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Abstract

We consider analog recurrent neural networks working on infinite input streams,
provide a complete topological characterization of their expressive power, and
compare it to the expressive power of classical infinite word reading abstract ma-
chines. More precisely, we consider analog recurrent neural networks as language
recognizers over the Cantor space, and prove that the classes of w-languages
recognized by deterministic and non-deterministic analog networks correspond
precisely to the respective classes of TI9-sets and Xi-sets of the Cantor space.
Furthermore, we show that the result can be generalized to more expressive ana-
log networks equipped with any kind of Borel accepting condition. Therefore, in
the deterministic case, the expressive power of analog neural nets turns out to
be comparable to the expressive power of any kind of Biichi abstract machine,
whereas in the non-deterministic case, analog recurrent networks turn out to
be strictly more expressive than any other kind of Biichi or Muller abstract
machine, including the main cases of classical automata, 1-counter automata,
k-counter automata, pushdown automata, and Turing machines.
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1. Introduction

Understanding the dynamical and computational capabilities of neural net-
works is an issue of central importance in neural computation. It is related to
the fields of artificial intelligence, machine learning, and bio-inspired computing,
and from a purely theoretical point of view, it directly contributes to a better
global comprehension of biological intelligence. In this context, an interesting
comparative approach that has been pursued consists in trying to understand
the fundamental differences and similarities that exist between the processes of



transfer of information in biological systems on the one side and in artificial
devices on the other. Towards this purpose, much interest has been focused on
comparing the computational capabilities of diverse theoretical neural models
and abstract computing devices. Two main distinct neural computational ap-
proaches have been considered in this respect: the digital neural computation,
and the continuous-valued neural computation [1].

On the one hand, the field of digital neural computation assumes that the
computational capabilities of the brain rely mainly on the discrete spiking na-
ture of neurons. The approach was controversially initiated by McCulloch and
Pitts, who proposed a modelization of the nervous system as a finite intercon-
nection of logical devices [2]. In this context, neural networks are commonly
considered as discrete abstract machines, and the issue of computational capa-
bilities of neural models is commonly investigated from the automata-theoretic
perspective. For instance, Kleene and Minsky early proved that the class of
rational-weighted first-order recurrent neural networks equipped with boolean
activation functions admits equivalent computational capabilities as classical
finite state automata [3, 4]. Later, Siegelmann and Sontag showed that, still
assuming rational synaptic weights, but considering a saturated-linear sigmoidal
instead of a boolean hard-threshold activation function drastically increases the
computational power of the networks from finite state automata up to Turing
capabilities [5, 6]. Kilian and Siegelmann then extended the Turing universality
of neural networks to a more general class of sigmoidal activation functions [7].

On the other hand, the field of continuous-valued neural computation — or
analog neural computation — assumes that the continuous variables appearing in
the underlying chemical and physical phenomena are essentially involved in the
computational capabilities of the brain. In this context, Siegelmann and Sontag
introduced the concept of an analog recurrent neural network as a neural net
equipped with real synaptic weights and linear-sigmoid activation functions [8].
They further showed that the computational capabilities of such networks turn
out to strictly surpass the Turing limits [9, 10, 8]. More precisely, the class
of analog recurrent neural networks was proved to disclose unbounded power if
exponential time of computation is allowed, and to recognize in polynomial time
the same class of languages as those recognized by Turing machines that consult
sparse oracles in polynomial time (the class P/Poly) [8]. These considerations
led Siegelmann and Sontag to propose the concept of analog recurrent neural
networks as standard in the field of analog computation [9].

However, in both digital or continuous approaches, the computational be-
havior of the networks has generally been approached from the point of view of
classical finite computation theory [11]: a network is as an abstract machine that
receives a finite input stream from its environment, processes this input, and
then provides a corresponding finite output stream as answer, without any con-
sideration to the internal or external changes that might happen during previous
computations. But this classical computational approach is inherently restric-
tive, especially when it refers to bio-inspired complex information processing
systems. Indeed, in the brain (or in organic life in general), previous experience
must affect the perception of future inputs, and older memories themselves may



change with response to new inputs. Neural networks should thus rather be
conceived as provided with memory that remains active throughout the whole
computational process, rather than proceeding in a closed-box amnesic classical
fashion. Hence, in order to take into account this persistence of memory, a pos-
sible approach consists in investigating the computational behavior of recurrent
neural networks from the growing perspective of infinite computational abstract
machines, as for instance presented in [12, 13, 14]. A first step in this direction
has already been initiated by Cabessa and Villa who proposed a hierarchical
classification of recurrent boolean networks on infinite input streams based on
their attractive properties [15].

The present paper pursues this research direction by providing a characteri-
zation of the computational power of analog recurrent neural networks working
on infinite input streams. More precisely, we consider analog recurrent neu-
ral networks as language recognizers over the Cantor space, and prove that
the classes of languages recognized by deterministic and non-deterministic such
networks exhaust the respective classes of II9-sets and Xi-sets of the Cantor
space. Furthermore, we show that the result can be generalized to more expres-
sive networks, by giving an upper topological bound on the expressive power
of analog neural networks equipped with any kind of Borel accepting condition.
Therefore, in the deterministic case, the expressive power of analog neural nets
turns out to be comparable to the expressive power of any kind of X-automata
(i.e. finite automata equipped with a storage type X, see [16]) equipped with
Biichi acceptance condition, whereas in the non-deterministic case, analog re-
current networks turn out to be strictly more expressive than any other kind
of Biichi or Muller X-automata, including the main cases of classical automata,
1-counter automata, k-counter automata, pushdown automata, and Turing ma-
chines [16, 17, 18]. Hence, the present work provides an extension to the context
of infinite computation of the study on the computational capabilities of analog
neural networks pursued by Siegelmann and Sontag [8].

2. Preliminaries

All definitions and facts presented in this section can be found in [19, 20, 21].
First of all, as usual, we let {0,1}*, {0,1}", and {0, 1}* denote respectively the
set of finite words, non-empty finite words, and infinite words, all of them over
the alphabet {0,1}. Then, for any x € {0,1}*, the length of z corresponds to
the number of letters contained in z and will be denoted by |z|. The empty
word is denoted A and has length 0, and every infinite word has length ooc.
Moreover, if z is a non-empty word, for any 0 < i < |z| — 1, the (¢ + 1)-th
letter of 2 will be denoted by xz(i). Hence, any x € {0,1}" and y € {0,1}* can
be written as x = 2(0)z(1) ---x(Jz| — 1) and y = y(0)y(1)y(2) - - -, respectively.
Moreover, the concatenation of z and y will be denoted by xy, and if X and
Y are subsets of {0,1}*, the concatenation of X and Y is defined by XY =
{zy : x € X and y € Y}. The fact that = is a prefix (resp. strict prefix) of
y will be denoted by = C y (resp. « C y). Then, for any p € {0,1}*, we set



p{0,1}¥ = {x € {0,1}* : p C z}. Finally, a subset of {0,1}* is generally called
an w-language.

The space {0, 1} can naturally be equipped with the product topology of the
discrete topology on {0,1}. The obtained topological space is commonly called
the Cantor space. The topology on {0,1}* is actually given by the metric d :
{0,1}¥ x {0,1}* — [0, 1] defined by d(u,v) = 27", where r = min{n : u(n) #
v(n)}, and with the usual conventions minf) = oo and 27> = 0. Accordingly,
the basic open sets of {0,1}*¥ are of the form p{0,1}*, for some prefix p €
{0,1}", and the general open sets of {0,1}* are of the form (J,c; pi{0, 1},
where I C N and each p; € {0,1}7.

The class Borel subsets of {0,1}*, denoted by Al consists of the small-
est collection of subsets of {0,1}* containing all open sets and closed under
countable union and complementation. Now, if w; denote the first uncount-
able ordinal, then for each 0 < a < wj, one defines by transfinite induc-
tion the following classes of Borel sets: ¥¢ = {X C {0,1}* : X is open},
M ={X C{0,1}*: Xce X%} A2 =32NT1I%, and for « > 1, % = {X C
{0,1} : X = Ups0Xn, X €IS, a, <, n € N}. For each 0 < a < wy,
it can be shown that the strict inclusion relations A% C 29 C A%, and
A% CTII% C A%, both hold. Moreover, one has

Ar= == o= al
a<wi a<wi a<wi
The collection of all classes X2, TI2, and A9 thus provides a stratification of
the whole class of Borel sets into w; distinct levels known as the Borel hierarchy.
The rank of a Borel set X C {0, 1}* then consists of the smallest ordinal a such
that X € £2 UII? U A%. The rank of X represents the minimal number of
complementation and countable union operations that are needed in order to
obtain X from an initial collection of open sets. It is commonly considered as a
relevant measure of the topological complexity of Borel sets.

In the sequel, the set F, C {0,1}* consisting of all infinite words that
contain infinitely many occurrences of 1’s will be of specific interest. Note that
Foo = Npso Ums>0{0,1}"™1{0,1}* (with the convention that {0,1}° = \),
and therefore F,, € II9.

Now, the product space {0,1}* x {0,1}* can naturally be equipped with
the product topology of the space {0,1}*. The topology on {0,1}* x {0,1}* is
actually given by the metric d’ defined by d'((z1,22), (y1,2)) = 5 - d(21,91) +
1 -d(x2,y2). The basic open sets of {0,1}* x {0, 1}* are of the form p;{0, 1}* x
p2{0,1}¥, for some prefixes p1,p2 € {0,1}T, and the general open sets are thus
of the form J;;(ps,1{0, 1} X p;,2{0,1}*), where I € N and each p; ; € {0,1}.
The definitions of Borel sets and Borel classes 2, TI9, and A? can naturally
be transposed in this case.

Furthermore, a function f : {0,1}* — {0,1}* is said to be continuous
if the preimage by f of any open set is open. In fact, if f is continuous and
X €30 (resp. X e 1%, X € A9), then f~1(X) € 29 (resp. f~1(X) € IT?,
fH(X) € AY). Also, the function f is said to be Lipschitz of modulus k if for



any z,y € {0,1}*, one has d(f(z), f(y)) < kd(x,y). The same definition and
result hold for any function g : {0,1}* x {0,1}¥ — {0,1}*.

Now, a set X C {0,1}* is said to be analytic iff it is the projection of some
T9-set Y C {0,11% x {0,1}¢, ie. X = m(Y) = {z € {0,1}* : Iy (z,y) € Y'}.
Equivalently, X C {0,1}* is analytic iff it is the projection of some Borel set
Y C {0,1}* x {0,1}*. The class of analytic sets of {0,1}* is denoted by X1.
It can be shown that the class of analytic sets strictly contains the class of all
Borel sets, namely A}l C 1. Finally, a set X C {0,1} is effectively analytic
iff it is recognized by some Turing machine with a Biichi or Muller acceptance
condition [18]. The class of effective analytic sets of {0,1}* is denoted by X}
(lightface). The relation 1 C X1 holds [20].

3. The Model

In this work, we assume that the dynamics of the neural network is syn-
chronous. The rationale for this assumption is twofold. Firstly, the experi-
mental observation of neural network activity is usually carried out by multiple
extracellular recordings of the time series of the neuronal discharges. Such multi-
variate time series is discrete, usually with time steps in the range 0.1-1 ms, and
provides many significant insights into neural network dynamics even when con-
sidering multiple time scales [22]. Moreover, the observation of recurrent firing
patterns, with jitters in the order of few milliseconds at most, suggests that syn-
chronous dynamics is likely to exist in brain circuits [23, 24, 25, 26]. Secondly,
our aim is to extend the infinite input stream context of the synchronous analog
recurrent neural network model introduced by Siegelmann and Sontag [8, 10].
We will then provide a complete characterization of the expressive power of de-
terministic and non-deterministic such networks. For this purpose, the concept
of an analog recurrent neural network shall first be recalled.

An analog recurrent neural network (ARNN) consists of a synchronous net-
work of neurons (or processors) whose architecture is specified by a general di-
rected graph. The network contains a finite number of internal neurons (x]—)é\f:l
as well as a finite number of external input cells (uj)j-w:l transmitting to the net
the input sent by the environment. The networks also admits a specification of
p particular output cells (z;,),_; among the internal neurons (scj)évzl that are
used to communicate the output of the network to the environment. The cells
of the network are related together by real-weighted synaptic connections, and
might receive an external real-weighted bias from the external environment. At
each time step, the activation value of every neuron is updated by applying a
linear-sigmoid function to some real-weighted affine combination the cells’ acti-
vation values at previous time step. More precisely, given the activation values
of cells (z;)7., and (u;)}L, at time ¢, the activation value of each cell x; at time
t + 1 is then updated by the following equation

N M
l‘i(t-i-l):O' Zaij~xj(t)+2bij~uj(t)+ci , t=1,...,N (1)

Jj=1 Jj=1



where all a;;, b;;, and ¢; are real synaptic weights, and o is the classical
saturated-linear activation function defined by

0 ifz<O,
ol)y=<xz if0<z<1,
1 ifz>1.

Equation (1) ensures that the whole dynamics of a ARNN can be described
by some governing equation of the form

x(t11):a(A-xG)+B.uGs)+a), 2)
where x(t) = (x1(t),...,zn(t)) and u(_;f) = (u1(t),...,un(t)) are real-valued
vectors describing the activation values of the internal neurons and external
input cells at time ¢, o denotes the saturated-linear function applied component
by component, and A, B, and ¢ are real-valued matrices.

Siegelmann and Sontag studied the computational complexity of ARNNs
by considering them as language recognizers over the space of non-empty fi-
nite words of bits {0,1}. For this purpose, they restricted their attention to
ARNNs where each input and output channels were forced to carry only binary
signals, and they proceeded to a rigid encoding of the binary input signal and
binary output answer to this signal via the existence of two input cells and two
output cells (taking the role of a data line and a validation line for each case).
Following these conventions, any ARNN N could be associated to some neural
language L(N) C {0,1}T, called the language recognized by N, and defined
as the set of all finite words of bits that could be positively classified by N in
some finite time of computation. The class of ARNNs was then shown disclose
super-Turing computational capabilities. More precisely, ARNNs turn out to
admit unbounded power (in the sense of being capable of recognizing all possible
languages of {0,1}T) in exponential time of computation. And when restricted
to polynomial time of computation, ARNNs are computationally equivalent to
polynomial time Turing machines with polynomially long advice, and thus rec-
ognize the complexity class of languages called P/poly [8].

Here, we provide a natural generalization of this situation to the context of
w-words. More precisely, we consider ARNNs as language recognizers over the
space of infinite words of bits {0,1}*. For this purpose, we suppose any ARNN
N to be provided with only a single input cell u as well as a single output cell
y, both being forced to carry only binary signals. More precisely, at each time
step t > 0, the two cells v and y admit activation values u(t) and y(¢) belonging
to {0,1}. Then, assuming the initial activation vector of the network to be

2(0) = 0, any infinite input stream

s = (u(t)),en = w(0)u(l)u(2) --- € {0,1}*

processed bit by bit induces via Equation (2) a corresponding infinite output
stream

0s = (Y())sen = ¥(0)y(Vy(2) - -- € {0,1}*



also processed bit by bit. After w time steps, an infinite input stream s will
then said to be accepted by N iff the corresponding output stream o, contains
infinitely many 1’s, or in other words, iff o; € F,. This Biichi-like accepting
condition corresponds to the natural translation in the present context of the
classical Biichi accepting condition for infinite word reading machines [12, 13].
It refers to the fact that an infinite input stream is considered to be meaningful
for a given network iff the corresponding output remains forever active. The set
of all infinite words accepted by A will then be called the neural language of
N, and will be denoted by L(N'). Moreover, a language L C {0, 1}* will said to
be recognizable if there exists some such ARNN N such that L(N) = L. From
this point onwards, any ARNN over infinite input streams satisfying the above
conditions will be referred to as a deterministic w-ARNN.

According to the preceding definitions, any deterministic w-ARNN A can
naturally be identified with the function fur : {0,1}* — {0,1}* defined by
fa(8) = os, where oy is the output generated by N when input s is received.
One then has by definition that s € L(N) iff o5 € Fy iff far(s) € F, implying
that the neural language of A/ can thus be written as

L(N) = f,/\_/l(FOO)

Moreover, the following result shows that the dynamics of deterministic w-
ARNNSs impose strong restrictions on the functional behaviors of such networks.

Lemma 1. Let N be some deterministic w-ARNN. Then the corresponding
function far is Lipschitz.

Proof. First of all, the dynamics of A ensures that for any input s and corre-
sponding output os, and for any k > 0, the two bits s(k) and o,(k) are always
generated simultaneously at time step k. Now, let s1,s2 € {0,1}¥, and let
0s, = fn(s1) and 05, = far(s2). If s1 # sz, the metric over {0,1}* ensures
that d(s1,s2) = 27" for some n > 0. Now, the above argument shows that the
relation d(s1,s2) = 27" implies d(0s,, 0s,) = d(far(s1), far(s2)) < 27", There-
fore d(fa(s1), fav(s2)) < d(s1,82). If 1 = s9, then far(s1) = far(s2) since
fa is a function. It follows that d(far(s1), far(s2)) = 0 = d(s1,s2), and thus
d(far(s1), fa(s2)) < d(s1,s2) in this case also. Therefore, fur is Lipschitz of
modulus 1. O

4. The Expressive Power of Deterministic w-ARNN

In this section, we provide a complete characterization of the expressive
power of the class of deterministic w-ARNNs. More precisely, we prove that
deterministic w-ARNNSs recognize precisely all TI3-sets of {0,1}, and no other
ones. The result is not so surprising. The fact that any neural language rec-
ognized by some deterministic w-ARNN is a TI3-set results from the chosen
Biichi-like accepting condition of the networks. Conversely, the fact that any
I19-set can be recognized by some w-ARNN is more technical and results from
the possibility of encoding every such subset into the real synaptic weights of



the networks. Therefore, the expressive power of deterministic analog neural
nets turn out to be closely related to the expressive power of any kind of de-
terministic Biichi X-automata, since the w-languages recognized such machines
also all belong to I3 [16, 18]. In particular, deterministic w-ARNNs admit a
similar expressive power as deterministic Biichi automata, 1-counter automata,
k-counter automata, pushdown automata, Petri-nets, and Turing machines.

To begin with, we show that the dynamics and accepting conditions of de-
terministic w-ARNNSs ensure that every neural language recognized by such a
network is indeed a TI9-set.

Proposition 1. Let N be some deterministic w-ARNN. Then L(N) € T13.

Proof. First of all, recall that F, is a II-set. Moreover, Lemma 1 shows that
the function fur is Lipschitz, thus continuous. Therefore L(N) = f/\_/l (Fso) €
119, [19, 20, 21]. O

Conversely, we now prove that any I19-set of {0,1}* can be recognized by
some deterministic w-ARNN. For this purpose, we adopt an encoding approach
as described in [8], but we stay close to the classical topological definition of
I19-sets instead of considering them from the point of view of circuit theory, as
for instance in [27, 28]. More precisely, we show that the belonging problem to
any I19-set can be decided by some deterministic w-ARNN containing a suitable
real synaptic weight which encodes the given set.

We first need to provide a suitable encoding of TI9-sets of the Cantor space.
Hence, consider a set X C {0,1}* such that X € II3. By definition, X
can be written as a countable intersection of open sets, or equivalently, as
a countable intersection of countable unions of basic open sets, i.e. X =
Ni>o Uj>0p(i,j){0,1}“, where each p(; j) € {0,1}*. The set X is thus com-
pletely determined by the countable sequence of finite prefixes (p(; ;))i,j>o0-
Hence, in order to encode the subset X into some real number, it suffices to
encode the corresponding sequence of prefixes (p(; ;))i,j>o0-

For this purpose, we adopt a similar approach as the one described in [8].
First of all, each finite prefix p; jy € {0,1}" is first encoded by some finite
sequence of natural numbers "p(; ;7 € {0,2, 4} obtained by first adding a 4 in
front of the sequence p(; ;) and then doubling each of its bit, i.e.

"p(i,j) (0) =4 and "pg; (K 4+ 1) = 2 pg 5 (k), for all k < [p(; ;|-

For instance, "0100117" = 4020022. Now, let us consider some primitive recursive
bijection from N? onto N, like for instance b : N x N — N given by b(i, j) =
2-(i+7) (i+j+1)+j. Then, the sequence of prefixes (p(; j))i >0 can be
encoded by the infinite sequence of integers "(p(; ;))ij>0 ' € {0,2,4}* defined
by the successive concatenation of all finite sequences "py-1(x) ', for all & > 0,
namely

"(Pa.g))ig=0 = "Pp-10) "Pe-1(1) T Pb-1(2)

Using this first encoding, each finite block "py-1(;) ' can now be unambiguously
re-encoded by the rational number 7(py-1(z)) € [0, 1] given by the interpretation



of the sequence in base 5, namely

|rpb71(k)1‘_1 - a0
Po-1(k) (i)
rori) = D i
i=0
Finally, the set X itself can also be unambiguously re-encoded by the real num-
ber r(X) € [0, 1] given by the interpretation of the infinite sequence " (p(; ;) )i,;>0 "
in base 5, namely

> T (pigy)ii=0(4)
r(X)=)
i=0

Now, in order to prove our result, a preliminary lemma is first needed. More
precisely, a direct generalization of [8, Lemma 3.2] shows that, for any IT3-
set, there exists a corresponding ARNN which, given some suitable encoding of
the integer k as input, is able to retrieve the rational encoding 7(py-1(x)) of the
(k+1)-th block of the sequence "(p(; jy)i,j>0 ' as output. Note that the following
lemma states the existence of a general ARNN as described in [8], and not of
some deterministic w-ARNN.

Lemma 2. Let X C {0,1}* be a T13-set with corresponding sequence of prefizes
(P(ij))ij>0- Then there exists an ARNN Nr(x) containing one input cell, one
output cell, and a synaptic real weight equal to r(X), and such that, starting
from the zero initial state, and given the input signal (1 —27%)0% produces an
output of the form 0 r(py-1(1))0%.

Proof. We only give a sketch of the proof, since it is a direct generalization of [8,
Lemma 3.2]. The idea is that the network first stores the integer k in memory.
Then, the network decodes step by step the infinite sequence " (p(; ;))i,j>0 ' from
its synaptic weight r(X) until reaching the (k + 1)-th letter 4 of that sequence.
After that, the network knows that it has reached the suitable block "py-1 ;)™
of the sequence "(p(; j))i,j>0 ', and proceeds to a re-encoding of that block into
7(Pp-1(k))- Once finished, the obtained rational number 7(py-1(x)) is finally
provided as output. The technicalities of the proof reside in showing that the
decoding and encoding procedures are indeed performable by such an ARNN.
This property results from the fact that these procedures are recursive, and
any recursive function can be simulated by some rational-weighted network, as
shown in [6], and thus a fortiori by some ARNN also. O

It follows from the preceding result that any I19-set can indeed be recognized
by some deterministic w-ARNN, as shown by the following result.

Proposition 2. Let X C {0,1}* such that X € II3. Then there exists a
deterministic w-ARNN Nx such that L(Nx) = X.

Proof. The set X € TI9 can be written as X = NisoUj>0Pi,){0, 1}, where
each p(; jy € {0,1}". Hence, a given infinite input s € {0,1}* belongs to X iff
for all index 4 > 0 there exists an index j > 0 such that s € p(; ;{0,1}*, or



equivalently, iff for all 7 > 0 there exists j > 0 such that p(; ;) & s. Consequently,
the problem of determining whether some input s provided bit by bit belongs
to X or not can be decided in infinite time by the procedure described by
Algorithm 1, which, after w computation steps, would have returned infinitely
many 1’s iff s € niZO szo Pai,;10,1}* = X. In this procedure, observe that

Algorithm 1
1: Input s is provided bit by bit at successive time steps
2:1+0,5<0
3: loop
40 k< b(i,7)

5. Submit input (1—-27%) toN,(x) // where N,(x) is given by Lemma 2
6:  Get output 7(py-1()) from N, (x)

T Pe-i(k) < decode(r(py-1(k)))

8  if py-1() & s then // in this case, s € p(; ;{0,1}*

9: return 1 // hence s € J,>0p(ip{0,1}*

10: te—i+1,j<0 // begin to test if s € J,~oP(i+1,p)10,1}*
11:  else // in this case, s ¢ p; ;{0,1}*

12: return 0 // hence s & J,<; p(ip{0, 1}

13: i, j—j+1 // begin to test if s € J,<; 1 P(ip{0:1}*
14:  end if B

15: end loop

the test of line 7 can always be performed in finite time, since each sequence
Pp-1(k) is finite. Now, note that Algorithm 1 actually consists of a succession of
recursive computational steps as well as extrarecursive calls to the ARNN N, (x)
provided by Lemma 2. Hence, Algorithm 1 can be performed by a composition
of an infinite Turing machine [29] and an ARNN N, (x). Yet since the behaviors
of any Turing machines can indeed be simulated by some ARNN [6], it follows
that the procedure described by Algorithm 1 can indeed by simulated by some
deterministic w-ARNN Ax which, when receiving input s bit by bit, outputs
infinitely many 1’s iff the procedure returns infinitely many 1’s, or equivalently,
iff s € X. Yet according to the accepting conditions of Ny, this is equivalent
to saying that s € L(N) iff s € X. Therefore L(Nx) = X. O

Now, propositions 1 and 2 permit to deduce the following characterization
of the expressive power of deterministic w-ARNNs:

Theorem 1. Let X C {0,1}*. Then X is recognizable by some deterministic
w-ARNN iff X € I13.

Theorem 1 together with the results in [16] show that the w-languages rec-
ognized by deterministic w-ARNNs and deterministic Biichi X-automata all
belong to the same Borel class IT9. In this sense, the expressive power of de-
terministic w-ARNNs is topologically comparable to the expressive powers of
deterministic Biichi X-automata. However, note that even if their expressive

10



power turn out to be similar, the class deterministic w-ARNNSs recognizes strictly
more w-languages than any other class of deterministic Biichi X-automata. In-
deed, on the one side, any X-automaton is a finite object, so that it can be
encoded by some integer. Consequently, any class of deterministic Biichi X-
automata contains only countably many representatives, and might therefore
recognize only countably many w-languages. Yet on the other side, determin-
istic w-ARNNs are able to recognize the whole class of T19-sets, namely 2%°
w-languages, which is uncountably many more than any other class of deter-
ministic Biichi X-automata. In this precise sense, the expressive power of de-
terministic w-ARNNs is topologically comparable to but also strictly richer than
the expressive powers of any other class of deterministic Biichi X-automata. In
particular, if L7, and £y respectively denote the classes of w-languages rec-
ognized by Biichi deterministic Turing machines and deterministic w-ARNNs,
the following result holds.

Theorem 2. L1y € Lyy = II9.

5. The Expressive Power of Non-Deterministic w-ARNN

Siegelmann and Sontag introduced the concept of a non-deterministic pro-
cessor net as a modification of a deterministic one, obtained by incorporating a
guess input channel in addition to the classical input channel [6]. The concept
was introduced in the context of rational-weighted networks, but can naturally
be extended to real-weighted networks (i.e. ARNNSs). And in both rational-
and real-weighted cases, it can be observed that such particular concept of non-
determinism does actually not increase the computational power of the corre-
sponding networks. Indeed, in the rational-weighted case, deterministic and
non-deterministic neural networks were shown to be computationally equiva-
lent to deterministic and non-deterministic Turing machines, respectively [6].
The classical equivalence between deterministic and non-deterministic Turing
machines [30] then implies the existence of a similar equivalence between deter-
ministic and non-deterministic networks, showing that non-determinism doesn’t
bring any extra computational power. In the real-weighted case, since deter-
ministic neural networks already disclose unbounded power, it directly follows
that their non-deterministic counterparts cannot be more powerful [8].

Here, we consider a natural extension of this concept of non-determinism to
our particular case of analog networks over infinite input streams, and subse-
quently analyze the expressive power of such networks. More precisely, we pro-
vide a definition of a non-deterministic w-ARNN and show that in our context,
as opposed to the case of finite input streams, the translation from the determin-
ism to non-determinism induces an extensive complexification of the expressive
power of the corresponding networks from II9 to X3-sets. This topological
gap shows the significance of the concept of non-determinism for w-ARNNs. It
follows that non-deterministic w-ARNNs turn out to be extensively more ex-
pressive than any other kind of non-deterministic X-automata equipped with
Biichi or Muller accepting conditions — since all w-languages recognized such
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machines belong to the class X1 (see [16, 17, 18]) and it holds that ¥} ¢ 1
[20]. In particular, non-deterministic w-ARNNSs happen to be strictly more ex-
pressive than non-deterministic Biichi or Muller classical automata, 1-counter
automata, k-counter automata, Pushdown automata, and Turing machines.

Now, in order to sate the expected result, the following definition first need to
be introduced. A non-deterministic w-ARNN N consists of an ARNN provided
with an input cell u1, a second input cell us playing the role of a guess cell, and
an output cell y, all of them being forced to carry only binary signals. Hence,
at each time step ¢ > 0, the three cells u;, us, and y admit activation values
uy(t), ua(t), and y(t) belonging to {0,1}. Then, assuming the initial activation
vector of the network to be a:(b) = 6, any input stream

s = (u1(t)) ey = u1(0)ur (ug(2) -+ - € {0, 1}

and guess stream

9 = (u2(t))yen = u2(0)uz(Nuz(2) - - € {0,1}*

processed bit by bit induce via Equation (2) a corresponding infinite output
stream

059 = (Y(1))pen = y(0)y(Vy(2) - - - € {0, 1}

also processed bit by bit. Now, an input stream s will said to be accepted by N
iff there exists a guess stream ¢ such that the corresponding output stream o 4
contains infinitely many 1’s. This accepting condition corresponds to the natu-
ral Biichi-like translation in the present infinite input context of the accepting
condition for non-deterministic processor nets on finite inputs stated by Siegel-
mann and Sontag [6]. Finally, as usual, the set of all infinite words accepted by
N will be called the neural w-language of N, and will be denoted by L(N).

According to the preceding definitions, any non-deterministic w-ARNN A
can naturally be identified with the function fy : {0,1}* x {0,1}* — {0, 1}*
defined by fy(s,g) = 0s,4, Wwhere o5 4 is the output generated by N when input
s and guess g are received. By definition of the accepting condition of A, the
neural w-language of N can thus be written as

L) = {s:39 (9 € f3 (o)} = m (F5'(F))

Once again, the dynamics of non-deterministic w-ARNNs impose strong restric-
tions on the functional behaviors of such networks.

Lemma 3. Let N be some non-deterministic w-ARNN. Then the corresponding
function fg is Lipschitz.

Proof. First of all, the dynamics of A ensures that for any input s, any guess
g, any corresponding output o, 4, and any k > 0, the three bits s(k), g(k),
and o, (k) are always generated simultaneously at time step k. Now, let (s1,¢1),
(52,92) € {0,1}¥x{0,1}¥, and let o, 4, = fr(51,91) and 0s, g, = [ (52, 92). If
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81 # 89 0r g1 # go2, the metric d’ over {0, 1}* x{0,1}* ensures that d’'((s1, g1), (s2,92)) =
5+d(s1,52)+5-d(g1,92) = 5-27™+4-27" for some m,n € NU{oo} such that ei-
ther m or n or both are distinct from co. Now, suppose without loss of generality
that m < n and m < co. It follows that s1(0) - s;(m—1) = s2(0) - - - s9(m —1),
and g1(0)---gi(m — 1) = g2(0)---g2(m — 1). Yet by the above argument,
it follows that 0s,,4,(0) - 0s, g, (M — 1) = 045,4,(0) - - - 05,9, (m — 1), and thus
d(0sy,g150s5,9,) < 27™. Therefore,

d(fN(Slvgl)va(82792)) = d(081,g17082,92)§27m

1 1
2. (5 274 o 27”) =2 dl((slagl)a (32792))3

2

IN

showing that fyg is Lipschitz of modulus 2. If s; = sy and g1 = g2, then
fir(s1,91) = frr(s2,92) since fy is a function. It follows that d(fy(s1,91), f(s2,92)) =
0=d((s1,91), (s2,92)). Therefore, in all cases, far is Lipschitz of modulus 2.

O

We now provide a complete characterization of the expressive power of the
class of non-deterministic w-ARNNs. More precisely, we prove that the class of
w-languages recognized by non-deterministic w-ARNNs correspond precisely to
the class of analytic subsets of {0,1}*. First of all, we show that any neural
w-language recognized by some non-deterministic w-ARNN is an analytic set.

Proposition 3. Let N be a non-determinisitc w-ARNN. Then L(N) € %1.

Proof. As already mentioned, one has F,, € II3. Moreover, Lemma 3 shows
that the function fg : {0,1} x {0,1} — {0,1} is Lipschitz, thus continuous.
Hence, fj\ffl(Foo) € II9. Therefore, L(N) = ﬂl(fj\ffl(Foo)) € X1, see [19, 20,
21]. O

Conversely, we now prove that any analytic subset of {0,1}* can be rec-
ognized by some non-deterministic w-ARNN. We proceed as in Section 4. For
this purpose, let X C {0,1}* such that X € X}. Then there exists a set
Y C {0,1}* x {0,1}* such that Y € II3 and X = m(Y). Yet according
to the product topology on {0,1}* x {0,1}“, the set Y can be written as
Y = Niso Ujs0Pe)10, 1} x g4, {0, 1}), where each p j), g5 € 0,1},
Consequently, the set Y, and hence also the set X, are thus completely deter-
mined by the countable sequence of pairs of finite prefixes ((p(; ), 4(,5)))i,5>0-
Hence, in order to encode the subset X into some real number, it suffices to
encode the corresponding sequence of prefixes ((p(i,j), 4(i,5)))i,j>0-

To begin with, each pair of finite prefixes (p(; ), qq,;)) € 10,1} x {0, 1}
is first encoded by the finite sequence of natural numbers "(p jy,qq ;)" €
{0,2,4,6}" defined by

"(Paig) 96.5)) " = 6P, AT qa.5)

where "p(; ;' and "q(; ;) ' are the encodings of finite prefixes defined in Sec-
tion 4. For instance, 7(01,110)7 = 6024220. Now, the sequence of pairs of
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prefixes ((p( ;) q(i,j)))ij>0 can be encoded by the infinite sequence of integers
“((P(i,5)1 96i,5)))ii=0 ' € {0,2,4,6} defined by the successive concatenation of
all finite sequences " (py-1(x), @p—1(x)) ', for all k& > 0, namely

“((Paig) 4,5)))ig=0 = "(Po-100) B-1(0)) " Po-1(1)> B-1(1)) " (Po-12)5 o-1(2)) "

Using this first encoding, each finite block " (py-1(x), ¢5—1(x)) ' can now be unam-
biguously re-encoded by the rational number r((py-1(x), @-1(x))) € [0, 1] given
by the interpretation of the sequence in base 7, namely

["(Py—1 (1) Q-1 () =1 .

v ® “(Po-1 (k) Bo-1 (1)) ()

r((Po-1 (k) B2 (k) = > T :
=0

Finally, the set X itself can also be unambiguously re-encoded by the real num-
ber r(X) € [0, 1] given by the interpretation of the infinite sequence " (p(; jy, q(i.j)))i.j>0"
in base 7, namely

= T((Pigys 4Gig)))ing=0 (0)
r(X) =3 — :

=0

Now, a generalization of Lemma 2 in this precise context can indeed be
obtained.

Lemma 4. Let X C {0,1}* be a X1-set with corresponding sequence of pair of
prefizes ((p(i.j),4(i,5)))ij>0- Then there exists an ARNN Nr(x) containing one
input cell, one output cell, and a synaptic real weight equal to r(X), and such
that, starting from the zero initial state, and given the input signal (1 —27%)0¥
produces an output of the form 0r((py-1 k), @1 (k)))0%.

Proof. A straightforward generalization of the proof of Lemma 2. O

The next result now shows that any ¥1-set of {0,1}* can indeed be recog-
nized by some non-deterministic w-ARNN.

Proposition 4. Let X C {0,1}* such that X € Xi. Then there ezists a
non-deterministic w-ARNN Nx such that L(Nx) = X.

Proof. The set X € ¥1 can be written as X = 71(Y), for some Y € IT3, and
the set Y can itself be written as Y = ;5o U505 {0, 1} x (i, {0, 1}*) for
some p(; jy,qi,5) € {0,1}T. Hence, a given infinite input s € {0, 1} belongs to
X iff there exists a infinite guess g € {0, 1}* such that, for all index ¢ > 0, there
exists an index j > 0 satisfying (s, g9) € p(,;)10, 1}* X q(;, 510, 1}. Equivalently,
s € X iff there exists g € {0,1}* such that, for all i > 0, there exists j > 0
satisfying both p; ;) C s and q(; j) S g- Thence, as for the deterministic case,
the problem of determining whether some input-guess (s, ¢g) provided bit by bit
belongs to Y or not can be decided in infinite time by the procedure described by
Algorithm 2, which, after w computation steps, would have returned infinitely

many 1s iff (s,9) € ;50 U;50(Pa.5) 10, 1} X ¢0i,{0,1}*) =Y. Moreover, as
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Algorithm 2
1: Input s and guess g are provided bit by bit at successive time steps
2: 40,50

3: loop

4: k — b(Z,])

5. Submit input (1—-27%) to ./\7,.(X) // where ./\7',.(X) is given by Lemma 4
6: Get output T((pb—l(k),qb—l(k.))) from NT(X)

7 (Po-1(k)s -1 (k) < decode(r((Py—1 (k) Bb-1(k))))
8 if pp-1(k) C s and gp-1(x) S g then

9: return 1

10: t—1+1,7<0

11:  else

12: return 0

13: t—1,)—75+1

14:  end if

15: end loop

for the deterministic case again, Algorithm 2 actually consists of a succession
of recursive computational steps as well as extrarecursive calls to the ARNN

/\/,.( x) provided by Lemma 4. Hence, the procedure can indeed by simulated by
some ARNN Ny provided with two input cells as well as one output cell, and
such that, when receiving the infinite input stream (s, g) bit by bit, the network
Nx outputs infinitely many 1’s iff the procedure returns infinitely many 1’s,
or equivalently, iff (s,g) € Y. Hence, the function Jxr, naturally associated

with Ny satisfies fj\f[)l( (Fso) = Y. Finally, if we further consider that Ny is
equipped with the accepting conditions of non-deterministic w-ARNN, then the
w-language of Nx is precisely given by L(Nx) = Wl(fj\f[)l( (Fs)) = m(Y) =
X. O

Now, propositions 1 and 2 induce the following characterization of the ex-
pressive power of non-deterministic w-ARNNs:

Theorem 3. Let X C {0,1}¥. Then X is recognizable by some non-deterministic
w-ARNN iff X € ¥1.

Consequently, Theorem 3 ensures that non-determnisitc w-ARNNs turn out
to be strictly more expressive than any other kind of X-automata equipped with
a Biichi or Muller acceptance condition (since the w-languages recognized by
such machines strictly belong to the class X1, and ¥} C 1 [18]). In particular,
we state the result for the case of non-determinisitc Turing machines, for they
correspond to the most powerful abstract devices on infinite words.

Theorem 4. Non-determnistic w-ARNNs are strictly more expressive than
non-deterministic Biichi or Muller Turing machines.

15



Proof. By Theorem 3 and [18], the classes of w-languages recognized by non-
determninstic w-ARNNs and non-deterministic Biichi or Muller Turing ma-
chines correspond respectively to the classes of 31-sets and Yi-sets. But it
holds that 3] 2 1, which concludes the proof [20]. O

Finally, theorems 1 and 3 show a significant topological complexification be-
tween the expressive powers of deterministic and non-deterministic w-ARNNs
from TI9-sets to X1-sets. It is worth noting that a similar topological gap also
holds for several Biich or Muller X-automata. For instance, the translation
from determinism to non-determinism increases the expressive power of classi-
cal Biichi automata from IT9-sets to A9-sets [12, 13]. Moreover, the expres-
sive power of deterministic and non-deterministic Biichi 1-counter automata,
k-counter automata, pushdown automata, and Turing machines turns out to be
increased from TI9-sets to Xi-sets. The expressive power of all of their Muller
counterparts also turns out to be increased from A9-sets to ¥i-sets [16, 17, 18].
However, such a complexification does not hold for all kind of usual abstract
machines. For instance, Muller automata, Rabin automata, and Streett au-
tomata are shown to have a same expressive power of A2 in their deterministic
and non-determninistic versions [12, 13].

6. Extension to w-ARNNSs equipped with any kind of Borel Accepting
Conditions

In the preceding sections, we have provided a complete characterization of
the expressive power of w-ARNNSs equipped with some simple yet natural Biichi-
like accepting condition. More precisely, the accepting condition was represented
by the IT9 accepting set F.., and the neural w-languages of any deterministic
and non-deterministic w-ARNNs A" and N were respectively given by LN) =
It (Fs) and LN) = wl(f/\Tfl(Foc)). Now, a natural extension of this work
would be to investigate the expressive power of w-ARNNs equipped with more
topologically complex accepting conditions. In this context, we prove that a
topological upper bound on the expressive power of w-ARNNs equipped with
any kind of Borel accepting condition can easily be obtained.

Towards this purpose, for any Borel set F C {0,1}*, we say that N is
a deterministic w-ARNN with accepting condition F if the neural w-language
of N is given by L(N) = fy'(F). We say that N is a non-deterministic w-
ARNN with accepting condition F' if the neural w-language of N is given by
L) = m(f51(F)).

Now, we first prove that the expressive power of deterministic w-ARNN is
potentially increased by the consideration of more topologically complex Borel
accepting conditions.

Proposition 5. Let N be some deterministic w-ARNN with accepting condition
F e X%, for some 0 < a <wy. Then L(N') € £8. The same result applies for
Fell®, and F € AS.

'’
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Proof. One has L(N) = fy'(F), and Lemma 1 shows that fy is Lipschitz,
thus continuous. Yet since F' € 9, it follows that L(N) = f/'(F) € £9, see
19, 20, 21]. O

However, in the non-deterministic case, the consideration of more topolog-
ically complex Borel accepting conditions would absolutely not increase the
expressive power of the corresponding non-determistic w-ARNNs above the an-
alytic level.

Proposition 6. Let N be some non-deterministic w-ARNN with accepting con-
dition F € £% UTI®, for some 0 < o < wy. Then L(N) € 7.

Proof. One has L(N) = m, (fJ\T/l(F))7 and Lemma 3 shows that fy is Lipschitz,
thus continuous. Yet since F' € X9 UTI?, it follows that fj\ffl(F) e X0 uII.

a?

Hence, L(N) = 7T1(fj\_~/1 (F)) consists of a projection of a Borel set of the space
{0,1}* x {0,1}*, and therefore L(N') € 31, see [19, 20, 21]. O

Proposition 5 shows that the topological complexity of the expressive power
of deterministic w-ARNNs is bounded by the topological complexity of their ac-
cepting conditions. Proposition 6 shows that, for any Borel accepting condition,
the expressive power of the corresponding class of non-deterministic w-ARNNs
stays confined into the analytic level. Therefore, increasing the topological
complexity of the accepting condition potentially reduces the topological gap
between the corresponding classes of deterministic and non-deterministic w-
netowrks. Moreover, note that in both deterministic and non-deterministic
cases, the question of whether a given accepting condition F € X2 (resp.
F € M%) would suffice to exhaust the whole classes of X2 (resp. II9) and
31-sets (as for the condition F,,) cannot be solved by simply considering the
Borel rank of the condition.

Finally, as already mentioned, Siegelmann and Sontag proved that the class
of ARNNSs over finite words admits unbounded computational power, in the
sense of being capable of recognizing all possible languages of {0,1}" [8]. In
our case, propositions 5 and 6 directly imply that this result does actually not
extend in the present infinite word context, since the topological complexity of
any class of deterministic or non-deterministic w-ARNNs over some given Borel
accepting condition is always bounded.

7. Conclusion

We introduced a concept of deterministic and non-deterministic analog re-
current neural networks on infinite words, and proved that the w-languages
recognized by such networks exhaust precisely to the whole classes of TI9-sets
and X1-sets. Consequently, the expressive power of deterministic w-ARNNs
turn out to be topologically comparable to the expressive power of determinis-
tic Biichi abstract machines, whereas the expressive power of non-deterministic
w-ARNNSs turn out to significantly more important than the expressive power of
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any non-deterministic Biichi or Muller abstract machines. Yet it is worth noting
once again that, in the deterministic case, even if their underlying w-languages
are bounded by the same Borel rank, the class of w-ARNNS still recognizes un-
countably many more w-languages than any other class of deterministic Biichi
abstract machines. Furthermore, we proved that a Borel upper bound on the
expressive powers of deterministic and non-deterministic w-ARNNs equipped
with any kind of Borel accepting conditions could also be obtained. Conse-
quently, as frequently observed for several Biichi or Muller abstract machines,
we noticed the existence of a topological gap between the expressive powers of
the deterministic and non-deterministic versions of our computational model.

These results significantly differ from those of occurring in classical finite
word context. Indeed, in the case of finite words, deterministic and non-
deterministic analog networks were shown to admit the same computational
power, independently of the nature of their synaptic weights (may they be ra-
tional or reals) [8, 6].

Furthermore, apart from the Borel hierarchy, the Wadge hierarchy! also pro-
vides a relevant tool for the study of the topological complexity of w-languages [31].
Indeed, the Wadge hierarchy provides an extensive refinement of the Borel hier-
archy, and hence permits a closer analysis of the topological complexity of classes
of w-languages. In this context, Finkel surprisingly proved that the Wadge hi-
erarchy — and hence also the Borel hierarchy — of w-languages accepted by
non-deterministic real time 1-counter Biichi automata turns out to be the same
as the Wadge hierarchy of w-languages accepted by non-deterministic Biichi or
Muller Turing machines (i.e. the class ©1) [17]. Consequently, the Wadge hier-
archies — hence also the Borel hierarchies — of w-languages accepted by all kind
X-automata whose expressive powers are situated between real time 1-counter
Biichi automata and Muller Turing machines are the same.

In our case, theorems 1 and 3 provide a direct characterization of the Borel
and Wadge hierarchies of w-languages recognized by deterministic and non-
deterministic w-ARNNs, namely:

Theorem 5. e The Borel and Wadge hierarchies of w-languages recognized
by deterministic w-ARNNs correspond respectively to the Borel and Wadge
hierarchies of the class of all TI9-sets.

e The Borel and Wadge hierarchies of w-languages recognized by non-deterministic
w-ARNNs correspond respectively to the Borel and Wadge hierarchies of
the class of all X} -sets.

The preceding theorem together with the results presented by Finkel [17] per-
mit to compare the Borel and Wadge hierarchies of w-ARNNs and X-automata.
On the one hand, the Borel hierarchies of deterministic w-ARNNs and Biichi
X-automata coincide, and the Borel hierarchy of non-deterministic w-ARNNs

IThe Wadge hierarchy of a given class of w-languages corresponds to the collection of all
w-languages of this class ordered by the Wadge reduction <y. The Wadge reduction <y is
defined by X <y Y iff there exists f continuous such that X = f~1(Y).
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strictly contains the Borel hierarchy of any kind of non-deterministic X-automata.
On the other hand, the Wadge hierarchies of both deterministic and non-
deterministic w-ARNNs strictly contain the Wadge hierarchies of any kind of
deterministic and non-deterministic X-automata. Hence, in the deterministic
context, the Wadge complexity reveals a refined distinction between the ex-
pressive powers of w-ARNNs and Biichi X-automata that cannot be captured
from the point of view of the Borel complexity. In the non-deterministic con-
text, both Borel and Wadge complexities show that w-ARNNs are strictly more
expressive that any X-automata. Therefore, the refined Wadge analysis ac-
tually shows that the w-ARNNs are strictly more expressive than any other
kind of X-automaton, both in their deterministic and non-deterministic ver-
sions. This difference of expressivity is however clearly more significant in the
non-deterministic than in the deterministic context.

Besides, this work can be extended in several directions. For instance, we
think that the study of analog neural w-networks equipped with more complex
or more biologically oriented accepting condition would be of specific interest.
Moreover, Balcdzar et al. described a hierarchical classification of analog net-
works according to the Kolmogorov complexity of their real-weights [32]. This
classification can directly be translated in the present infinite word context, for
it is completely independent of the accepting condition of the networks. Hence,
a natural question would be to investigate the possible links between the Kol-
mogorov and the topological complexity of analog w-networks.

Moreover, a natural extension of this work would be to pursue the study
the computational power of analog recurrent neural networks in the context of
interactive computation [33]. Indeed, van Leeuwen and Wiedermann argued
that classical computation “no longer fully corresponds to the current notion of
computing in modern systems”, and proposed an interactive infinite computa-
tional framework that turn out to be relevant for the modeling of the behavior
of bio-inspired complex information processing systems [34, 35].

Finally, the comparison between diverse bio-inspired and artificial models
of computation intends to capture the fundamental distinctions and similarities
that exist between the processes of transfer of information in biological systems
on the one side and in artificial devices on the other. We believe that this
theoretical comparative approach to neural computability might bring further
insight into the key issue of information processing in the brain, and might
contribute ultimately to provide a better understanding of the intrinsic nature
of biological intelligence. The present paper hopes to make a step forward in
this direction.
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