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Abstract

A ten layers feed-forward network characterized by diverging/converging patterns of projection between successive layers of regu-

lar spiking (RS) neurons is activated by an external spatiotemporal input pattern fed to Layer 1 in presence of stochastic background

activities fed to all layers. We used three dynamical systems to derive the external input spike trains including the temporal infor-

mation, and three types of neuron models for the network, i.e. either a network formed either by neurons modeled by exponential

integrate-and-fire dynamics (RS-EIF, Fourcaud-Trocmé et al., 2003), or by simple spiking neurons (RS-IZH, Izhikevich, 2004)

or by multiple-timescale adaptive threshold neurons (RS-MAT, Kobayashi et al., 2009), given five intensities for the background

activity. The assessment of the temporal structure embedded in the output spike trains was carried out by detecting the preferred

firing sequences for the reconstruction of de-noised spike trains (Asai and Villa, 2008). We confirmed that the RS-MAT model is

likely to be more efficient in integrating and transmitting the temporal structure embedded in the external input. We observed that

this structure could be propagated not only up to the 10-th layer but in some cases it was retained better beyond the 4-th downstream

layers. This study suggests that diverging/converging network structures, by the propagation of synfire activity, could play a key

role in the transmission of complex temporal patterns of discharges associated to deterministic nonlinear activity.

Keywords: preferred firing sequences, synfire chain, spatiotemporal firing patterns

1. Introduction

Spike trains are sequences of the timing of the occurrences

of neuronal action potentials. Experimental evidence of de-

terministic chaotic properties in spike trains obtained from in

vivo extracellular recordings (Celletti and Villa, 1996a,b; Villa

et al., 1998b; Segundo et al., 1998; Celletti et al., 1999) suggest

that a neuronal network can be considered as a complex non-

linear dynamical system able to exhibit chaotic dynamics (van

Vreeswijk and Sompolinsky, 1996; Segundo, 2003). Each neu-

ron of the network is also likely to receive background activities

whose origin is unspecified or unknown and its activity is of-

ten represented by stochastic occurrences of spikes. Thus, it is

possible to assume that in addition to stochastic background ac-

tivity a network may receive inputs characterized by an embed-

ded temporal structure, which is somehow associated to a deter-

ministic nonlinear system. Diverging/converging feed-forward

neuronal networks are able to transmit information with great

temporal accuracy, emphasizing their characteristic to exhibit

synchronous firing in one layer for they were termed synfire

chains (Abeles, 1982a). The question whether and to what ex-

tent complex asynchronous temporal structure can be propa-
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gated in a reliable way by means of diverging/converging feed-

forward neuronal networks is important given the property of

compositionality modeled by dynamic binding of these net-

works (Abeles et al., 2004; Kumar et al., 2008; Schrader et al.,

2011). Previous studies (Tetko and Villa, 1997; Asai et al.,

2006; Asai and Villa, 2008) showed that spikes related to de-

terministic nonlinear dynamics embedded in noisy time series

could be detected by applying algorithms aimed at finding pre-

ferred firing sequences with millisecond order time precision.

Moreover, the characteristics of the transfer function of the neu-

ron model and the statistical feature of the the background ac-

tivity may affect heavily the propagation of temporal informa-

tion through the synapses (Asai et al., 2008).

In the current paper we extend our previous analysis (Asai

and Villa, 2010). Each neuron in the input layer of the syn-

fire chain receives only randomly selected fractions of the spike

train associated to deterministic chaotic dynamics. We exam-

ined the ability of the neural network to transmit the temporal

structure embedded in the external input spike trains in the pres-

ence of background activity with various intensities. The detec-

tion of preferred firing sequences by pattern grouping algorithm

(Villa and Tetko, 1999; Tetko and Villa, 2001b; Abeles and Gat,

2001) in all layers of the network revealed a reliable propaga-

tion of temporal information through the layers. In some cases

with stronger background activity we could observe the inte-

gration of fractions of the temporal information fed to the neu-

rons of the first layer up to the fourth layer. In addition we
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present evidence that adaptive threshold neurons (Kobayashi

et al., 2009) can maintain and integrate the distributed temporal

structures in more robust way against the noise than the ex-

ponential integrate-and-fire (RS-EIF) neuron model (Fourcaud-

Trocmé et al., 2003) and simple spiking neurons (Izhikevich,

2003, 2004).

2. Methods

2.1. Spiking neuron model

We adopted three neuron models to simulate the dynamics

of regular spiking (RS) neurons. The first is the exponen-

tial integrate-and-fire (RS-EIF) model (Fourcaud-Trocmé et al.,

2003), which is known to reproduce the dynamics of a sim-

ple conductance-based model extremely well. In this model the

membrane potential V dynamics is given by

C
dV

dt
= −gL(V − VL) + ψ(V) + I(t) ,

ψ(V) = gL ∆T exp

(

V − VT

∆T

)

where C is the membrane capacitance, gL is the leak conduc-

tance, VL is the leak potential, I(t) is the external synaptic cur-

rent, and ψ(V) is a function of the voltage that describes the

spike generating currents. Notice that with ψ(V) = 0 the model

becomes a simple leaky integrate-and-fire. ∆T is a parameter

called the spike slope factor (in mV) representing the voltage

sensitivity of the spiking current and VT is the threshold voltage.

If the input current exceeds the threshold a spike is fired instan-

taneously and the membrane potential is reset to a voltage Vr.

The parameters were set to the values indicated by Fourcaud-

Trocmé et al. (2003): VL = −65 mV, VT = −59.9 mV, Vr = −68

mV, C = 1 µF/cm2, gL = 0.1 mS/cm2, and ∆T = 3.48 mV. The

passive membrane time constant is τm = C/gL = 10 ms.

The second model is a simple spiking neuron (RS-IZH)

model (Izhikevich, 2004) described by the following equations:

dv

dt
= 0.04v2 + 5v + 140 − u + I(t) ,

du

dt
= a(bv − u) ,

where v represents the membrane potential [mV], u is a mem-

brane recovery variable, a and b control the time scale of the

membrane potential dynamics. I(t) is a total synaptic current

given to the neuron. When v ≥ +30 mV, a discontinuous reset-

ting v← c and u← u+ d follows as a hyperpolarization after a

spike. The parameters were set as a = 0.02, b = 0.2, c = −65,

d = 8 (Izhikevich, 2004).

The third model is a multiple-timescale adaptive threshold

(RS-MAT) neuron model (Kobayashi et al., 2009) whose mem-

brane potential dynamics follows a non-resetting leaky integra-

tor,

τm

dV

dt
= −V(t) + R I(t) ,

Figure 1: Schematic representation of the convergent/divergent feed-forward

circuit formed by 10 neuronal layers. Each layer includes 20 cells. Each cell

receives 15 afferents and a independent Poissonian spike train (PST).

where τm, V and R are the membrane time constant, membrane

potential and membrane resistance, respectively. I(t) is the ex-

ternal synaptic current received by the neuron. A spike is gen-

erated if V(t) ≥ θ(t),

θ(t) = ω + H1(t) + H2(t) ,

dH1

dt
= −H1/τ1 ,

dH2

dt
= −H2/τ2 ,

where ω is the resting value. H1 and H2 are components of the

fast and slow threshold dynamics (characterized by decaying

time constants τ1 and τ2, respectively) which have a discrete

jump when V(t) ≥ θ(t),

H1 = H1 + α1 , H2 = H2 + α2 .

The parameters were set to values τm = 5 ms, R = 50 MΩ,

ω = 19 mV, τ1 = 10 ms, τ2 = 200 ms, α1 = 37 mV, and α2 = 2

mV.

2.2. Neural network

We consider a diverging/converging neural network com-

posed of 10 layers (Fig. 1). Each layer includes 20 neurons.

All neurons in a network are identical and are either RS-EIF,

RS-IZH or RS-MAT models. Each neuron of Layer 1 receives

afferents carrying temporal information. The external input is

represented by 15 spike trains derived from selected dynamical

systems described below. Each neuron belonging to Layer 2

and further downstream in the network receives afferents from

15 neurons randomly selected among those of the immediately

upstream layer. All connections were hardwired, and no synap-

tic plasticity was taken into account. Explicit synaptic trans-

mission delays were randomly and uniformly distributed in the

range 0.7 − 1.3 ms. In addition to these network inputs each

neuron of any layer receives a background activity represented

by an independent Poissonian spike train. In a single execu-

tion of a simulation, the mean firing rate of the background ac-

tivity is the same for all neurons and is selected in the range

[300, 350, 400, 450, 500] spikes/s.
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Figure 2: Dynamics of neuron models of cells of Layer 1. Membrane potential

(solid line) of RS-EIF, RS-IZH and RS-MAT neurons as a function of time. For

the RS-EIF and RS-MAT models the dashed line corresponds to the threshold.

Filled triangles indicate occurrences of spikes. The input current corresponds to

the total synaptic current produced by the incoming spikes shown at the bottom

panel (not corrected by the scaling factor chracteristic for each model). In the

bottom panel the spikes derived from the external input are tagged by open

triangles. All other spikes belong to the Poissonian background activity (with

mean firing rate 500 spikes/s in this example).

The total external synaptic current I(t) produced by the

synaptic afferences on a post-synaptic neuron was defined as

follows:

I(t) = −A
∑

k

gsyn(t − tk) ,

where A is a scaling factor of the intensity of the synaptic trans-

mission and tk represents time when the k-th spike arrives to the

neuron. gsyn is the post synaptic conductance represented by

gsyn(t) = C0

e−t/τ̃1 − e−t/τ̃2

τ̃1 − τ̃2

,

where τ̃1 and τ̃2 are rise and decay time constants given by 0.17

and 4 ms, respectively. C0 is a coefficient used to normalize the

maximum amplitude of gsyn(t) to 1. A single synaptic current

given to a neuron is not strong enough to evoke post-synaptic

neuronal discharges. Numerical integration was done by the

fourth order Runge-Kutta numerical integration method with

0.01 ms time steps for all cases and the total simulation du-

ration corresponded to 2, 000 seconds. The scaling factor of

the intensity of the synaptic transmission was adjusted in order

to obtain a firing rate of 5 spikes/s in Layer 1 neurons stimu-

lated with an original input spike train and background intensity

of 400 spikes/s. The value of A was equal to 0.0630, 0.9000

and 0.0954 and for RS-EIF, RS-IZH and RS-MAT, respectively.
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Figure 3: Panel a: I–F curves of the RS-EIF, RS-IZH and RS-MAT neurons for

a constant input current. The stimulation current IS current is not scaled; the

scaling factors adapted for each model are indicated in the text. Panel b: Firing

frequency as a function of the frequency of a sinusoidal input whose maximum

amplitude is IS = 4.6. Panel c: Firing frequency as a function of the frequency

of a sinusoidal input whose maximum amplitude is IS = 7.4. Blue interpolated

lines and filled triangles correspond to RS-EIF. Dashed interpolated lines and

filled circles correspond to RS-IZH. Red interpolated lines and filled squares

correspond to RS-MAT.

The dynamics of the neuron models as a function of their in-

puts is illustrated by Fig. 2. Features of the the three models

are illustrated by the I–F curves, i.e. the firing frequency of a

neuron as a function of a constant input current (DC current)

whose intensity IS is such that I(t) = −AIS in the absence of

any synaptic input, where A is the scaling factor. (Fig. 3a). In

Figure 3a it appears that the RS-EIF neuron starts to fire with

IS = 2.3 and RS-IZH and RS-MAT with IS = 3.7. These val-

ues have been selected to show the behavior of the models to

a sinusoidal input with maximum amplitude equal to IS = 4.6

(Fig. 3b) and IS = 7.4 (Fig. 3c). Notice that RS-MAT and RS-

IZH have an almost flat response curve to the sinusoidal input,

but RS-MAT shows a clear-cut response peak for a sinusoidal

input near 12 cycles/s.
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2.3. Dynamical systems for generation of the external input

An external input carrying precise temporal information was

generated from three nonlinear dynamical systems. We adopted

Zaslavskii map, Ikeda map and Chen’s system. These systems

exhibit chaotic dynamics with certain parameter values which

were selected to create the external input time series.

The Zaslavskii map is defined by

xn+1 = xn + v(1 + µyn) + ξvµ cos xn

(mod. 2π) ,

yn+1 = e−γ(yn + ξ cos xn) ,

where x, y ∈ R, and µ = 1−e−γ

γ
, v = 4

3
· 100, γ = 3.0, ξ = 0.1.

The initial conditions were set to x0 = y0 = 0.3. The iterative

calculation generated the time series {xn} used for the external

input.

The Ikeda map is the quadratic mapping defined as follows,

xn+1 = p + µ(xn cos θ − yn sin θ) ,

yn+1 = µ(yn cos θ + xn sin θ)

where θ = k− a/(1+ x2
n + y2

n), and a = 6.0, k = 0.4, p = 1.0, µ =

0.9. Initial conditions were x0 = y0 = 0.3. The sequence {xn} is

used for the external input.

The Chen’s system are formulated by three equations,

dx

dt
= a(y − x) ,

dy

dt
= (c − a)x − xz + cy ,

dz

dt
= xy − bz ,

where a = 35.0, b = 3.0, c = 28.0, and x(0) = y(0) = 3.0

for initial conditions. We considered a Poincaré map where the

Poincaré section was defined by dx
dt
= 0, and the sequence of

z(t) on the section was traced, referred to as {xn} hereinafter and

used for the external input.

2.4. Simulated input spike trains

A new time series {wn} corresponding to the sequence of

the inter-spike-intervals was derived from the external input

time series {xn}, following wn = xn+1 − xn + K, where K =

−min{(xn+1 − xn)} + 0.1 is a constant to make sure wn > 0.

The sequence {wn} was rescaled with a precision of 1 ms to

an average rate of 5 events/s, for the sake of comparison with

neurophysiological firing rates of 5 spikes/s. We calculated

N = 10, 000 points of the rescaled time series, now termed

{w′n}, corresponding to a duration L = 2, 000 s. This time series

{w′n} is also termed the original external input and the points are

assumed to correspond to spike occurrences.

The original external input as such was never used to acti-

vate a neuron of Layer 1. We select at random (uniformly dis-

tributed) ε × N (0 ≤ ε ≤ 1) spikes from the original exter-

nal input. The remaining spikes were deleted, thus yielding a

sparse input spike train, where ε is called “copy probability”

and takes a value from 0 to 1. The sparse input spike train

was merged with a Poissonian spike train with mean firing rate

Figure 4: (Left column) Return maps of the original input spike trains derived

from three dynamical systems with copy probability ε = 1 (i.e., the original in-

put spike train without any noise or deletion) are presented with the axes scaled

in ms time units. The bottom panel shows a return map of a pure Poissonian

spike train (i.e. ε = 0). (Right column) Return maps of reconstructed spike

trains from the original input spike trains shown in the left column.

N(1 − ε)/L spikes/s in order to keep the average rate close

to 5 spikes/s and duration equal to 2, 000 s. This spike train

whose sparseness is determined by the copy probability ε cor-

respond to a single “input spike train” fed to a Layer 1 neuron.

This procedure is repeated 20 times for a given parameter ε, so

to generate 20 different input spike trains. Notice that if ε = 1

all input spike trains are identical to the original external input

spike train, and if ε = 0 all input spike trains are independent

Poissonian spike trains. In this study we used ε = 1, 0.5 and

0.3. Return maps, a plot of the (i + 1)-th inter-spike-interval

against the i-th inter-spike-interval, of the original input spike

trains were shown in the left panels of Fig. 4.

2.5. Pattern detection and reconstruction of time series

Subsets of spike trains were obtained by using the Pattern

Grouping Algorithm (PGA) (Villa and Tetko, 1999; Tetko and

Villa, 2001b,c,a; Abeles and Gat, 2001) as follows. Although
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PGA has a capability to be applied to a multivariate spike train,

we applied PGA to a single cell activity, comparing the pat-

terns detected in its input spike train and those detected in its

output spike train. Firing sequences repeating at least 5 times

and above the chance level (p = 0.05) are detected by PGA.

The maximum interval between the first and the last spike of

the pattern was set to ≤ 600 ms. Given a maximum allowed

jitter in spike timing accuracy (±3 ms) clusters of firing se-

quences are represented by a template pattern. For example,

if 9 triplets (i.e., spike sequences formed by 3 spikes) belong-

ing to the same cluster were detected by PGA, a subset of the

original spike train that includes 27 spikes (= 9 × 3) can be de-

termined. Rearranging all these spikes according to their time

of firing, they formed a new spike train which is referred to as

“reconstructed spike train” (Asai et al., 2006; Asai and Villa,

2008). Figure 4 shows the return map of reconstructed spike

trains of the original input spike trains. With a copy probability

ε = 1, which means in the absence of any noise or deletion of

any point of the external input time series, we found that 92%

of the original external input spike train derived from Zaslavskii

map are included in the reconstructed spike train. In the cases

of Chen and Ikeda maps the reconstructed spike trains included

86 % and 58% events, respectively, of the original external in-

put spike train. In the case ε = 0 no embedded temporally or-

ganized activity is present in the external input spike train and

the reconstructed time series should contain zero points. We

observed that with input represented only by pure Poissonian

firing at an average rate of 5 spikes/s the reconstructed spike

train included only 0.4% spikes of the original series (Fig. 4

bottom right panel).

2.6. Similarity between two spike trains

Following (Jolivet et al., 2008; Kobayashi et al., 2009) let us

assume that spike trains A and B contain NA and NB spikes, and

M spikes occur at the same time in A and B with jitter ∆. Then,

the similarity between A and B is defined by the “coincidence

factor” Γ:

Γ =
100

CΓ

2(M − E)

NA + NB

where E = 2 f∆NB is the expected number of coincidences gen-

erated by a Poisson process with the same mean firing rate f of

spike train B. The jitter ∆ is 3 ms here. CΓ is a normalization

coefficient given by (1 − 2 f∆) so that the coincidence factor is

equal to 100 (Γ = 100) for two identical spike trains.

In this work, we calculated the coincidence factor between

the original input spike train (spike train A) and spike trains re-

constructed from neural output spike trains (spike train B̃). The

delay produced by neuronal dynamics and synaptic transmis-

sion must be taken into account in order to calculate precisely

the coincidence factor. We calculated the cross-correlogram

from spike train A to B̃, and defined the delay by the time at

the peak of the correlogram. Then we shifted the spike train B̃

backward by this delay, yielding the spike train B, which was

used to calculate the coincidence factor with the spike train A.

3. Results

Following the typical pattern of activity characteristic of ex-

citatory feed-forward networks the neurons belonging to layers

of higher order tended to be synchronized (Abeles, 1982a; Tet-

zlaff et al., 2002, 2003). This was true for networks formed

by either type of neuron models (Fig. 5). However, it is inter-

esting to notice that synfire activity was not necessarily asso-

ciated to the external input spike train. In the examples shown

in Fig. 5b with a background noise of 500 spikes/s many spu-

rious synchronous events appeared in the 10th layer (L10) in

the network composed of RS-EIF neurons. A spurious synfire

event appeared in L10 near time 40240 ms for RS-MAT and

near time 40930 ms for RS-IZH. The firing rates and the cor-

relation with the timing of the events of the external input are

discussed in the next subsections.

3.1. Firing rate of neurons

Each cell receives 15 specific afferents (from the external in-

put for Layer 1 or from cells belonging to the previous layer

for Layer 2 and beyond) and a background activity. In the

case of a simulation with Chen’s system with copy probability

ε = 0.3 and a background intensity of 500 spikes/s, a cell in

Layer 1 received 575 spikes/s (equal to 5× 15+ 500 spikes/s)

and generated an output spike train with an average rate of

5.4 spikes/s for RS-MAT neuronal model. In the case of

the RS-MAT neuron in Layer 4 received 593 spikes/s (equal

to 6.2 × 15 + 500 spikes/s), and fired at an average rate of

6.5 spikes/s.

We analyzed the mean firing rate of cells averaged in each

layer as a function of the order of the layers. In case of Chen’s

system as source of dynamical system used to generate the orig-

inal input spike train we showed that higher firing rates were

observed with larger values of copy probability ε (Fig. 6, left

column). At a specific layer we observed that larger back-

ground activity induced higher firing rates for all tested neu-

ronal models. Notice that for the current RS-EIF model even

with copy probability ε = 1.0 (Fig. 6a, top left) a background

intensity of 400 spikes/s was necessary to obtain a stable activ-

ity along the downstream layers. With this RS-EIF model the

activity could not propagate after Layer 6 with a background

intensity of 300 spikes/s and decreased by more than half at

Layer 10 compared to Layer 1 with a background intensity

of 350 spikes/s. On the opposite, a background intensity of

500 spikes/s increased the firing rate along the downstream

layers by more than 200% at Layer 10 (notice that the verti-

cal scale for RS-EIF extends twice more than for RS-IZH and

RS-MAT).

For RS-IZH neurons with Chen’s system input (Fig. 6a, top

left) the mean firing rate in each layer was almost constant or

slightly increased throughout the layers. A similar trend was

observed for RS-MAT neurons except with a background inten-

sity of 500 spikes/s characterized by a linear increase in firing

rate, although much more moderate than for RS-IEF, along the

downstream layers. With a copy probability ε = 0.3 (Fig 6b,

left column) the sensitivity to background intensity was big-

ger, in comparison to ε = 1.0 (Fig 6a, left column), for all
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Figure 5: Raster plots of networks formed by either RS-EIF, RS-IZH, or RS-MAT neurons. The external input is generated by Chen’s attractor with ε = 0.3 and

background intensity of 500 spikes/s. Each line of the raster represents the activity of a neuron and each dot represents the occurrence of a spike. Each raster

represents the activity of 100 neurons: 20 cells of Layers 1,3,4,7 and 10 (L1,L4,L7,L10). Panel (a) shows the raster of the activity in the interval between time

20000 and 50000 ms of the simulation. The gray area represents the interval 40000-41000 that is represented at a larger time resolution in panel (b).
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as source dynamical systems to generate the original input spike trains with (a)

ε = 1.0 and (b) ε = 0.3 for of RS-EIF, RS-IZH, and RS-MAT models. The left

column illustrates the firing rate calculated on the plain neuronal output spike

train as a function of the order of the layer and of the background noise in the

range 300 − 500 spikes/s. Symbols square, cross, triangle, circle and diamond

correspond to intensity 300, 350, 400, 450 and 500 spikes/s, respectively.

models as indicated by a broader range of firing rates at Layer

10 between the minimum with 300 and the maximum with

500 spikes/s. However, for RS-EIF the sensitivity was so high

that only a background intensity between 400 and 450 spikes/s

range could produce an almost constant sustainable mean firing

rate throughout the layers. Notice that given a certain neuronal

model and a copy probability ε there was little difference in the

profiles of the mean firing rates calculated on the total cell out-

put between Chen’s system and the other two dynamical sys-

tems.

The analysis of the firing rate of the reconstructed spike trains

for Chen’s system (Fig. 6, right column) and Ikeda map (Fig. 7)

showed that the effect of background intensity on the number

of spikes detected by PGA. was much smaller than for the to-

tal output spike train. In the case of Zaslavskii map (data not
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Figure 7: Mean firing rates of reconstructed spike trains in each layer for Ikeda

map with ε = 1.0 and ε = 0.3 for of RS-EIF, RS-IZH, and RS-MAT models,

as a function of the order of the layer and of the background noise in the range

300-500 spikes/s. Same symbols used in Figure 6.

shown), all profiles of the firing rate of the reconstructed spike

train were similar to those of Chen’s system. Notice that for re-

constructed spike trains and a copy probability ε = 1.0 the mean

firing rate tended to be almost constant for any background ac-

tivities for RS-IZH and RS-MAT models. According to the re-

sults obtained with the total output spike trains RS-EIF neurons

needed a background intensity within a narrow range close to

450 spikes/s to show a sustained and stable activity (Fig. 6a,

top right panel; Fig. 7, top left panel). Below that intensity the

activity was too low to grant the propagation of spatiotempo-

ral patterns of spikes and at 500 spikes/s the activity increased

along the downstream layers and produced large amount of spu-

rious patterns. With a copy probability ε = 0.3 the mean firing

rates were lower and the trend was similar to copy probabil-

ity ε = 1.0 except for RS-MAT neurons. For this neuronal

model Chen’s system and Zaslavskii inputs produced detectable

firing patterns for background intensities above 400 spikes/s

(Fig. 6b, bottom right panel) but with Ikeda input almost no

patterns could be detected (Fig. 7, bottom right panel).

3.2. Cross-correlation analysis

Let us consider a test condition with stable and sustained ac-

tivity throughout the layers and yet with a large proportion of

Poissonian spikes, such as Chen’s system with copy probability

ε = 0.3 and background intensity of 450 spikes/s for RS-EIF

and 500 spikes/s for RS-IZH and RS-MAT models. For all

models we computed the cross-correlograms (CC) of the out-

put spike train of a cell with all its input spikes (Fig. 8a,c,e)

and the CC of the output spike train of a cell with the original

external input spike train (Fig. 8b,d,f).

The correlation between the input and the output for a cell

of Layer 1 showed that the latency of the CC peak was equal to

2 ms, 6 ms, and 1 ms for RS-EIF, RS-IZH and RS-MAT models,
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Figure 8: Propagation of activity in the network activated by an external in-

put derived from Chen’s system with ε = 0.3 and background activity of

450 spikes/s for RS-EIF and of 500 spikes/s for RS-IZH and RS-MAT. Cross-

correlation between all input spikes arriving at a cell and its output spike train

for RS-EIF (panel a), RS-IZH (c), RS-MAT (e) models for one Layer 1 cell

(solid line) and for Layer 4 cell (dashed line). Panels b, d, f : Cross-correlation

between the original external input spike train and the cell’s output spike train

(white area) for RS-EIF (b), RS-IZH (d), RS-MAT ( f ) models for a Layer 1

cell (solid line) and for Layer 4 cell (dashed line). The shaded area refers to the

cross-correlations between the original external input spike train and the cell’s

reconstructed spike train of the same Layer 1 and Layer 4 cells. Notice that

the cross-correlograms are scaled in firing frequency units with a bin of 1 ms

according to Abeles (1982b).

respectively (Fig. 8a,c,e). These latencies remained unchanged

throughout the downstream layers and the CC between all in-

put spikes and the output spike train of a Layer 4 cell showed

latencies of the CC peaks equal to 2 ms, 5 ms, and 1 ms for RS-

EIF, RS-IZH, and RS-MAT models, respectively (Fig. 8a,c,e).

Notice that RS-EIF and RS-MAT models were characterized by

very short and comparable latencies of the CC peak and similar

asymmetry of the curves.

The cross-correlograms (CC) of the output spike train of

Layer 1 and Layer 4 cells with the original external input spike

train clearly shows asymmetric peaks for all neuronal models

(Fig. 8b,d,f). The latencies of the CC peaks for the RS-EIF

cells in Layer 1 and Layer 4 were equal to 4 ms and 17 ms, re-

spectively. For RS-IZH cells, the latencies were 6 ms and 21 ms

for Layer 1 and Layer 4, respectively. For RS-MAT cells, the

latencies were 3 ms and 9 ms for Layer 1 and Layer 4, respec-

tively. The longer latencies of the CC peak for Layer 4 cells are

due to the delay in information transmission corresponding to

an increasing accumulation of the delays of synaptic transmis-

sion and integration of input synaptic currents along the layers

of the network. It is interesting to notice that for RS-EIF and

RS-IZH models the peaks of the CCs for Layer 4 cells with the

original external input spike train were smaller than the CCs for

Layer 1 cells (Fig. 8b,d). Conversely, RS-MAT showed higher

peaks for Layer 4 than Layer 1 CCs (Fig. 8f). In addition, RS-

MAT showed the shortest latency despite a similar jitter to RS-

EIF in the input-output transfer latency (Fig. 8a,e). The CCs of

the original external input with the cell’s reconstructed output

spike train (Fig. 8b,d,f, dashed areas) showed curves similar to

the CCs with cell output, although with lower peaks. In partic-

ular, with RS-EIF model the peaks with the cell’s reconstructed

output spike train (Fig. 8b, dashed areas) were extremely low.

A signal-to-noise ratio (SNR) was calculated as S NR =
√

peak height/baseline where the baseline is defined as the av-

erage discharge rate measured on the CC between −20 and 0 ms

time lag. Table 1 shows the SNRs for Chen’s system with ε =

0.3 and background activities equal to 450 and 500 spikes/s of

CCs with cell output and of CCs with the reconstructed output

spike trains. Notice that for RS-EIF neurons a background of

500 spikes/s produced many spurious firing patterns and does

not represent a meaningful value for comparison. The SNRs

for this model wee equal to the smallest values we have ob-

served and tended to decrease by more than 25% from Layer

1 to Layer 4. For the RS-MAT neurons the SNR measured on

the CCs calculated between the original input spike train and

the reconstructed spike train tended to be larger than their cor-

responding values measured on the CCs with the total output

spike train. Moreover, for the RS-MAT neurons, SNRs were

larger at Layer 4 than at Layer 1 (see also Fig. 8f).

The improvement of the SNR in the reconstructed spike

train over the cell output was assessed by SNR change(%) =

[(S NRrec/S NRcell) − 1] × 100. In the absence of Poisso-

nian inputs (i.e., ε = 1.0) and background intensity equal to

400 spikes/s no differences were observed among the three

models (Fig. 9a). Notice that with the same background in-

tensity and copy probability ε = 0.3 the RS-EIF model was un-

able to generate sustainable activity throughout all layers and its

corresponding curve was be displayed (Fig. 9b). SNR change

tended to stay at low level and rather constant for RS-EIF and

RS-IZH neurons (Fig. 9a). On the opposite, with an increase

of the background intensity the SNR change tended to increase

going downstream along the layers of the RS-MAT neurons net-

Table 1: Signal-to-noise ratio for Chen’s system with ε = 0.3 for all models and

two background intensities calculated between the original input spike train and

the cell output and between the original input spike train and the reconstructed

output spike train.

Background 450 spikes/s Background 500 spikes/s
Model Layer 1 Layer 4 Layer 1 Layer 4

Cell output

RS-EIF 3.8 2.9 3.2 1.8

RS-IZH 5.0 4.2 4.4 3.2

RS-MAT 7.7 9.6 6.5 7.0

Reconstructed

RS-EIF 3.9 2.9 3.3 1.8

RS-IZH 5.1 4.9 4.5 3.5

RS-MAT 9.8 13.7 7.9 9.2
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Figure 9: Changes in SNR (signal-to-noise ratio) from the cross-correlogram of

total outputs to the cross-correlogram of reconstructed spike train at each layer

for RS-EIF (solid curve, squares), RS-IZH (dashed curve, diamond symbols),

and RS-MAT (solid curve, circles) models. Panels (a),(c),(e) and (b),(d),( f )

correspond to results obtained with an input produced by Chen’s system and

copy probability ε = 1.0 and ε = 0.3, respectively. In panels (a), (b) the net-

works received background intensities of 400 spikes/s (a,b) , of 450 spikes/s

(c,d) and of 500 spikes/s (e, f ).

work (Fig. 9). If one considers all simulations, regardless of the

three dynamical systems studied here, regardless of the inten-

sities of the background activity and regardless of the network

layer we calculated a grand average of the SNR change and we

observed that reconstructed spike trains exhibited an improve-

ment in the SNR over the total output spike train by 21% for

RS-EIF, by 25% for RS-IZH and by 30% for RS-MAT neurons.

3.3. Coincidence analysis

The coincidence factor is a measure of the preservation of the

temporal structure fed into Layer 1 from outside the network.

In case of external inputs generated with ε = 1.0 no noise was

introduced in the original input spike trains. For external in-

put generated by Chen’s system (as well as for Zaslavskii map,

data not shown) the coincidence factor remained above a value

of 80 from Layer 1 throughout all layers of the network for

both RS-IZH and RS-MAT models if background intensities

up to 400 spikes/s (Fig. 10a, left panels). On the opposite,

with a background intensity of 500 spikes/s the value of the

coincidence factor dropped to near 25 at Layer 10 for the RS-

IZH network but remained close to 75 for the RS-MAT net-

work (Fig. 10a, left panels). For RS-EIF the coincidence factor

stayed at a level above 50 only for background intensities n the

range 400-450 spikes/s, otherwise this factor decreased rapidly

along the downstream layers.

In case of a large amount of noise present in the external in-

put, e.g. with a copy probability ε = 0.3, the coincidence factor
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Figure 10: Coincidence factor calculated for a neuron at each layer as a function

of the layer order for all values of background intensities. Symbols square,

cross, triangle, circle and diamond correspond to background intensities of 300,

350, 400, 450 and 500 spikes/s, respectively. The external input was generated

by (a) Chen’s system and (b) Ikeda map with ε = 1.0 (left panels) and ε = 0.3

(right panels).

was below 20 already at the level of Layer 1 for any kind of

external input (Fig. 10a,b, right panels). However, in the case

of Chen’s system external input and with a network formed by

RS-MAT neurons, the coincidence factor increased downstream

and reached a maximum value at Layers 3-4 (Fig. 10a, bottom

right panel). In this example for downstream layers beyond

Layer 4 the value of the coincidence factor decreased again,

but a value above 25 at Layer 10, still higher than at Layer

1, was observed with a background intensity of 500 spikes/s.

Such a non monotonic profile of the coincidence factor charac-

terized by higher values near Layers 3-4 and higher values for

certain higher levels of noise was observed also in the case of

Zaslavskii map (data not shown).

In the case of Ikeda’s external input the coincidence factor

was below 75 at Layer 1 even with ε = 1.0 for all models

(Fig. 10b, left panels). Despite such low reading of the coin-
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Figure 11: Coincidence factor calculated for a neuron of a layer as a function

of background activity. The layers are color coded as follows: black-L2, blue-

L4, green-L6, orange-L8, and red-L10. The external input was generated by

Chen’s system (a) and Ikeda map (b) with ε = 0.5. Non overlapping bundles

of solid lines correspond to RS-EIF and RS-MAT models, as indicated by the

legend in the graphic. Dashed lines correspond to RS-IZH. Notice that for RS-

MAT models higher coincidence factors were observed with larger background

intensities.

cidence factor already at the entry of the network we observed

that RS-MAT neurons tended to preserve its value in the down-

stream layers for background intensities up to 400 spikes/s. On

the opposite, for RS-EIF and RS-IZH the coincidence factor

tended to decrease along the networks with any background in-

tensity. Interestingly, for ε = 0.3 RS-EIF and RS-IZH neurons

could sustain the coincidence factor (this value is low but higher

than that of RS-MAT neurons) especially with background ac-

tivity higher than 450 spikes/s (Fig. 10b, right panels).

If a consistent amount of spikes unrelated to the nonlinear

dynamics (e.g. ε = 0.5) were fed to Layer 1 of RS-MAT net-

work the value of the coincidence factor tended to increase with

an increase of background activity (Fig. 11a,b). This property

can be viewed as the ability of the network to produce a kind

of de-noising process along the network layers. On the con-

trary, the coincidence factor for the RS-IZH neurons tended to

decrease along the network layers with an increase of the back-

ground intensity for any value of ε, as exemplified with data

obtained from Chen’s system and ε = 0.5 (Fig. 11a). In the

Figure 12: Examples of return maps of a single RS-EIF cell output and corre-

sponding reconstructed spike trains. The original input is generated by a noisy

Chen’s system with ε = 0.3 and background intensity of 500 spikes/s.

case of RS-EIF no sustainable activity could be observed below

a background intensity of 400 spikes/s and the values of the

coincidence factor for a given layer tended to be smaller than

RS-IZH also with a background intensity of 500 spikes/s. It

is worth to remark that a profile similar to a stochastic reso-

nance could even be observed in the RS-MAT neural network

with Ikeda map (Fig. 11b). In the absence of noisy inputs (e.g.,

for large values of copy probability ε) the coincidence factor is

always better preserved along the network formed by RS-MAT

neurons, irrespective of the origin of the temporal information

fed to Layer 1 (Fig. 10).

The efficacy of the transmission of the temporal information

through downstream layers can be observed in the return maps

of neural outputs and reconstructed spike trains. For RS-EIF,

RS-IZH, and RS-MAT networks Figures 12, 13 and 14, respec-

tively, show examples of return maps in Layers 1, 2, 4, 10 in

a case of a noisy external input (ε = 0.3) generated by Chen’s

system in presence of high background activity (500 spikes/s).

The return maps of the RS-EIF and RS-IZH neuronal outputs

show no recognizable shape of the attractor seen in the origi-
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Figure 13: Examples of return maps of a single RS-IZH cell output and corre-

sponding reconstructed spike trains. The original input is generated by a noisy

Chen’s system with ε = 0.3 and background intensity of 500 spikes/s.

nal input spike train (Fig. 12 and Fig. 13, left panels). Notice

that sizable amount of preferred firing sequences unrelated to

the external input dynamics were detected by PGA in RS-IZH

network, as shown by the return map of the reconstructed spike

train of Layer 10 neurons (Fig. 13 bottom right panel), but those

events were associated to the intrinsic dynamics of the neuronal

model. On the contrary, for RS-MAT neurons the shape of the

original attractor become clearer going downstream along the

network layer in the analysis of cell output (Fig. 14 left pan-

els). Return maps of the reconstructed RS-MAT spike trains

emphasize even more the spikes associated to the external input

dynamics, especially for Layer 4 characterized by the largest

coincidence factor in this set of results.

4. Discussion

We observed the ability of partially convergent/divergent

feed-forward neural networks to integrate and transmit tem-

poral information embedded in a set of input spike trains in

presence of stochastic background noise. The feature of this

network structure in propagating synchronous firing (Abeles,

Figure 14: Examples of return maps of a single RS-MAT cell output and corre-

sponding reconstructed spike trains. The original input is generated by a noisy

Chen’s system with ε = 0.3 and background intensity of 500 spikes/s.

1982a; Diesmann et al., 1999) can be used to preserve and trans-

mit much of a distributed temporal information, even for noisy

external input fed at the entry of the network, at least up to 10th

order of the layered structure. We show that recurring spike pat-

terns detected downstream along the network layers result not

only from the architecture of the network but a sizable amount

of recurring patterns result from the temporal structure of the

original input as a function of the dynamics underlying the tem-

poral structure of the input, of the selected neuron model and of

background noise intensity.

Large values of copy probability ε mean that a neuron of

the input layer (Layer 1) receives more spikes derived from the

original input spike train. In this case, input spikes to Layer 1

belonging to the original input spike train have a heavier weight

than Poisson distributed afferent spikes. These spikes can be

more efficient in driving the postsynaptic neurons in the first

layer in presence of a proper level of membrane excitability

maintained by an adequate background activity, thus resulting

in higher response rates (Fig. 6). The procedure of copying

spikes from a “mother process” with some probability was pre-
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viously used by Kuhn et al. (2003). The input spikes used in

the current study is rather similar to their MIP correlated in-

put. Kuhn et al. (2003) showed that when the input population

size was rather small, the output neuronal firing rate increased

almost linearly with an increase of the correlation coefficient

among the input spike trains. For large sizes of the input popu-

lation, the output rate showed a unimodal response as a function

of the correlation coefficient. Notice that in this study we used

fifteen out of twenty inputs converging to a single neuron of a

layer, thus corresponding to the smaller input population con-

sidered by Kuhn et al. (2003).

The pattern grouping algorithm PGA (Villa and Tetko, 1999;

Tetko and Villa, 2001b,c,a; Abeles and Gat, 2001) could detect

almost a constant amount of spikes with ε = 1.0 throughout

all layers of the network for both RS-IZH and and RS-MAT

neural models despite an increase of the average discharge rate

along the downstream layers and for larger background activi-

ties. The RS-EIF was much more sensitive to background inten-

sities than RS-IZH and RS-MAT and more than 400 spikes/s

were necessary for a sustainable propagation of synfire activity

to the downstream layers and, in particular, for the detection of

recurrent firing patterns with an input derived from Ikeda map.

Notice that the parameters that were set in PGA to search for the

preferred firing sequences appear to be less adequate to detect

the dynamics of the Ikeda map than for Zaslavskii and Chen’s

system (Asai and Villa, 2008).

In the case of RS-EIF model the coincidence factor tended to

be lower than for the other models, for comparable background

intensities and copy probability. Notice that networks formed

by RS-EIF neurons produced a large amount of synfire activ-

ity at downstream layers (e.g., Fig. 5) that was mainly unre-

lated to the original input generated by dynamical systems (e.g.,

Fig. 12). For RS-IZH model, the coincidence factor declined

along the downstream layers despite a sustained firing activity

and amount of patterns detected by PGA (e.g., Fig. 13). Our

results suggest that a network composed by RS-MAT neurons

(Kobayashi et al., 2009) can integrate and retain the temporal

information embedded in an external input better than a net-

work composed by RS-IZH neurons (Izhikevich, 2004), which

are likely to generate preferred firing patterns that are not as-

sociated to the original external input, as suggested elsewhere

(Asai et al., 2008).

The RS-EIF model is a good candidate to capture

spike generation dynamics described by Hodgkin-Huxley-type

conductance-based models (Fourcaud-Trocmé et al., 2003). We

used the parameters as originally indicated by the authors but

other sets of parameters have been suggested (Badel et al.,

2008; Ostojic et al., 2009), emphasizing, in particular, a sharper

initiation of the action potential. However, notice that networks

of RS-EIF model exhibited a behavior similar to RS-IZH for

some features and similar to RS-MAT for other features, as

shown by the analysis of the cross-correlations (Fig. 8). In the

RS-MAT model a spike is generated instantly once the thresh-

old is crossed, thus responding quickly to a fast input transient

such as a volley of synchronous spikes. Volleys of near syn-

chronous spikes may propagate through the network even if

synchrony in the first layer is not perfect (e.g., see Fig. 5) as

described by Diesmann et al. (1999). Conversely, the RS-IZH

model constitutes the normal form of a simplified Hodgkin-

Huxley-type model aimed at studying the bifurcations and the

origin of different response properties of different cell types.

The quadratic nonlinearity of the membrane potential charac-

teristic of RS-IZH makes its spike-onset much slower than other

realistic models (Fourcaud-Trocmé et al., 2003; Naundorf et al.,

2006), thus affecting the response speed and precision of a

neuronal population formed by this type of neurons (Naundorf

et al., 2005). On the basis of the analysis of the coincidence

factor (Fig. 11) a kind of hierarchy tended to appear with re-

spect to the level of background intensity. However, despite the

fact that all models reproduced the dynamics of regular spiking

neurons in a fair way, we cannot discard that a fine tuning of

their parameters could produce results for RS-EIF and RS-IZH

closer to RS-MAT.

With small values of ε, spikes with stochastic timing are

dominant and the short intervals embedded in the temporal in-

formation tend to be lost. However, the structure itself of con-

vergent/divergent feed-forward network is shaped to decrease

synaptic jitter and preserve very precisely the firing times of the

afferents (Abeles, 1982a). In a theoretical study it was reported

that background activity allows slightly subthreshold activity to

propagate reliably but not with high temporal precision (Stim-

berg et al., 2007), but experimental observations suggested that

subthreshold temporally organized activity could be preserved

to a large extent (Takahashi et al., 2010). The way by which

noise is introduced in the network is also important. On the

one side the introduction of jittered synaptic delays instead of

random noise inputs is likely to produce similar results (Ikeda,

2003). On the other side it has been reported that feed-forward

networks with unreliable synapses behave differently from the

same networks randomly connected with reliable synapses in

order to preserve the same connection density (Guo and Li,

2011).

It is interesting to notice that for values of copy probabil-

ity ε in the range 0.3-0.5 we observed (in RS-MAT neural net-

works in the cases of external inputs generated by Chen’s sys-

tem and Zaslavskii map) that higher background activity facili-

tated the integration and transmission of the temporal informa-

tion assessed by the coincidence factor (e.g., Fig. 10a). This

phenomenon could be viewed as a kind of neuronal stochastic

resonance (Bulsara et al., 1991; Longtin, 1993) in neural net-

works, when elevated excitability provided by the background

activity can lead to the firing of spikes associated to a temporal

attractor which is unable by itself to evoke post synaptic dis-

charges. Figure 11b shows more clearly the typical hallmark

of the stochastic resonance which exhibits the peak of the coin-

cidence factor at a certain intensity of the background activity,

somehow in agreement with the observation of noise-enhanced

propagation of activation waves in a synfire chain (Postma et al.,

1996). Our previous experimental results (Villa et al., 1998a,

1999) showed that synchronized firing as well as complex spa-

tiotemporal firing sequences were associated to behaviorally

relevant activity, in agreement with the suggestion by Postma

et al. (1996) that encoding mechanisms may produce patterns

represented by the relative timing of action potentials. How-
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ever, they emphasized the transformation of an incoming spa-

tiotemporal pattern into new spatiotemporal patterns as a conse-

quence of the synaptic processes occurring throughout the net-

work along the downstream layers. We support this hypothesis

for some networks such as the basal ganglia-thalamo-cortical

circuit, but the current study points out that (e.g., at cortico-

cortical level) the propagation of synfire activity may transmit

and preserve complex dynamics fed to the input layer of a par-

tial diverging/converging neuronal network.

It is important to notice that different dynamical systems used

so far gave rise to different performances. The relation between

the properties of the dynamical systems such as the dimensions

of the embedded space, of the attractor and the Lyapunov expo-

nents with the network structure are very important elements to

take into account. At this stage of our work we cannot speculate

further on this observation because the optimal intensity of the

background activity is likely to depend on the characteristics of

the underlying dynamical attractor, the number of afferents con-

verging to a neuron across the layer, and the copy probability ε.

These are crucial questions that need to be addressed in further

studies in order to develop a comprehensive theory that embrace

dynamical systems and convergent/divergent feed-forward net-

works.

This study is the first, to our knowledge, that uses RS-

MAT class of models to study information processing in a

feed-forward neuronal architecture. We suggest that multiple-

timescale adaptive threshold neurons are well suited for the in-

tegration and propagation of a distributed deterministic tempo-

ral information and preserve its dynamics through networks of

cell assemblies in a robust way against background activities.

A very recent evolution of the original RS-MAT model makes

it even more interesting given its improved goodness of fit to

experimental data (Yamauchi et al., 2011). Another important

aspect to consider is the contribution of inhibitory cells in pre-

ferred firing sequences (Villa, 2000; Guo and Li, 2011) in bal-

ancing the activity of synfire chains (Aviel et al., 2003) and in

controlling the propagation of synchronous volleys of activity

(Shinozaki et al., 2007). Our further work is aimed at determin-

ing the limits and robustness of this performance by studying a

broader set of networks with larger sizes of the layers, including

inhomogeneous and diverging/converging networks with recur-

rent connections and with the introduction of synaptic plastic-

ity.
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Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., Brunel, N., 2003. How

spike generation mechanisms determine the neuronal response to fluctuating

inputs. J Neurosci 23, 11628–40.

Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., Brunel, N., 2003. How

spike generation mechanisms determine the neuronal response to fluctuating

inputs. J Neurosci 23, 11628–11640.

Guo, D., Li, C., 2011. Signal propagation in feedforward neuronal networks

with unreliable synapses. J Comput Neurosci 30, 567–587.

Ikeda, K., 2003. A synfire chain in layered coincidence detectors with random

synaptic delays. Neural Netw 16, 39–46.

Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE Transactions

on Neural Networks 14, 1569– 1572.

Izhikevich, E.M., 2004. Which model to use for cortical spiking neurons? IEEE

Trans Neural Netw 15, 1063–1070.

Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., Gerstner, W.,

2008. A benchmark test for a quantitative assessment of simple neuron

models. J Neurosci Methods 169, 417–24.

Kobayashi, R., Tsubo, Y., Shinomoto, S., 2009. Made-to-order spiking neuron

model equipped with a multi-timescale adaptive threshold. Front Comput

Neurosci 3, 9.

Kuhn, A., Aertsen, A., Rotter, S., 2003. Higher-order statistics of input ensem-

bles and the response of simple model neurons. Neural Comput 15, 67–101.

Kumar, A., Rotter, S., Aertsen, A., 2008. Conditions for propagating syn-

chronous spiking and asynchronous firing rates in a cortical network model.

J Neurosci 28, 5268–80.

Longtin, A., 1993. Stochastic resonance in neuron models. J. Stat. Physics 70,

309–327.

Naundorf, B., Geisel, T., Wolf, F., 2005. Action potential onset dynamics and

the response speed of neuronal populations. J Comput Neurosci 18, 297–

309.

Naundorf, B., Wolf, F., Volgushev, M., 2006. Unique features of action poten-

tial initiation in cortical neurons. Nature 440, 1060–1063.

Ostojic, S., Brunel, N., Hakim, V., 2009. How connectivity, background activ-

ity, and synaptic properties shape the cross-correlation between spike trains.

J Neurosci 29, 10234–10253.

Postma, E.O., van den Herik, H.J., Hudson, P.T., 1996. Robust feedforward

processing in synfire chains. Int J Neural Syst 7, 537–542.

Schrader, S., Diesmann, M., Morrison, A., 2011. A compositionality machine

realized by a hierarchic architecture of synfire chains. Front Comput Neu-

13



rosci 4, 154–154.

Segundo, J.P., 2003. Nonlinear dynamics of point process systems and data.

International Journal of Bifurcation and Chaos 13, 2035–2116.

Segundo, J.P., Sugihara, G., Dixon, P., Stiber, M., Bersier, L.F., 1998. The spike

trains of inhibited pacemaker neurons seen through the magnifying glass of

nonlinear analyses. Neuroscience 87, 741–766.

Shinozaki, T., Câteau, H., Urakubo, H., Okada, M., 2007. Controlling synfire

chain by inhibitory synaptic input. Journal of the Physical Society of Japan

76, 044806.

Stimberg, M., Hoch, T., Obermayer, K., 2007. The effect of background noise

on the precision of pulse packet propagation in feed-forward networks. Neu-

rocomputing 70, 1824–1828.

Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., Ikegaya, Y., 2010. Cir-

cuit topology for synchronizing neurons in spontaneously active networks.

Proc Natl Acad Sci U S A 107, 10244–10249.

Tetko, I.V., Villa, A.E., 1997. A comparative study of pattern detection algo-

rithm and dynamical system approach using simulated spike trains. Lecture

Notes in Computer Science 1327, 37–42.

Tetko, I.V., Villa, A.E., 2001a. Pattern grouping algorithm and de-convolution

filtering of non-stationary correlated poisson processes. Neurocomputing

38-40, 1709 – 1714.

Tetko, I.V., Villa, A.E.P., 2001b. A pattern grouping algorithm for analysis

of spatiotemporal patterns in neuronal spike trains. 1. detection of repeated

patterns. J. Neurosci. Meth. 105, 1–14.

Tetko, I.V., Villa, A.E.P., 2001c. A pattern grouping algorithm for analysis of

spatiotemporal patterns in neuronal spike trains. 2. application to simultane-

ous single unit recordings. J. Neurosci. Meth. 105, 15–24.
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