figure 3 Effects of sodium hydrosulphide and d,l-propargylglycine. Effects of sodium hydrosulphide (NaHS) and D,L-propargylglycine (PAG)

(50 mg/kg) on plasma levels of (A) nitrite + nitrate, (B) TNFa and (C) IL-6. Horizontal axes show the various groups. *P < 0.05, significantly

different between sham and all groups. **P < 0.05 versus haemorrhagic shock (HS) + NaHS group.
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Figure 4 Hemodynamic measurements with sodium hydrosulphide administered 10 minutes after the end of reperfusion. Mean arterial

blood pressure (MAP), carotid blood flow (CBF) and heart rate (HR) in sham (filled circles), haemorrhagic shock + saline (crosses), and

haemorrhagic shock + sodium hydrosulphide (NaHS) (triangles) groups recorded during a 300-minute monitoring period. *P <0.05, significantly

between sham.
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is generally regarded as an endogenous vasodilator, para-

doxically increased MAP in this model. H2S probably

increases MAP through its well-demonstrated effects on

the inflammatory pathway on the one hand, while

decreasing MAP through K+
ATP activation on the other,

with the global result being an increase in MAP [20].

Potassium channels are critical metabolic sensors during

acute metabolic changes such as hypoglycaemia or hyper-

glycaemia, ischaemia and hypoxia [21]. I/R-induced cardi-

ovascular failure is traditionally ascribed to the effects of

inflammatory mediators that induce circulatory changes

with resulting tissue hypoxia and cell damage [22]. In the

face of these deleterious signals, the body’s adaptive

response at the vascular level is to preserve cell survival

through metabolic sensors by increasing local blood flow

in the microcirculation, the so-called metabolic vasodilata-

tion, in which the opening of K+
ATP channels plays a

major role [23]. This adaptive response also leads to sys-

temic vasodilatation, hypotension and potentially multiple

organ failure and death. Vascular potassium channels may

thus have protective but also harmful roles during shock.

Therefore, while the use of channel inhibitors might be an

attractive option to counteract systemic vasodilatation, it

may also act as a double-edged sword. Whether K+
ATP

activation is a protective phenomenon in this setting of

disturbed microcirculation thus remains unknown.

Hydrogen sulphide and PAG exert opposite effects on

pathways implicated in vascular failure

Ganster and colleagues demonstrated that H2S improved

cardiovascular status in I/R by decreasing oxidative

stress and inflammation through a decrease in NF-�B

activation [9]. Our present model was associated with

an increase in proinflammatory and anti-inflammatory

cytokines, an increase in iNOS expression and an altera-

tion in eNOS phosphorylation. As for the phosphoryla-

tion pathway, JNK phosphorylation was increased

without significant changes in the p-P38/P38 ratio.

Indeed, JNK and P38 have been shown to be activated

by TNF and IL-1 stimulation of endothelial cells [24]

Figure 5 Effects of treatment on phenylephrine-induced contraction in aorta and on aortic dilatation to acetylcholine. Effects of

treatment (A) on phenylephrine (Phe)-induced contraction in aorta and (B) on aortic dilatation to acetylcholine (ACh) in sham (filled squares),

haemorrhagic shock + saline (crosses), haemorrhagic shock + sodium hydrosulphide (triangles) and haemorrhagic shock + D,L-propargylglycine

(empty circles) groups. *P < 0.05.
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and to induce expression of proinflammatory effector

molecules.

In the present study, H2S was found to decrease the

cytokine storm as well as both gene and protein iNOS

expression while increasing Akt and eNOS phosphoryla-

tion. Moreover, H2S reduced JNK activity and p-P38/

P38 activation, suggesting a decrease in endothelial cell

activation [25]. Conversely, all of these parameters were

either not altered or worsened with PAG injection.

Study limitations

The present model presents several limitations, first of

which involves the use of a pressure-fixed and anaesthe-

tised model of haemorrhagic shock that does not fully

represent all of the specific patterns of human haemorrha-

gic shock.

Secondly, we used a fixed dose of NaHS that we pre-

viously found efficient without performing a dose-response

study, thus leaving the possibility that potentially toxic or

beneficial effects may have been missed.

Thirdly, we did not observe any differences between

the shock group and the PAG-treated group with regard

to haemodynamics, metabolism and proinflammatory

cytokine parameters. Van de Louw and Haouzi recently

demonstrated that, despite a severe cumulative oxygen

debt (100 to 140 ml/kg), H2S blood and tissue concen-

trations did not change [26]. Nevertheless, despite the

absence of a marked increase during H2S treatment,

blocking endogenous H2S production most probably has

little therapeutic benefit and may actually prove to be

contraindicated [27].

Fourthly, when compared with mouse and humans,

rats exhibited more iNOS activation during stress. The

importance of the H2S-induced decrease in iNOS activa-

tion should therefore be discussed.

Lastly, the timing of H2S administration might be dis-

cussed. While pretreatment with inhaled H2S and intra-

venous sodium sulphide attenuated kidney, heart, and

brain damage in mice undergoing I/R injury or cardiac

arrest [28,29], similar post-treatment had no effect

Figure 6 Western blot analysis of protein expression. Western blots revealing (A) inducible nitric oxide synthase (iNOS), (B) p-AKT,

(C) phosphorylated endothelial nitric oxide synthase (p-eNOS), (D) p-p38, (E) p-JNK and (F) p-ERK expression. Proteins are expressed in whole

lysates of aorta (n = 8) from all groups of rats. A typical western blot is shown below each histogram. Densitometric analysis was used to

calculate the normalised protein ratio (protein to a-tubulin), which was set at 1 for the control group. Data are expressed as mean ± standard

deviation. *P < 0.05, significantly different versus sham and all groups. **P <0.05 versus haemorrhagic shock (HS) + sodium hydrosulphide (NaHS)

group. PAG, D,L-propargylglycine.
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[12,30]. Our findings are in agreement with these pre-

vious reports suggesting that H2S beneficial effects seem

to be confined to a narrow timing window.

Conclusion
The present in vivo experimental study of I/R following

resuscitated haemorrhagic shock in rats demonstrates

that H2S administered exogenously before reperfusion is

protective against the deleterious cardiovascular effects

of haemorrhage-induced I/R. On the contrary, blocking

endogenous H2S production or administering H2S after

the reperfusion had no effect. More specifically, H2S

decreases proinflammatory cytokine and iNOS expres-

sion and restores the Akt/eNOS pathway. Such benefi-

cial effects of H2S donors warrant further experimental

studies.

Key messages
• H2S, administered exogenously before reperfusion is

protective against the deleterious cardiovascular effects

of haemorrhage-induced I/R.

• H2S is not effective when given after reperfusion.

• H2S increased MAP through anti-inflammatory

effects despite vasodilatory effects due to K+
ATP-channel

activation.

• H2S decreases proinflammatory cytokine and iNOS

expression and restores the Akt/eNOS pathway.

Additional material

Additional file 1: Heart rate in sham (filled circles), haemorrhagic shock

+ saline (crosses), haemorrhagic shock + NaHS (triangles) and

haemorrhagic shock + PAG (empty circles) groups recorded during a

300-minute monitoring period. *P < 0.05.

Additional file 2: Metabolic parameters. Evolution of (A) lactate and

(B) pH. *P <0.05, significantly different versus sham group. **P <0.05

versus haemorrhagic shock + NaHS group.

Additional file 3: Hemodynamic measurements. MAP in the

haemorrhagic shock + saline group (crosses), haemorrhagic shock + PNU

(empty circles) group and haemorrhagic shock + PNU-NaHS (inversed

triangles) rats recorded during a 300-minute monitoring period. *P <0.05.
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