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Abstract

Modular architecture is a hallmark of many brain circuits. In the cerebral cortex, in particular, it has been observed that reciprocal

connections are often present between functionally interconnected areas that are hierarchically organized. We investigate the effect

of reciprocal connections in a network of modules of simulated spiking neurons. The neural activity is recorded by means of

virtual electrodes and EEG-like signals, called electrochipograms (EChG), analyzed by time- and frequency-domain methods. A

major feature of our approach is the implementation of important bio-inspired processes that affect the connectivity within a neural

module: synaptogenesis, cell death, spike-timing-dependent plasticity and synaptic pruning. These bio-inspired processes drive

the build-up of auto-associative links within each module, which generate an areal activity, recorded by EChG, that reflect the

changes in the corresponding functional connectivity within and between neuronal modules. We found that circuits with intra-layer

reciprocal projections exhibited enhanced stimulus-locked response. We show evidence that all networks of modules are able to

process and maintain patterns of activity associated with the stimulus after its offset. The presence of feedback and horizontal

projections was necessary to evoke cross-layer coherence in bursts of γ-frequency at regular intervals. These findings bring new

insights to the understanding of the relation between the functional organization of neural circuits and the electrophysiological

signals generated by large cell assemblies.

Keywords: spiking neural networks, computational neuroscience, electro-encephalography, genetics, hierarchical circuits,

evolvable systems

1. Introduction

Brain activity recordings by means of electroencephalogra-

phy (EEG), electrocorticography (ECoG) and local field po-

tentials (LFP) collect signals generated by multiple cell assem-

blies. The neurophysiological processes underlying those sig-

nals are determined by highly non-linear dynamical systems

(Freeman, 1975; Nunez and Srinivasan, 2006). The complex-

ity of these processes opened the way to large-scale simulations

and neural mass models that were mainly focused on the detec-

tion of scale-free invariants and self-organized activity (Wright,

1999; Freeman, 2005; Breakspear and Stam, 2005; Deco et al.,

2008; Goodfellow et al., 2011).

Mathematical and computational models relying on neuro-

physiological models of EEG signals have been proposed, gen-

erally based on population dynamics (Knight, 2000; Drover

et al., 2010), pulsed coupled oscillators (Ly and Ermentrout,

2009) and coupled neural masses (Sotero et al., 2007; Ursino

et al., 2010). The simulation studies of event-related EEG per-

formed with these models have emphasized how modulation of

the strengths of positive and negative feedback between brain

modules may affect the wave shape and the time course of

event-related potentials (ERPs) (Rennie et al., 2002) and in par-

ticular the emergence of damped oscillations in the presence of

backward connections (David et al., 2005).

In the present study we simulate the activity of intercon-

nected modules of spiking neurons undergoing ontogenic and

epigenetic developmental phases (Iglesias and Villa, 2007,

2010). In addition to multiple spike trains we record neuro-

mimetic signals, called electrochipograms (EChG), similar to

ECoG and LFP, by the means of realistic virtual electrodes

(Shaposhnyk et al., 2009). The neural circuit is characterized

by two layers of feed-forward networks and we study the emer-

gent properties of stimulus response in presence of feedback

projections between the layers of networks and intra-layer pro-

jections (horizontal projections). Our simulation framework in-

troduces also genetic features such that model parameters are

coded in the neuronal genome and we implement gene drift

through generations of the neural circuits in order to observe

general results that are shared by all generated networks. The

rationale is that the Spike-timing-dependent Plasticity (STDP)

embedded in the neural network models would drive the build-

up of auto-associative network links, within each neural mod-

ule, which generate an areal activity, detected by EChG, that

would reflect the changes in the corresponding functional con-

nectivity within and between neuronal modules.

2. Methods

2.1. Module characteristics

The characteristics of a neuronal module have been exten-

sively studied and described elsewhere (Iglesias et al., 2005;

Iglesias and Villa, 2007, 2008) and we summarize here the main
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Table 1: Main parameters used for the simulation (Iglesias et al., 2005).

Parameter Value

1 Network module at birth

neurons (2D lattice 75 × 75) 5,625

projections ≈ 890,000

external afferent e.p.s.p. 1.90 mV

background afferent e.p.s.p.(1) 1.90 mV

intensity of background activity 300 spikes/s

Common cell membrane parameters

reset threshold -78 mV

spiking threshold -40 mV

membrane time constant 16 ms

Excitatory cell population

proportion in network 80%

Gaussian maximal probability 60%

Gaussian distribution witdh 15 units

absolute refractory period 1 ms

e.p.s.p.(2) 1.84 mV

Inhibitory cell population

proportion in network 20%

Gaussian maximal probability 20%

Gaussian distribution width 45 units

absolute refractory period 0.7 ms

i.p.s.p. -1.64 mV

(1) equal to 3.80 mV in the Sensory module.
(2) in the range 0.92-3.68 mV following STDP.

features. Each network module was simulated by a 2D lattice

of 75 × 75 leaky integrate-and-fire neuronal models, that in-

cludes 80% of excitatory neurons and 20% of inhibitory neu-

rons, whose main parameters are summarized in Table 1.

A major feature of our approach is the implementation of

important bioinspired processes (Iglesias and Villa, 2010) that

affect the connectivity within a neural module: synaptogene-

sis, cell death, synaptic plasticity and synaptic pruning. During

synaptogenesis each cell established a pattern of projections

such that a cell of either type could project to a cell of either

type, avoiding self-connections. The selection of the target cells

was random and run independently for each cell of either type

according to a 2D Gaussian probability distribution (Hill and

Villa, 1997). In addition, the excitatory cells had a uniform

probability of 2% to establish long-range connections through-

out the neural module. On average, one excitatory cell pro-

jected to ∼106 excitatory and to ∼27 inhibitory cells (Fig. 1a).

On average, one inhibitory cell projected to ∼210 excitatory

and to ∼52 inhibitory cells (Fig. 1b). No spatial organization

was predefined within a module. No new projection is added to

the network after the initial stage of synaptogenesis.

We have implemented two types of cell death : “apoptosis”

or programmed cell death, which is active at the begin of circuit

maturation and “necrotic cell death”, which occurs when neu-

rons do not establish enough connections with other neurons

either due to an anomalous brain development or to a loss in

connections (synaptic pruning) occurring at any stage after the
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Figure 1: Cumulative distributions of the efferences (a,b) and afferences (c,d)

within one neural module at the end of the synaptogenesis. (a) excitatory ef-

ferent connections to excitatory cells (e→e) and to inhibitory cells (e→i). (b)

inhibitory efferent connections to excitatory cells (i→e) and to inhibitory cells

(i→i). (c) excitatory afferent connections from excitatory cells (e→e) and from

inhibitory cells (i→e). (d) inhibitory afferent connections from excitatory cells

(e→i) and from inhibitory cells (i→i).

developmental phase (Hutchins and Barger, 1998). Apoptosis

is aimed to reflect the biological massive synaptic pruning as-

sociated with cell death occurring during early stages of neural

development, right after initial excessive and to some extent dif-

fusive synapse generation (Rakic et al., 1986; Innocenti, 1995).

In the current framework apoptosis was implemented according

to Iglesias and Villa (2010) and was made effective during the

initial 750 ms of the simulation, an interval corresponding to

only 0.2% of the total duration of the simulation but accounting

for the death of nearly 30% of the neurons.

Synaptic plasiticty based on STDP was enabled at the end

of the phase characterized by apoptosis. This plasticity mecha-

nism was limited here to excitatory receptors, that means it af-

fected both excitatory-excitatory and excitatory-inhibitory con-

nections. The STDP modification rule was implemented ac-

cording to Iglesias et al. (2005), thus reducing the synaptic

weights to four discrete states determined by activation levels.

The strength of inhibitory projections was unchanged during

the entire simulation. Whenever the synaptic weight of any

excitatory-excitatory or excitatory-inhibitory synapse reached

a value of zero, due to the depression associated with STDP,

the synapse died and was removed, thus leading to synaptic

pruning. Whenever a cell lost all its excitatory inputs from

within the same module because of synaptic pruning it entered

a “necrotic cell death” and the cell was removed. This process

was active during the whole simulation, in contrast to apoptosis

which was active only during the early developmental stage.

In addition to the afferences from the other cells of the mod-

ule all cells of either type received inputs from a background

source. In this study the background activity was generated

by uncorrelated Poisson-distributed inputs at an average rate of
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300 spikes/s with an excitatory postsynaptic potential (e.p.s.p)

of 1.90 mV . The sole exception to this rule was the “sen-

sory” module that was characterized by background e.p.s.p.s

of 3.80 mV , aimed to produce a stronger noise at the peripheral

level.

2.2. Hierarchical network of modules

In each neuronal module two sets of cells were randomly se-

lected among the excitatory cells of the network. They corre-

spond to the efferent and the afferent layer of the module. In

the module excited by the external stimulus (referred to as the

‘sensory’ module) each set was formed by 450 excitatory cells.

In the other modules the afferent and the efferent layers were

formed by 450 and 900 excitatory cells, respectively. Synapto-

genesis includes also the establishment of the connections be-

tween neural modules following a self-reflective mapping such

that the number of inter-module projections from a particular

efferent neuron is proportional to the number of intra-module

projections of the same neuron (Shaposhnyk et al., 2009). Then,

cells of the afferent and efferent layers receive and send excita-

tory projections to and from other neuronal modules in addition

to their intra-module connections (of both excitatory and in-

hibitory types like any other cell). The excitatory inter-module

projections are characterized by a synaptic weight of 1.90 mV .

In the current study these synapses are not characterized by

STDP and their strength is unchanged during the entire sim-

ulation.

Four circuit graphs featuring different combinations of recip-

rocal inter-module links were used in this study. All modules

were composed by a neural network of 75 × 75 cells. An input

module excited by an external stimulus is referred to as the ‘sen-

sory’ module (S) and the other modules are referred to as ‘pro-

cessing’ modules and labeled according to the layer’s position

in the hierarchical organization (i.e. L1.x, L2.x, Ln.x). Figure 2

shows the circuits studied here, formed by two parallel streams

and by two layers. The two main topological features of the

circuits were the presence of reciprocal projections within each

processing layer (i.e. horizontal connections) and the presence

of reciprocal projections between successive processing layers.

Then, the basic circuitry characterized by a pure f eed- f orward

pattern of projections is termed FF. The FF circuit with addi-

tional f eedback projections between layers is termed FB. Cir-

cuits are termed FFH and FBH with horizontal links added to

FF and FB circuits, respectively.

2.3. Virtual Subjects

We have implemented a framework that supports basic evo-

lutionary features. Each next-generation circuit is produced by

a parent circuit with a probability specified by a fitness func-

tion at the time corresponding to the end of the simulation of

the parent’s circuit. In this study we use a dummy fitness func-

tion that always provides a 100% probability of replication, but

the framework supports user-defined or behaviorally-defined

fitness functions. At the time of the replication a mutation op-

erator introduces variability in the circuit’s properties.
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Figure 2: Four hierarchical circuits used in the experiment. The arrows de-

pict projections and directions of information flow between the neural network

modules. FF: feed-forward topology without horizontal projections within the

same processing layer; FB: same as FF with feedback projections between suc-

cessive layers (orange arrows); FFH: feed-forward topology with reciprocal

projections within processing layer (horizontal connections labeled with green

arrows); FBH: same as FBH with additional feedback projections

In the current study we applied the multiple bit-flip muta-

tion operator, which is an extension of the single bit-flip oper-

ator (Langdon, 2010), to the gene that coded the “connectivity

seed” (the other parameters such as the e.p.s.p. were left fixed

here) A small variation of this gene is enough to produce drasti-

cally different intra-module connection maps, while preserving

the distribution of the connections; the same seed will warrant

that the connectivity map is the same, which is useful for the

reproducibility of results. For any given circuit graph we con-

sidered 21 generations that corresponds to 21 different virtual

subjects, each one being characterized by a random mutation of

the ‘connectivity seed’ gene.

2.4. External stimulation and Inter-Stimulus Interval

The external stimulation was applied by means of a spa-

tiotemporal stimulus fed to the afferent cells of the sensory

module (Shaposhnyk et al., 2009). The stimulus lasted 500 ms

and activated each afferent cell once per 10 ms on average.

Each stimulus was followed by a silent period of 1000 ms called

inter-stimulus interval (ISI). The duration corresponding to the

stimulus application and ISI is called an elementary stimulus

“trial”. The stimulation was repeated regularly at a rate of

0.67 Hz given the trial duration of 1500 ms. At each repetition

the pattern was slightly modified by introducing a 10% variabil-

ity of the initial motif. A jitter of ±1 ms was introduced in the

activation time of 10% of randomly selected sensory afferent

cells. This straightforward procedure was repeated irrespective
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Figure 3: Time course of the peak-to-peak amplitude of the EChG for each

layer of circuit FBH measured during the ISI as a function of the trial number.

Each point is the average of 84 recordings. The dashed lines and the arrows in-

dicate the range between trials #128 and #228 that has been selected for further

averaging for event-related analysis.

of the selected cells, so that a cell could be selected more than

once by chance and the final jitter becoming more than ±1 ms.

This occurrence introduced even greater variability but it hap-

pened only rarely.

2.5. Virtual electrodes

A virtual electrode recorded a neuro-mimetic signal, called

electrochipogram (EChG), over a certain “area” of 2D neuronal

lattice according to the appropriate weights describing the elec-

trode’s sensitivity (Shaposhnyk et al., 2009). The main param-

eters of the electrode are its position over the module, its cov-

erage area and its sensitivity function. In this study the elec-

trode’s sensitivity was limited by a circular area with a radius

of 19 cells and the sensitivity function was decaying linearly

from the center (100%) to its edge (0%). Two electrodes, one

located in the top-left “extremity” of the 2D lattice and the sec-

ond one located in the bottom-right “extremity”, were placed in

each module. The dual recording is performed only to gather

additional signals for data analysis and reduce the effect of the

noise embedded in the signal. Indeed, no difference between the

electrode locations is expected because of the wrapped toroidal

model of the network’s lattice and the random distribution of

the efferent and the afferent cells across each module.

3. Results

3.1. Electrochipograms and Event-Releated Potentials

The total duration of a single simulation run lasted 375 sec-

onds (250 trials of 1500 ms each). In order to improve the

signal-to-noise ratio of the EChG in the time-domain we have

calculated ERPs by averaging several recordings triggered by

the same stimulus onset. The average was extended across all

21 different virtual subjects obtained by genome mutation. For

each circuit graph the EChG signal was recorded by two virtual

electrodes per module. Moreover, we grouped together the four

recordings performed from within the same layer of modules

(2 recordings × 2 modules per layer). This means that for each

circuit graph and for each layer of the circuit we analyzed the

signals averaged across 84 recordings (= 21 × 2 × 2).

The effect of network maturation due to plasticity, synap-

tic pruning and cell death processes is illustrated by the time

course of the peak-to-peak amplitudes of the EChG signal mea-

sured during the ISI of successive trials (Fig. 3). The curves

show that the maximum amplitude of Layer 2 activity tended to

decrease more than in Layer 1 until approximately trial #100.

After this time both layers showed a tendency to decrease the

maximum level of activity but their relative difference remained

unchanged. For ERP analysis we decided to select an arbitrary

range of 100 trials between trials #128 and #228 for further av-

eraging. This means that ERPs were analyzed across a grand

average of 8400 trials (= 21 × 2 × 2 × 100).

Let us consider XIS I , the signal recorded during the ISI pe-

riods, and X1, X2, . . . , Xn the points of XIS I . Let us define

MADIS I as the median of the absolute deviations from the

data’s median (Hoaglin et al., 2000). The value of MADIS I , the

median absolute deviation amplitude during ISI, is calculated

as MADIS I = mediani
i=1,n

(|median j(X j)
j=1,n

− Xi|) . We can express

the strength of the response (S R) as the ratio between the me-

dian amplitude of ERP during the stimulus presentation and the

corresponding MADIS I . For Layer 1 modules S R was equal to

7.58, 7.18, 7.68 and 7.65 for the FF, FB, FFH and FBH circuits,

respectively. The values of S R for each circuit and for each

layer pair were calculated with 95% confidence intervals (Ta-

ble 2). These data show that in Layer 1 a moderate increase in

S R by 3-7% observed in the presence of horizontal projections

was not significant. For Layer 2 modules S R was significantly

lower than the values found in Layer 1 (Table 2, Fig. 4). The

presence of horizontal links decreased S R in Layer 2 by 10-

20%. The presence of feedback projections, irrespective of the

horizontal links, also reduced S R in Layer 2 response by a sim-

ilar proportion. In Layer 2 these effects were cumulative and

S RFBH was reduced by 30% compared to S RFF .

3.2. During the stimulation

Figure 4 shows the ERPs for each topology and each layer

of the circuit. At the onset of the stimulus the amplitude of

ERPs increased for Layer 1 modules, irrespective of the circuit

graph. The horizontal projections emphasized the inhibitory

offset response: in Layer 1 the duration of the offset inhibition

Table 2: S R confidence interval calculated according to the smoothed percentile

bootstrap methodology (Efron, 1979).

Layer Circuit S R
95% confidence

lower higher

L1

FB 7.180 6.020 8.938

FBH 7.645 6.532 8.904

FF 7.580 6.626 9.060

FFH 7.678 6.516 9.111

L2

FB 2.011 1.510 2.581

FBH 1.837 1.381 2.187

FF 2.661 1.972 3.278

FFH 2.054 1.592 2.504
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Figure 4: ERPs averaged across 21 virtual subjects, 8400 trials overall, trig-

gered by stimulus onset (at lag 0). The dotted lines at 0 and 500 m correspond

to the onset and offset of the stimulus. A Blackman-Tukey curve smoothing

with a window of 20 ms was applied to eliminate high frequency components

(Blackman and Tukey, 1959). The labels refer to the circuit and to the order

of the layer. Black curves refer to ERPs recorded in FB and FBH circuits.

Gray curves refer to ERPs recorded in FF and FFH circuits. Notice the burst of

γ-oscillations after stimulus onset in FB.L1 and FBH.L1.

was prolonged by approximately 40 ms; in Layer 2 the offset

inhibition was sharper.

Trials #128 to #228 were used for the computation of the

power spectrum (PSD) (Fig. 5) and we averaged the trial-by-

trial PSDs. In any circuit, PSD power in Layer 1 was larger

than in Layer 2 for all frequencies (Fig. 5a,d). This difference

is due to the direct input from the sensory module to Layer 1.

We have assessed the effect of introducing feedback projections

in the circuits by computing the difference between the PSDs

with and without feedback projections (FB and FBH vs. FF and

FFH, respectively). For each bin of the power difference curves

we calculated the 95% confidence interval based on the distri-

bution of the trial-by-trial difference in PSDs. We consider here

the frequency bands α, β and γ in the ranges [5-20[, [20-40[,

and [40-100] Hz, respectively. The shifts in the range limits of

the frequency bands towards higher frequencies are determined

by the smallness of the network size of a module with respect

to a realistic brain area (data not shown from our study and

beim Graben and Kurths, 2008). The power of PS DFB.L1 and

PS DFBH.L1 was larger due to the presence of the feedback, as

shown by the curves of the power differences that tended to stay

above the zero line (Fig. 5b,e). In particular we observed two

significant peaks in the differential curves of Layer 1 of either

circuit. In the presence of additional horizontal links both sig-

nificant peaks were in the γ-range tended to stay above the zero

line (Fig. 5e). Notice that a burst of γ-oscillations appeared im-

mediately after the stimulus onset in the presence of feedback

projections (Fig. 4).
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Figure 5: Averaged Power Spectrum Densities during the stimulus presenta-

tion in Layer 1 and Layer 2 of FB, FF circuits (panel a) and circuits with

horizontal links, FBH and FFH (panel d). Black curves refer to circuits with

feedback projections and gray lines to feed-forward circuits. The difference

PS DFB − PS DFF with the 95% two-tailed confidence intervals (limits of the

shaded area) for Layer 1 and Layer 2 is plotted in panels b,c, respectively. The

difference PS DFBH − PS DFFH for Layer 1 and Layer 2 is plotted in panels

e,f, respectively. The analysis is performed with a resolution of 2 Hz. The

asterisks are used to label the significant peaks of the differential curves. We

consider here the frequency bands α, β and γ in the ranges [5-20[, [20-40[, and

[40-100] Hz, respectively.

It is noticeable that in Layer 2 the horizontal links increased

even further the overall power of PSD and particularly the

γ-oscillations (Fig. 5f). On the opposite, in the absence of

horizontal links, PS DFB.L2 was characterized by a power that

tended to be smaller than PS DFF.L2, in particular in the γ-range

(Fig. 5c). Then, PSD analysis showed that Layer 2 activity dur-

ing the stimulation was very much affected by the circuit con-

nectivity.

Figure 6 shows the dynamics of the ERPs on a trial-by-trial

average with 84 traces averaged for each trial. For Layer 1, the

comparison of Fig. 6a and Fig. 6c shows that the presence of

horizontal connections is not only making the onset excitation

and the offset inhibition sharper but it greatly reduced the inter-

trial variability. It is interesting to notice that before trial#128

inhibitory onset responses appeared transiently in Layer 2 with

any kind of connectivity among the modules (Fig. 6b,d). This

pattern occurred briefly again near trial#180 only in the FB cir-

cuit (Fig. 6b, left panel).

3.3. During the Inter-Stimulus Interval

During the ISI, Layer 1 was characterized by a power larger

than Layer 2 at all frequencies (Fig. 7a,d), in a way similar to
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Figure 6: Trial-by-trial dynamics of the ERPs in Layer 1 (panels a,c) and Layer 2 (panels b,d) of circuits with feedback projections (left column) and in presence

of horizontal projections (panels c,d). The amplitude of the ERPs is scaled in µV and color-coded following the colors on the right scale. The dotted lines at trials

#128 and #228 indicate the range that was used to calculate the grand averaging.

what was observed during the stimulation. In Layer 1 the pres-

ence of feedback projections in the circuit tended to increase

the number of significant peaks in the γ-range, (Fig. 7b,e) espe-

cially in the absence of horizontal links (Fig. 7b). It is interest-

ing to notice that the PSD in FB.L2 and FF.L2 were very simi-

lar (Fig. 7a,c). On the opposite, the presence of both horizontal

and feedback connections increased the power of FBH.L2 vs.

FFH.L2 throughout the frequency range (Fig. 7d), in particular

in the γ-range (Fig. 7f).

3.4. Cross-Layer Time/Frequency Analysis

The assessment of the correlation between EChGs from

Layer 1 and Layer 2 in the frequency and in the time domains

on a trial-by-trial basis was performed by the cross-coherence

analysis between trials #128 and #228. The cross-coherence

XCOHA,B( f , t) between two channels, A and B, at the given

frequency f in the time-window centered on t is calculated ac-

cording to the equation

XCOHA,B( f , t) =
1

n

n∑

k=1

FA
k

( f , t)FB
k

( f , t)∗

|FA
k

( f , t)FB
k

( f , t)|
,

where FA
k

( f , t) and FB
k

( f , t) are short-time Discrete Fourier

Transforms of signals A and B, and FB
k

( f , t)∗ is the complex

conjugate of FB
k

( f , t) (Delorme and Makeig, 2004). The value

of the cross-coherence varies between 0 meaning a complete

absence of synchronization and 1 meaning perfect synchroniza-

tion.

The cross-layer coherence for each circuit type is illustrated

in Fig. 8. The significance of the coherence values was assessed

by bootstrap statistics (Delorme and Makeig, 2004) such that

non-significant values (2p < 5%) were zeroed for the sake of

the colored drawing of the map of Fig. 8. We use the same

α, β, and γ frequency bands defined above. The presence of

the horizontal links decreased the vast majority of the cross-

layer coherence throughout the frequency spectrum (Fig. 8a,b

vs. Fig. 8c,d). Notice the strong cross-layer coherence for all
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Figure 7: Averaged Power Spectrum Densities during ISI in Layer 1 and Layer

2 of FB, FF circuits (left panels) and circuits with horizontal links, FBH and

FFH (right panels). The analysis is performed with a resolution of 1 Hz. We

consider here the frequency bands α, β and γ in the ranges [5-20[, [20-40[, and

[40-100] Hz, respectively. The labels are the same as in Figure 5.

circuits at very low frequencies right at the stimulus offset (lag

= 500 ms) due to the offset inhibition visible also in the ERPs

(Fig. 4).

During the stimulus presentation the cross-layer coherence

was strong in the α-band at ∼150 ms after the stimulus onset in

all circuits (Fig. 8, small arrows). The presence of the feedback
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Figure 8: Cross-coherence maps between the Layer 1 and the Layer 2 of all circuits calculated between trials #128 and #228. The value of cross-coherence is color-

coded according to the scale on the right, ranging between 0 and 0.39. Non-significant values are zeroed. The map is calculated using discrete Fourier Transform

with a resolution of 1/16 Hz in frequency and 6.25 ms in time. The horizontal dotted lines correspond to frequency band boundaries. The big arrows indicate

the stimulus onset and the vertical dashed lines at 500 and 1500 ms indicate the Inter-Stimulus Interval. A digital infinite impulse response filter for [1 − 55 Hz]

bandpass was applied before signal processing in order to reduce high frequency noise. Notice that during ISI peaks of cross-coherence tended to appear at regular

intervals in the α-band, marked by the asterisks, and in the γ-band, marked by black diamonds. The small arrows indicate cross-layer coherence at ∼150 ms in all

circuits.

projections decreased the cross-layer coherence in the β-band

(Fig. 8a,c vs. Fig. 8b,d). A very strong cross-layer coherence

appeared ∼400 ms after the stimulus onset in the γ-band of FB

circuits (Fig. 8a, empty circle).

During ISI we observed several interesting significant val-

ues of cross-layer coherence that emphasizes the effect of inter-

modules connectivity on the pattern of activity of the entire cir-

cuit. The strongest cross-layer coherence in the β-band was

observed for the pure feed-forward circuit (Fig. 8b). Both

circuits without horizontal links were characterized by strong

cross-layer coherence in the α-band. More interestingly the

significant peaks tended to appear at regular intervals in the

α-band (marked by the asterisks in Fig 8) of ∼220 ms in FB,

and ∼220 ms in FF. Despite a much lesser degree of cross-layer

coherence produced by the presence of the horizontal links this

rhythmic pattern was also observed in FBH and FFH with inter-

vals of ∼220 ms and ∼230 ms, respectively. This suggests the

presence of a slow rhythm (∼4.4 Hz) across the whole circuit

independent of backward and horizontal projections.

During ISI the activity of the two layers was coherently cor-

related at regular intervals also in the γ-band (see the black

diamond symbols in Fig. 8). In the absence of the horizontal

links (Fig. 8a,b) the rhythm was 2.3 Hz for both FB and FF cir-

cuits. On the opposite, in the presence of the horizontal links

the rhythm of the peaks in the γ-band for FBH and FFH was a

bit faster, 3.5 and 4.3 Hz, respectively. We observe that in the

presence of feedback projections (FB and FBH) the first peak

of these rhythms tended to appear before the stimulus offset

(Fig. 8a,c).

4. Discussion

This paper studies the information processing in hierarchi-

cally organized neural circuits by means of an evolutionary

neural system simulator (Shaposhnyk et al., 2009). The en-

coding of connectivity properties in the ‘genome’ of the circuit

allowed us to produce many different virtual subjects and study

the common features of information processing shared by the

whole sample of individuals. We have analyzed the activity of

four basic circuits characterized by a sensory module receiv-

ing an external input carrying spatio-temporal information that

projects to two hierarchically organized multilayered (in our

case formed by two layers) streams of network modules char-

acterized by optional recurrent (feedback) projections from the

downstream to the upstream modules and optional intra-layer

projections. Each network module undergoes a maturation pro-

cess followed by an active unsupervised learning process de-

termined by spike-timing-dependent plasticity rules meant to

maintain active learning dynamics. These processes are simu-

lated at the cellular level and the network activity is recorded by

virtual electrodes located in each module. The recorded EChG

signals are analyzed as ERPs triggered by the stimulus onset

and by power density and cross-coherence analyses.

This is the first study that reports simulated EEG-like sig-

nals generated by large sample of evolvable networks of leaky

integrate-and-fire neurons. Previous simulation studies of EEG
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were based on population dynamics and neural masses (Free-

man, 2005; Harrison et al., 2005; Cosandier-Rimélé et al., 2010;

Babajani-Feremi and Soltanian-Zadeh, 2010; Goodfellow et al.,

2011). These studies were generally aimed at determining the

stability of network dynamics, the effect of noise and the emer-

gence of synchronous activity in relation to epileptogenesis.

Our goal is limited to a computational study that partially re-

produces the signals observed in biological experimental con-

ditions. Though it represents an oversimplified approach to the

complexity of real brain networks it offers the possibility to ad-

dress issues raised by biological experiments such as the effect

of inter-areal connectivity with the network activity. Experi-

mental observation of synchronization of neural oscillations has

been reported in association with the key process of binding

of information processed in distributed brain regions (Singer,

1993; Womelsdorf et al., 2007). This information processing

depends on the coupling between the thalamus and the cere-

bral cortex. The thalamocortical circuit is characterized by a

complex pattern of feed-forward, feedback and inter-areal con-

nections that are likely to be associated with its performance in

feature selection (Villa and Tetko, 1995, 1997). The activity of

this circuit is also characterized by several oscillatory patterns

(Bal and McCormick, 1996; Contreras et al., 1996; Bazhenov

et al., 2002; Timofeev I, 2005) that are associated with the EEG

rhythms. Zero-lag synchronization between spatially separated

cortical areas may represent a critical aspect of the binding pro-

cess (Roelfsema et al., 1997) and has been investigated in rela-

tion to the thalamocortical circuit (Gollo et al., 2010) and to cor-

tical feedback activity (Villa et al., 1999; Sheeba et al., 2008).

We showed evidence that all network of modules are able

to process and maintain patterns of activity associated with the

stimulus after its offset for hundreds of milliseconds. This find-

ing is in agreement with the occurrence of preferred sequences

of spikes, which are dependent on the stimulus presentation but

not triggered by it, recorded in the single module simulations

(Iglesias and Villa, 2010). We have shown that the offset of the

stimulus is also the most significant event that triggers coher-

ent activity in the low frequency range throughout the network

of any circuit studied here. It could be interpreted according

to standing waves theory. Low frequencies suggest that infor-

mation processing is transmitted at long distances, thus involv-

ing large neural networks in processing stimulus-related activ-

ity. This is also in agreement with recent experimental findings

in human experiments that revealed specific low frequency co-

herence patterns associated with processing type regardless of

task contents and modality (Okuhata et al., 2009).

It is interesting to notice that the power spectrum density of

the EChG recorded during the inter stimulus interval showed

more energy in the γ-band for Layer 2 of the FBH circuit than

in the same Layer of the other circuits. The FBH circuit, which

is characterized by feedback and by horizontal projections, was

also characterized by cross-layer coherence extending during

ISI in the γ-frequency range. This result suggests that in the

circuits with feedback projections the bursts of cross-layer co-

herent γ-activity are likely to be triggered by some process

that started during the stimulus presentation and that is not af-

fected by stimulus offset. Such stimulus-evoked transient asso-

ciations between neural networks that are not necessarily time-

locked to a stimulus onset may be considered with respect to the

propagation of correlated waveforms and neuronal avalanches

recorded in organotypic cultures of cortex (Thiagarajan et al.,

2010). A network exhibiting multiple partially synchronized

modes strongly excited by a stimulus, with a wide range of flex-

ible, adaptable, and complex behavior, has been modeled as the

variance of the connection gain increases, inhibitory connec-

tions become more likely and global synchronization is shown

to decrease (Gray and Robinson, 2009). This activity might be

associated with a maintenance and control task integrated in the

stimulus memorization process, as a form of working memory

(Wolters and Raffone, 2008; Thiagarajan et al., 2010).

The effect of introducing connections between modules of

the same layer provoked also an enhancement of the stimulus-

locked onset excitation and offset inhibition in the ERPs of

Layer 1, the layer receiving the input from the sensory mod-

ule, irrespective of the feedback links. In Layer 2 the effect

was more subtle and we could observe it better by the cross-

coherence. The duration of evoked transients is likely to in-

crease with the hierarchical depth of processing (David et al.,

2005). However, we found late components after stimulus off-

set in both FF and FB circuits, which raises the possibility of al-

ternative hypotheses than the simple dependency on backward

connections to reflect a reentry of dynamics to hierarchically

lower processing areas (David et al., 2005). The discrepancy

with those results may be due to the differences with their mod-

eling because neural masses are unlike to realistically account

for the diversity of activity patterns that can emerge within the

networks of spiking neurons that belong to a neural module. It

is important to remember that the coherence value indicates a

linear statistical association between time-series in a given fre-

quency band (Bullock et al., 1995). The absence of linear sta-

tistical association between two processes does not mean the

absence of any interaction. Higher-order frequency domain

statistics like bicoherence and cross-bispectral analyses might

be well suited to reveal interesting nonlinear interactions as sug-

gested in a FBH-like network study (Perrig et al., 2010). The

search for inter-module transient functional connectivity and its

comparison with linear methods (Fingelkurts and Fingelkurts,

2010) is still limited by the understanding of the impact of dif-

ferent methodological choices on the outcome of the analysis

(Bassett and Bullmore, 2009).

In conclusion, we have provided evidence that studies of net-

works of neural modules of spiking neurons can bring new in-

sights to the understanding of neural generated signals like ERP

and EEG. In the future we will extend our approach to larger

networks of modules and nonlinear interactions will be inves-

tigated as a function of the main parameters of inter-modules

connectivity. Different types of neuronal models will also be

tested in order to determine the robustness of the key observa-

tions. It is also important to consider that our approach can be

extended further to robotic applications where simple patterns

of activity recorded by the EChG could be encoded into actua-

tors.
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Cosandier-Rimélé, D., Merlet, I., Bartolomei, F., Badier, J.M., Wendling, F.,

2010. Computational modeling of epileptic activity: from cortical sources

to EEG signals. J Clin Neurophysiol 27, 465–470.

David, O., Harrison, L., Friston, K.J., 2005. Modelling event-related responses

in the brain. Neuroimage 25, 756–770.

Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K., 2008. The

dynamic brain: from spiking neurons to neural masses and cortical fields.

PLoS Comput Biol 4.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J

Neurosci Meth 134, 9–21.

Drover, J.D., Schiff, N.D., Victor, J.D., 2010. Dynamics of coupled thalamo-

cortical modules. J Comput Neurosci 28, 605–616.

Efron, B., 1979. Bootstrap methods: Another look at the jackknife. The Annals

of Statistics 7, pp. 1–26.

Fingelkurts, A.A., Fingelkurts, A.A., 2010. Short-term EEG spectral pattern as

a single event in EEG phenomenology. Open Neuroimag J 4, 130–156.

Freeman, W.J., 1975. Mass Action in the Nervous System. Academic Press,

New York, NY, USA.

Freeman, W.J., 2005. A field-theoretic approach to understanding scale-free

neocortical dynamics. Biol Cybern 92, 350–359.

Gollo, L.L., Mirasso, C., Villa, A.E., 2010. Dynamic control for synchroniza-

tion of separated cortical areas through thalamic relay. Neuroimage 52, 947–

955.

Goodfellow, M., Schindler, K., Baier, G., 2011. Intermittent spike-wave dy-

namics in a heterogeneous, spatially extended neural mass model. Neu-

roimage 55, 920–932.

beim Graben, P., Kurths, J., 2008. Simulating global properties of electroen-

cephalograms with minimal random neural networks. Neurocomputing 71,

999 – 1007.

Gray, R.T., Robinson, P.A., 2009. Stability and structural constraints of random

brain networks with excitatory and inhibitory neural populations. J Comput

Neurosci 27, 81–101.

Harrison, L.M., David, O., Friston, K.J., 2005. Stochastic models of neuronal

dynamics. Philos Trans R Soc Lond B Biol Sci 360, 1075–1091.

Hill, S., Villa, A.E., 1997. Dynamic transitions in global network activity influ-

enced by the balance of excitation and inhibtion. Network: computational

neural networks 8, 165–184.

Hoaglin, D.C., Mosteller, F., Tukey, J.W. (Eds.), 2000. Understanding robust

and exploratory data analysis. Wiley Classics Library, Wiley-Interscience,

New York. Revised and updated reprint of the 1983 original.

Hutchins, J.B., Barger, S.W., 1998. Why neurons die: cell death in the nervous

system. Anat Rec 253, 79–90.

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A.E.P., 2005. Dynam-

ics of pruning in simulated large-scale spiking neural networks. BioSystems

79, 11–20.

Iglesias, J., Villa, A.E.P., 2007. Effect of stimulus-driven pruning on the detec-

tion of spatiotemporal patterns of activity in large neural networks. BioSys-

tems 89, 287–293.

Iglesias, J., Villa, A.E.P., 2008. Emergence of preferred firing sequences in

large spiking neural networks during simulated neuronal development. Int J

Neural Syst 18, 267–277.

Iglesias, J., Villa, A.E.P., 2010. Recurrent spatiotemporal firing patterns in

large spiking neural networks with ontogenetic and epigenetic processes. J

Physiol Paris 104, 137–146.

Innocenti, G.M., 1995. Exuberant development of connections, and its possible

permissive role in cortical evolution. Trends in Neurosciences 18, 397–402.

Knight, B.W., 2000. Dynamics of encoding in neuron populations: some gen-

eral mathematical features. Neural Comput 12, 473–518.

Langdon, W., 2010. 2-bit flip mutation elementary fitness landscapes, in:

Auger, A., Shapiro, J.L., Whitley, L.D., Witt, C. (Eds.), Theory of Evolu-

tionary Algorithms, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

Germany, Dagstuhl, Germany. pp. 1–19.

Ly, C., Ermentrout, G.B., 2009. Synchronization dynamics of two coupled

neural oscillators receiving shared and unshared noisy stimuli. J Comput

Neurosci 26, 425–443.

Nunez, P.L., Srinivasan, R., 2006. Electric Fields of the Brain. Oxford Univer-

sity Press, New York, NY, USA.

Okuhata, S.T., Okazaki, S., Maekawa, H., 2009. EEG coherence pattern during

simultaneous and successive processing tasks. Int J Psychophysiol 72, 89–

96.

Perrig, S., Iglesias, J., Shaposhnyk, V., Chibirova, O., Dutoit, P., Cabessa, J.,

Espa-Cervena, K., Pelletier, L., Berger, F., Villa, A.E.P., 2010. Functional

interactions in hierarchically organized neural networks studied with spa-

tiotemporal firing patterns and phase-coupling frequencies. Chin J Physiol

53, 382–395.

Rakic, P., Bourgeois, J., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S.,

1986. Concurrent overproduction of synapses in diverse regions of the pri-

mate cerebral cortex. Science 232, 232–235.

Rennie, C.J., Robinson, P.A., Wright, J.J., 2002. Unified neurophysical model

of EEG spectra and evoked potentials. Biol Cybern 86, 457–471.

Roelfsema, P.R., Engel, A.K., König, P., Singer, W., 1997. Visuomotor integra-

tion is associated with zero time-lag synchronization among cortical areas.

Nature 385, 157–161.

Shaposhnyk, V., Dutoit, P., Contreras-Lámus, V., Perrig, S., Villa, A., 2009. A
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