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a b s t r a c t

We consider analog recurrent neural networks working on infinite input streams, provide
a complete topological characterization of their expressive power, and compare it to the
expressive power of classical infinite word reading abstract machines. More precisely,
we consider analog recurrent neural networks as language recognizers over the Cantor
space, and prove that the classes of ω-languages recognized by deterministic and
non-deterministic analog networks correspond precisely to the respective classes of
Π0

2-sets and Σ1
1-sets of the Cantor space. Furthermore, we show that the result can be

generalized tomore expressive analog networks equippedwith any kind of Borel accepting
condition. Therefore, in the deterministic case, the expressive power of analog neural nets
turns out to be comparable to the expressive power of any kind of Büchi abstract machine,
whereas in the non-deterministic case, analog recurrent networks turn out to be strictly
more expressive than any other kind of Büchi or Muller abstract machine, including the
main cases of classical automata, 1-counter automata, k-counter automata, pushdown
automata, and Turing machines.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the dynamical and computational capabilities of neural networks is an issue of central importance in
neural computation. It is related to the fields of artificial intelligence, machine learning, and bio-inspired computing, and
from a purely theoretical point of view, it directly contributes to a better global comprehension of biological intelligence. In
this context, an interesting comparative approach that has been pursued consists in trying to understand the fundamental
differences and similarities that exist between the processes of transfer of information in biological systems on the one
side and in artificial devices on the other. Towards this purpose, much interest has been focused on comparing the
computational capabilities of diverse theoretical neural models and abstract computing devices. Two main distinct neural
computational approaches have been considered in this respect: the digital neural computation, and the continuous-valued
neural computation [1].

On the one hand, the field of digital neural computation assumes that the computational capabilities of the brain rely
mainly on the discrete spiking nature of neurons. The approach was controversially initiated by McCulloch and Pitts, who
proposed a modelization of the nervous system as a finite interconnection of logical devices [2]. In this context, neural
networks are commonly considered as discrete abstract machines, and the issue of computational capabilities of neural
models is commonly investigated from the automata-theoretic perspective. For instance, Kleene and Minsky early proved
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that the class of rational-weighted first-order recurrent neural networks equippedwith boolean activation functions admits
equivalent computational capabilities as classical finite state automata [3,4]. Later, Siegelmann and Sontag showed that,
still assuming rational synaptic weights, but considering a saturated-linear sigmoidal instead of a boolean hard-threshold
activation function drastically increases the computational power of the networks from finite state automata up to Turing
capabilities [5,6]. Kilian and Siegelmann then extended the Turing universality of neural networks to a more general class
of sigmoidal activation functions [7].

On the other hand, the field of continuous-valued neural computation – or analog neural computation – assumes that
the continuous variables appearing in the underlying chemical and physical phenomena are essentially involved in the
computational capabilities of the brain. In this context, Siegelmann and Sontag introduced the concept of an analog recurrent
neural network as a neural net equipped with real synaptic weights and linear-sigmoid activation functions [8]. They further
showed that the computational capabilities of such networks turn out to strictly surpass the Turing limits [9–11,8]. More
precisely, the class of analog recurrent neural networks was proved to disclose unbounded power if exponential time of
computation is allowed, and to recognize in polynomial time the same class of languages as those recognized by Turing
machines that consult sparse oracles in polynomial time (the class P/Poly) [8]. These considerations led Siegelmann and
Sontag to propose the concept of analog recurrent neural networks as standard in the field of analog computation [9].

However, in both digital or continuous approaches, the computational behavior of the networks has generally been
approached from the point of view of classical finite computation theory [12]: a network is as an abstract machine that
receives a finite input stream from its environment, processes this input, and then provides a corresponding finite output
stream as answer, without any consideration to the internal or external changes that might happen during previous
computations. But this classical computational approach is inherently restrictive, especially when it refers to bio-inspired
complex information processing systems. Indeed, in the brain (or in organic life in general), previous experience must affect
the perception of future inputs, and older memories themselves may change with response to new inputs. Neural networks
should thus rather be conceived as providedwithmemory that remains active throughout thewhole computational process,
rather than proceeding in a closed-box amnesic classical fashion. Hence, in order to take into account this persistence of
memory, a possible approach consists in investigating the computational behavior of recurrent neural networks from the
growing perspective of infinite computational abstract machines, as for instance presented in [13–15]. A first step in this
direction has already been initiated by Cabessa and Villa who proposed a hierarchical classification of recurrent boolean
networks on infinite input streams based on their attractive properties [16].

The present paper pursues this research direction by providing a characterization of the computational power of analog
recurrent neural networks working on infinite input streams. More precisely, we consider analog recurrent neural networks
as language recognizers over the Cantor space, and prove that the classes of languages recognized by deterministic and
non-deterministic suchnetworks exhaust the respective classes ofΠ0

2 -sets andΣ1
1 -sets of the Cantor space. Furthermore,we

show that the result can be generalized tomore expressive networks, by giving an upper topological bound on the expressive
power of analog neural networks equipped with any kind of Borel accepting condition. Therefore, in the deterministic
case, the expressive power of analog neural nets turns out to be comparable to the expressive power of any kind of
X-automata (i.e., finite automata equipped with a storage type X, see [17]) equipped with Büchi acceptance condition,
whereas in the non-deterministic case, analog recurrent networks turn out to be strictlymore expressive than any other kind
of Büchi or Muller X-automata, including the main cases of classical automata, 1-counter automata, k-counter automata,
pushdown automata, and Turing machines [17–19]. Hence, the present work provides an extension to the context of
infinite computation of the study on the computational capabilities of analog neural networks pursued by Siegelmann and
Sontag [8].

2. Preliminaries

All definitions and facts presented in this section can be found in [20–22]. First of all, as usual, we let {0, 1}∗, {0, 1}+, and
{0, 1}ω denote respectively the set of finite words, non-empty finite words, and infinite words, all of them over the alphabet
{0, 1}. Then, for any x ∈ {0, 1}∗, the length of x corresponds to the number of letters contained in x and will be denoted
by |x|. The empty word is denoted λ and has length 0, and every infinite word has length∞. Moreover, if x is a non-empty
word, for any 0 ≤ i ≤ |x| − 1, the (i+ 1)-th letter of xwill be denoted by x(i). Hence, any x ∈ {0, 1}+ and y ∈ {0, 1}ω can be
written as x = x(0)x(1) · · · x(|x| − 1) and y = y(0)y(1)y(2) . . ., respectively. Moreover, the concatenation of x and ywill be
denoted by xy, and if X and Y are subsets of {0, 1}∗, the concatenation of X and Y is defined by XY = {xy : x ∈ X and y ∈ Y }.
The fact that x is a prefix (resp. strict prefix) of y will be denoted by x ⊆ y (resp. x ( y). Then, for any p ∈ {0, 1}∗, we set
p{0, 1}ω = {x ∈ {0, 1}ω : p ( x}. Finally, a subset of {0, 1}ω is generally called an ω-language.

The space {0, 1}ω can naturally be equipped with the product topology of the discrete topology on {0, 1}. The obtained
topological space is commonly called the Cantor space. The topology on {0, 1}ω is actually given by the metric d : {0, 1}ω ×
{0, 1}ω −→ [0, 1] defined by d(u, v) = 2−r , where r = min{n : u(n) ≠ v(n)}, and with the usual conventions min∅ = ∞
and 2−∞ = 0. Accordingly, the basic open sets of {0, 1}ω are of the form p{0, 1}ω , for some prefix p ∈ {0, 1}+, and the
general open sets of {0, 1}ω are of the form


i∈I pi{0, 1}

ω , where I ⊆ N and each pi ∈ {0, 1}+.
The class Borel subsets of {0, 1}ω , denoted by ∆1

1, consists of the smallest collection of subsets of {0, 1}ω containing all
open sets and closed under countable union and complementation. Now, ifω1 denote the first uncountable ordinal, then for
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each 0 < α < ω1, one defines by transfinite induction the following classes of Borel sets: Σ0
1 = {X ⊆ {0, 1}

ω
: X is open},

Π0
α = {X ⊆ {0, 1}

ω
: X c
∈ Σ0

α}, ∆
0
α = Σ0

α ∩ Π0
α , and for α > 1, Σ0

α = {X ⊆ {0, 1}
ω
: X =


n≥0 Xn, Xn ∈ Π0

αn , αn < α,

n ∈ N}. For each 0 < α < ω1, it can be shown that the strict inclusion relations ∆0
α ( Σ0

α ( ∆0
α+1 and ∆0

α ( Π0
α ( ∆0

α+1
both hold. Moreover, one has

∆1
1 =


α<ω1

Σ0
α =


α<ω1

Π0
α =


α<ω1

∆0
α.

The collection of all classes Σ0
α , Π

0
α , and ∆0

α thus provides a stratification of the whole class of Borel sets into ω1 distinct
levels known as the Borel hierarchy. The rank of a Borel set X ⊆ {0, 1}ω then consists of the smallest ordinal α such that
X ∈ Σ0

α ∪Π0
α ∪∆0

α . The rank of X represents the minimal number of complementation and countable union operations that
are needed in order to obtain X from an initial collection of open sets. It is commonly considered as a relevant measure of
the topological complexity of Borel sets.

In the sequel, the set F∞ ⊆ {0, 1}ω consisting of all infinite words that contain infinitely many occurrences of 1’s will
be of specific interest. Note that F∞ =


n≥0


m≥0{0, 1}

n+m1{0, 1}ω (with the convention that {0, 1}0 = λ), and therefore
F∞ ∈ Π0

2 .
Now, the product space {0, 1}ω × {0, 1}ω can naturally be equipped with the product topology of the space {0, 1}ω . The

topology on {0, 1}ω×{0, 1}ω is actually given by the metric d′ defined by d′((x1, x2), (y1, y2)) = 1
2 · d(x1, y1)+

1
2 · d(x2, y2).

The basic open sets of {0, 1}ω × {0, 1}ω are of the form p1{0, 1}ω × p2{0, 1}ω , for some prefixes p1, p2 ∈ {0, 1}+, and the
general open sets are thus of the form


i∈I(pi,1{0, 1}

ω
× pi,2{0, 1}ω), where I ⊆ N and each pi,j ∈ {0, 1}+. The definitions

of Borel sets and Borel classes Σ0
α , Π

0
α , and ∆0

α can naturally be transposed in this case.
Furthermore, a function f : {0, 1}ω −→ {0, 1}ω is said to be continuous if the preimage by f of any open set is open. In

fact, if f is continuous and X ∈ Σ0
α (resp. X ∈ Π0

α , X ∈ ∆0
α), then f −1(X) ∈ Σ0

α (resp. f −1(X) ∈ Π0
α , f
−1(X) ∈ ∆0

α). Also, the
function f is said to be Lipschitz of modulus k if for any x, y ∈ {0, 1}ω , one has d( f (x), f (y)) ≤ k · d(x, y). The same definition
and result hold for any function g : {0, 1}ω × {0, 1}ω −→ {0, 1}ω .

Now, a set X ⊆ {0, 1}ω is said to be analytic iff it is the projection of some Π0
2 -set Y ⊆ {0, 1}ω × {0, 1}ω , i.e.,

X = π1(Y ) = {x ∈ {0, 1}ω : ∃y (x, y) ∈ Y }. Equivalently, X ⊆ {0, 1}ω is analytic iff it is the projection of some Borel
set Y ⊆ {0, 1}ω×{0, 1}ω . The class of analytic sets of {0, 1}ω is denoted by Σ1

1 . It can be shown that the class of analytic sets
strictly contains the class of all Borel sets, namely∆1

1 ( Σ1
1 . Finally, a set X ⊆ {0, 1}

ω is effectively analytic iff it is recognized
by some Turing machine with a Büchi or Muller acceptance condition [19]. The class of effective analytic sets of {0, 1}ω is
denoted by Σ1

1 (lightface). The relation Σ1
1 ( Σ1

1 holds [21].

3. The model

In this work, we assume that the dynamics of the neural network is synchronous. The rationale for this assumption is
twofold. Firstly, the experimental observation of neural network activity is usually carried out by multiple extracellular
recordings of the time series of the neuronal discharges. Such multivariate time series is discrete, usually with time steps in
the range 0.1–1 ms, and provides many significant insights into neural network dynamics even when considering multiple
time scales [23]. Moreover, the observation of recurrent firing patterns, with jitters in the order of fewmilliseconds at most,
suggests that synchronous dynamics is likely to exist in brain circuits [24–27]. Secondly, the main purpose of our work is
to extend to the infinite input-stream context the seminal work by Siegelmann and Sontag about the computational power
of analog recurrent neural networks [8,10,11]. Hence, the consideration of the same model of synchronous analog neural
networks as theirs appears to be a natural first step in this direction. The precise definition of this neural model is the
following.

An analog recurrent neural network (ARNN) consists of a synchronous network of neurons (or processors) whose
architecture is specified by a general directed graph. The network contains a finite number of internal neurons (xj)Nj=1
as well as a finite number of external input cells (uj)

M
j=1 transmitting to the net the input sent by the environment. The

networks also admits a specification of p particular output cells (xjk)
p
k=1 among the internal neurons (xj)Nj=1 that are used

to communicate the output of the network to the environment. The cells of the network are related together by real-
weighted synaptic connections, and might receive an external real-weighted bias from the external environment. At each
time step, the activation value of every neuron is updated by applying a linear-sigmoid function to some real-weighted affine
combination the cells’ activation values at previous time step. More precisely, given the activation values of cells (xj)Nj=1 and
(uj)

N
j=1 at time t , the activation value of each cell xi at time t + 1 is then updated by the following equation

xi(t + 1) = σ


N
j=1

aij · xj(t)+
M
j=1

bij · uj(t)+ ci


, i = 1, . . . ,N (1)
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where all aij, bij, and ci are real synaptic weights, and σ is the classical saturated-linear activation function defined by

σ(x) =


0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x > 1.

Eq. (1) ensures that the whole dynamics of a ARNN can be described by some governing equation of the form

⃗x(t + 1) = σ

A · ⃗x(t)+ B · ⃗u(t)+ c⃗


, (2)

where ⃗x(t) = (x1(t), . . . , xN(t)) and ⃗u(t) = (u1(t), . . . , uM(t)) are real-valued vectors describing the activation values
of the internal neurons and external input cells at time t , σ denotes the saturated-linear function applied component by
component, and A, B, and c⃗ are real-valued matrices.

Siegelmann and Sontag studied the computational complexity of ARNNs by considering them as language recognizers
over the space of non-empty finite words of bits {0, 1}+. For this purpose, they restricted their attention to ARNNs where
each input and output channelswere forced to carry only binary signals, and they proceeded to a rigid encoding of the binary
input signal and binary output answer to this signal via the existence of two input cells and two output cells (taking the role
of a data line and a validation line for each case). Following these conventions, any ARNN N could be associated to some
neural language L(N ) ⊆ {0, 1}+, called the language recognized by N , and defined as the set of all finite words of bits that
could be positively classified by N in some finite time of computation. The class of ARNNs was then shown disclose super-
Turing computational capabilities. More precisely, ARNNs turn out to admit unbounded power (in the sense of being capable
of recognizing all possible languages of {0, 1}+) in exponential time of computation. Andwhen restricted to polynomial time
of computation, ARNNs are computationally equivalent to polynomial time Turingmachines with polynomially long advice,
and thus recognize the complexity class of languages called P/poly [8].

Here, we provide a natural generalization of this situation to the context ofω-words. More precisely, we consider ARNNs
as language recognizers over the space of infinite words of bits {0, 1}ω . For this purpose, we suppose any ARNN N to be
provided with only a single input cell u as well as a single output cell y, both being forced to carry only binary signals. More
precisely, at each time step t ≥ 0, the two cells u and y admit activation values u(t) and y(t) belonging to {0, 1}. Then,
assuming the initial activation vector of the network to be ⃗x(0) = 0⃗, any infinite input stream

s = (u(t))t∈N = u(0)u(1)u(2) · · · ∈ {0, 1}ω

processed bit by bit induces via Eq. (2) a corresponding infinite output stream

os = (y(t))t∈N = y(0)y(1)y(2) · · · ∈ {0, 1}ω

also processed bit by bit. Afterω time steps, an infinite input stream swill then said to be accepted byN iff the corresponding
output stream os contains infinitelymany 1′s, or in other words, iff os ∈ F∞. This Büchi-like accepting condition corresponds
to the natural translation in the present context of the classical Büchi accepting condition for infinite word reading
machines [13,14]. It refers to the fact that an infinite input stream is considered to be meaningful for a given network iff
the corresponding output remains forever active. The set of all infinite words accepted by N will then be called the neural
language of N , and will be denoted by L(N ). Moreover, a language L ⊆ {0, 1}ω will said to be recognizable if there exists
some such ARNNN such that L(N ) = L. From this point onwards, any ARNN over infinite input streams satisfying the above
conditions will be referred to as a deterministic ω-ARNN.

According to the preceding definitions, any deterministic ω-ARNN N can naturally be identified with the function
fN : {0, 1}ω −→ {0, 1}ω defined by fN (s) = os, where os is the output generated by N when input s is received. One
then has by definition that s ∈ L(N ) iff os ∈ F∞ iff fN (s) ∈ F∞, implying that the neural language of N can thus be written
as

L(N ) = f −1N (F∞).

Moreover, the following result shows that the dynamics of deterministic ω-ARNNs impose strong restrictions on the
functional behaviors of such networks.

Lemma 1. Let N be some deterministic ω-ARNN. Then the corresponding function fN is Lipschitz.

Proof. First of all, the dynamics of N ensures that for any input s and corresponding output os, and for any k ≥ 0, the two
bits s(k) and os(k) are always generated simultaneously at time step k. Now, let s1, s2 ∈ {0, 1}ω , and let os1 = fN (s1) and
os2 = fN (s2). If s1 ≠ s2, themetric over {0, 1}ω ensures that d(s1, s2) = 2−n for some n ≥ 0. Now, the above argument shows
that the relation d(s1, s2) = 2−n implies d(os1 , os2) = d( fN (s1), fN (s2)) ≤ 2−n. Therefore d( fN (s1), fN (s2)) ≤ d(s1, s2).
If s1 = s2, then fN (s1) = fN (s2) since fN is a function. It follows that d( fN (s1), fN (s2)) = 0 = d(s1, s2), and thus
d( fN (s1), fN (s2)) ≤ d(s1, s2) in this case also. Therefore, fN is Lipschitz of modulus 1. �
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4. The expressive power of deterministic ω-ARNN

In this section, we provide a complete characterization of the expressive power of the class of deterministic ω-ARNNs.
More precisely, we prove that deterministic ω-ARNNs recognize precisely all Π0

2 -sets of {0, 1}ω , and no other ones. The
result is not so surprising. The fact that any neural language recognized by some deterministic ω-ARNN is a Π0

2 -set results
from the chosen Büchi-like accepting condition of the networks. Conversely, the fact that any Π0

2 -set can be recognized
by some ω-ARNN is more technical and results from the possibility of encoding every such subset into the real synaptic
weights of the networks. Therefore, the expressive power of deterministic analog neural nets turn out to be closely related
to the expressive power of any kind of deterministic Büchi X-automata, since the ω-languages recognized such machines
also all belong to Π0

2 [17,19]. In particular, deterministic ω-ARNNs admit a similar expressive power as deterministic Büchi
automata, 1-counter automata, k-counter automata, pushdown automata, Petri-nets, and Turing machines.

To begin with, we show that the dynamics and accepting conditions of deterministic ω-ARNNs ensure that every neural
language recognized by such a network is indeed a Π0

2 -set.

Proposition 1. Let N be some deterministic ω-ARNN. Then L(N ) ∈ Π0
2 .

Proof. First of all, recall that F∞ is a Π0
2 -set. Moreover, Lemma 1 shows that the function fN is Lipschitz, thus continuous.

Therefore L(N ) = f −1N (F∞) ∈ Π0
2 , [20–22]. �

Conversely, we now prove that anyΠ0
2 -set of {0, 1}

ω can be recognized by some deterministicω-ARNN. For this purpose,
we adopt an encoding approach as described in [8], butwe stay close to the classical topological definition ofΠ0

2 -sets instead
of considering them from the point of view of circuit theory, as for instance in [28,29]. More precisely, we show that the
belonging problem to any Π0

2 -set can be decided by some deterministic ω-ARNN containing a suitable real synaptic weight
which encodes the given set.

We first need to provide a suitable encoding of Π0
2 -sets of the Cantor space. Hence, consider a set X ⊆ {0, 1}ω such that

X ∈ Π0
2 . By definition,X can bewritten as a countable intersection of open sets, or equivalently, as a countable intersection of

countable unions of basic open sets, i.e., X =


i≥0


j≥0 p(i,j){0, 1}ω , where each p(i,j) ∈ {0, 1}+. The set X is thus completely
determined by the countable sequence of finite prefixes (p(i,j))i,j≥0. Hence, in order to encode the subset X into some real
number, it suffices to encode the corresponding sequence of prefixes (p(i,j))i,j≥0.

For this purpose, each finite prefix p(i,j) ∈ {0, 1}+ is first encoded by some finite sequence of natural numbers pp(i,j)q ∈
{0, 2, 4}+ obtained by first adding a 4 in front of the sequence p(i,j) and then doubling each of its bit, i.e.,

pp(i,j)q(0) = 4 and pp(i,j)q(k+ 1) = 2 · p(i,j)(k), for all k < |p(i,j)|.

For instance, p010011q = 4020022. Now, let us consider some primitive recursive bijection fromN2 ontoN, like for instance
b : N × N −→ N given by b(i, j) = 1

2 · (i + j) · (i + j + 1) + j. Then, the sequence of prefixes (p(i,j))i,j≥0 can be encoded
by the infinite sequence of integers p(p(i,j))i,j≥0q ∈ {0, 2, 4}ω defined by the successive concatenation of all finite sequences
ppb−1(k)q, for all k ≥ 0, namely

p(p(i,j))i,j≥0q = ppb−1(0)qppb−1(1)qppb−1(2)q · · · .

Using this first encoding, each finite block ppb−1(k)q can now be unambiguously re-encoded by the rational number
r(pb−1(k)) ∈ [0, 1] given by the interpretation of the sequence in base 5, namely

r(pb−1(k)) =
|ppb−1(k)q|−1

i=0

ppb−1(k)q(i)
5i+1

.

Finally, the set X itself can also be unambiguously re-encoded by the real number r(X) ∈ [0, 1] given by the interpretation
of the infinite sequence p(p(i,j))i,j≥0q in base 5, namely

r(X) =

∞
i=0

p(p(i,j))i,j≥0q(i)
5i+1

.

Now, in order to prove our result, a preliminary lemma is first needed. More precisely, a direct generalization of
[8, Lemma 3.2] shows that, for any Π0

2 -set, there exists a corresponding ARNN which, given some suitable encoding of the
integer k as input, is able to retrieve the rational encoding r(pb−1(k)) of the (k + 1)-th block of the sequence p(p(i,j))i,j≥0q
as output. Note that the following lemma states the existence of a general ARNN as described in [8], and not of some
deterministic ω-ARNN.

Lemma 2. Let X ⊆ {0, 1}ω be a Π0
2 -set with corresponding sequence of prefixes (p(i,j))i,j≥0. Then there exists an ARNN Nr(X)

containing one input cell, one output cell, and a synaptic real weight equal to r(X), and such that, starting from the zero initial
state, and given the input signal (1− 2−k)0ω produces an output of the form 0∗r(pb−1(k))0

ω .
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Proof. Weonly give a sketch of the proof, since it is a direct generalization of [8, Lemma3.2]. The idea is that the network first
stores the integer k in memory. Then, the network decodes step by step the infinite sequence p(p(i,j))i,j≥0q from its synaptic
weight r(X) until reaching the (k + 1)-th letter 4 of that sequence. After that, the network knows that it has reached the
suitable block ppb−1(k)q of the sequence p(p(i,j))i,j≥0q, and proceeds to a re-encoding of that block into r(pb−1(k)). Once finished,
the obtained rational number r(pb−1(k)) is finally provided as output. The technicalities of the proof reside in showing that
the decoding and encoding procedures are indeed performable by such an ARNN. This property results from the fact that
these procedures are recursive, and any recursive function can be simulated by some rational-weighted network, as shown
in [6], and thus a fortiori by some ARNN also. �

It follows from the preceding result that any Π0
2 -set can indeed be recognized by some deterministic ω-ARNN, as shown

by the following result.
Proposition 2. Let X ⊆ {0, 1}ω such that X ∈ Π0

2 . Then there exists a deterministic ω-ARNN NX such that L(NX ) = X.

Proof. The set X ∈ Π0
2 can be written as X =


i≥0


j≥0 p(i,j){0, 1}ω , where each p(i,j) ∈ {0, 1}+. Hence, a given infinite
input s ∈ {0, 1}ω belongs to X iff for all index i ≥ 0 there exists an index j ≥ 0 such that s ∈ p(i,j){0, 1}ω , or equivalently, iff
for all i ≥ 0 there exists j ≥ 0 such that p(i,j) ( s. Consequently, the problem of determining whether some input s provided
bit by bit belongs to X or not can be decided in infinite time by the procedure described by Algorithm 1, which, after ω
computation steps, would have returned infinitely many 1’s iff s ∈


i≥0


j≥0 p(i,j){0, 1}ω = X . In this procedure, observe

Algorithm 1

1: Input s is provided bit by bit at successive time steps
2: i← 0, j← 0
3: loop
4: k← b(i, j)
5: Submit input (1− 2−k) to Nr(X) // where Nr(X) is given by Lemma 2
6: Get output r(pb−1(k)) from Nr(X)

7: pb−1(k) ← decode(r(pb−1(k)))
8: if pb−1(k) ( s then // in this case, s ∈ p(i,j){0, 1}ω

9: return 1 // hence s ∈


p≥0 p(i,p){0, 1}ω

10: i← i+ 1, j← 0 // begin to test if s ∈


p≥0 p(i+1,p){0, 1}ω

11: else // in this case, s ∉ p(i,j){0, 1}ω
12: return 0 // hence s ∉


p≤j p(i,p){0, 1}ω

13: i← i, j← j+ 1 // begin to test if s ∈


p≤j+1 p(i,p){0, 1}ω
14: end if
15: end loop

that the test of line 7 can always be performed in finite time, since each sequence pb−1(k) is finite. Now, note that Algorithm 1
actually consists of a succession of recursive computational steps as well as extrarecursive calls to the ARNN Nr(X) provided
by Lemma 2. Hence, Algorithm 1 can be performed by a composition of an infinite Turing machine [30] and an ARNN Nr(X).
Yet since the behaviors of any Turing machines can indeed be simulated by some ARNN [6], it follows that the procedure
described by Algorithm 1 can indeed by simulated by some deterministic ω-ARNN NX which, when receiving input s bit by
bit, outputs infinitely many 1’s iff the procedure returns infinitely many 1’s, or equivalently, iff s ∈ X . Yet according to the
accepting conditions of NX , this is equivalent to saying that s ∈ L(NX ) iff s ∈ X . Therefore L(NX ) = X . �

Now, Propositions 1 and 2 permit to deduce the following characterization of the expressive power of deterministic
ω-ARNNs:
Theorem 1. Let X ⊆ {0, 1}ω . Then X is recognizable by some deterministic ω-ARNN iff X ∈ Π0

2 .
Theorem 1 together with the results in [17] show that the ω-languages recognized by deterministic ω-ARNNs and

deterministic Büchi X-automata all belong to the same Borel class Π0
2 . In this sense, the expressive power of deterministic

ω-ARNNs is topologically comparable to the expressive powers of deterministic BüchiX-automata. However, note that even
if their expressive power turn out to be similar, the class deterministic ω-ARNNs recognizes strictly more ω-languages
than any other class of deterministic Büchi X-automata. Indeed, on the one side, any X-automaton is a finite object, and
hence can be encoded by some integer. It follows that any class of deterministic Büchi X-automata contains only countably
many representatives, andmight therefore recognize only countablymanyω-languages. Yet on the other side, deterministic
ω-ARNNs are able to recognize the whole class of Π0

2 -sets, namely 2ℵ0 ω-languages, which is uncountably many more than
any other class of deterministic Büchi X-automata. In this precise sense, the expressive power of deterministic ω-ARNNs
is topologically comparable to but also strictly richer than the expressive powers of any other class of deterministic Büchi
X-automata. In particular, if LTM and LNN respectively denote the classes ofω-languages recognized by Büchi deterministic
Turing machines and deterministic ω-ARNNs, the following result holds.
Theorem 2. LTM ( LNN = Π0

2 .
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5. The expressive power of non-deterministic ω-ARNN

Siegelmann and Sontag introduced the concept of a non-deterministic processor net as a modification of a deterministic
one, obtained by incorporating a guess input channel in addition to the classical input channel [6]. The concept was
introduced in the context of rational-weighted networks, but can naturally be extended to real-weighted networks
(i.e., ARNNs). And in both rational- and real-weighted cases, it can be observed that such particular concept of non-
determinism does actually not increase the computational power of the corresponding networks. Indeed, in the rational-
weighted case, deterministic and non-deterministic neural networks were shown to be computationally equivalent to
deterministic and non-deterministic Turingmachines, respectively [6]. The classical equivalence between deterministic and
non-deterministic Turingmachines [31] then implies the existence of a similar equivalence between deterministic and non-
deterministic networks, showing that non-determinismdoes not bring any extra computational power. In the real-weighted
case, since deterministic neural networks already disclose unbounded power, it directly follows that their non-deterministic
counterparts cannot be more powerful [8].

Here, we consider a natural extension of this concept of non-determinism to our particular case of analog networks
over infinite input streams, and subsequently analyze the expressive power of such networks. More precisely, we provide a
definition of a non-deterministic ω-ARNN and show that in our context, as opposed to the case of finite input streams, the
translation from the determinism to non-determinism induces an extensive complexification of the expressive power of the
corresponding networks fromΠ0

2 toΣ1
1 -sets. This topological gap shows the significance of the concept of non-determinism

for ω-ARNNs. It follows that non-deterministic ω-ARNNs turn out to be extensively more expressive than any other kind of
non-deterministic X-automata equipped with Büchi or Muller accepting conditions—since all ω-languages recognized such
machines belong to the class Σ1

1 (see [17–19]) and it holds that Σ1
1 ( Σ1

1 [21]. In particular, non-deterministic ω-ARNNs
happen to be strictly more expressive than non-deterministic Büchi or Muller classical automata, 1-counter automata,
k-counter automata, pushdown automata, and Turing machines.

Now, in order to sate the expected result, the following definition first need to be introduced. A non-deterministicω-ARNN
Ñ consists of an ARNN provided with an input cell u1, a second input cell u2 playing the role of a guess cell, and an output
cell y, all of them being forced to carry only binary signals. Hence, at each time step t ≥ 0, the three cells u1, u2, and y admit
activation values u1(t), u2(t), and y(t) belonging to {0, 1}. Then, assuming the initial activation vector of the network to be
⃗x(0) = 0⃗, any input stream

s = (u1(t))t∈N = u1(0)u1(1)u1(2) · · · ∈ {0, 1}ω

and guess stream
g = (u2(t))t∈N = u2(0)u2(1)u2(2) · · · ∈ {0, 1}ω

processed bit by bit induce via Eq. (2) a corresponding infinite output stream
os,g = (y(t))t∈N = y(0)y(1)y(2) · · · ∈ {0, 1}ω

also processed bit by bit. Now, an input stream swill said to be accepted by Ñ iff there exists a guess stream g such that the
corresponding output stream os,g contains infinitely many 1′s. This accepting condition corresponds to the natural Büchi-
like translation in the present infinite input context of the accepting condition for non-deterministic processor nets on finite
inputs stated by Siegelmann and Sontag [6]. Finally, as usual, the set of all infinite words accepted by Ñ will be called the
neural ω-language of Ñ , and will be denoted by L(Ñ ).

According to the preceding definitions, any non-deterministic ω-ARNN Ñ can naturally be identified with the function
fÑ : {0, 1}

ω
× {0, 1}ω −→ {0, 1}ω defined by fÑ (s, g) = os,g , where os,g is the output generated by Ñ when input s and

guess g are received. By definition of the accepting condition of Ñ , the neural ω-language of Ñ can thus be written as

L(Ñ ) =

s : ∃g (s, g) ∈ f −1

Ñ
(F∞)


= π1


f −1
Ñ

(F∞)


.

Once again, the dynamics of non-deterministic ω-ARNNs impose strong restrictions on the functional behaviors of such
networks.
Lemma 3. Let Ñ be some non-deterministic ω-ARNN. Then the corresponding function fÑ is Lipschitz.

Proof. First of all, the dynamics of Ñ ensures that for any input s, any guess g , any corresponding output os,g , and any
k ≥ 0, the three bits s(k), g(k), and os(k) are always generated simultaneously at time step k. Now, let (s1, g1), (s2, g2) ∈
{0, 1}ω ×{0, 1}ω , and let os1,g1 = fÑ (s1, g1) and os2,g2 = fÑ (s2, g2). If s1 ≠ s2 or g1 ≠ g2, the metric d′ over {0, 1}ω ×{0, 1}ω

ensures that one has d′((s1, g1), (s2, g2)) = 1
2 · d(s1, s2)+

1
2 · d(g1, g2) =

1
2 · 2

−m
+

1
2 · 2

−n for some m, n ∈ N ∪ {∞} such
that either m or n or both are distinct from∞. Now, suppose without loss of generality that m ≤ n and m < ∞. It follows
that s1(0) · · · s1(m− 1) = s2(0) · · · s2(m− 1), and g1(0) · · · g1(m− 1) = g2(0) · · · g2(m− 1). Yet by the above argument, it
follows that os1,g1(0) · · · os1,g1(m− 1) = os2,g2(0) · · · os2,g2(m− 1), and thus d(os1,g1 , os2,g2) ≤ 2−m. Therefore,

d

fÑ (s1, g1), fÑ (s2, g2)


= d(os1,g1 , os2,g2) ≤ 2−m

≤ 2 ·

1
2
· 2−m +

1
2
· 2−n


= 2 · d′((s1, g1), (s2, g2)),



30 J. Cabessa, A.E.P. Villa / Theoretical Computer Science 436 (2012) 23–34

showing that fÑ is Lipschitz of modulus 2. If s1 = s2 and g1 = g2, then fÑ (s1, g1) = fÑ (s2, g2) since fÑ is a function. Thus
d( fÑ (s1, g1), fÑ (s2, g2)) = 0 = d′((s1, g1), (s2, g2)). Therefore, in all cases, fN is Lipschitz of modulus 2. �

We now provide a complete characterization of the expressive power of the class of non-deterministic ω-ARNNs. More
precisely, we prove that the class of ω-languages recognized by non-deterministic ω-ARNNs corresponds precisely to the
class of analytic subsets of {0, 1}ω . First of all, we show that any neural ω-language recognized by some non-deterministic
ω-ARNN is an analytic set.
Proposition 3. Let Ñ be a non-deterministic ω-ARNN. Then L(Ñ ) ∈ Σ1

1 .

Proof. As alreadymentioned, one has F∞ ∈ Π0
2 . Moreover, Lemma 3 shows that the function fÑ : {0, 1}×{0, 1} −→ {0, 1}

is Lipschitz, thus continuous. Hence, f −1
Ñ

(F∞) ∈ Π0
2 . Therefore, L(Ñ ) = π1(f −1Ñ

(F∞)) ∈ Σ1
1 , see [20–22]. �

Conversely, we now prove that any analytic subset of {0, 1}ω can be recognized by some non-deterministicω-ARNN.We
proceed as in Section 4. For this purpose, let X ⊆ {0, 1}ω such that X ∈ Σ1

1 . Then there exists a set Y ⊆ {0, 1}ω × {0, 1}ω

such that Y ∈ Π0
2 and X = π1(Y ). Yet according to the product topology on {0, 1}ω × {0, 1}ω , the set Y can be written as

Y =


i≥0


j≥0(p(i,j){0, 1}ω × q(i,j){0, 1}ω), where each p(i,j), q(i,j) ∈ {0, 1}+. Consequently, the set Y , and hence also the set
X , are thus completely determined by the countable sequence of pairs of finite prefixes ((p(i,j), q(i,j)))i,j≥0. Hence, in order to
encode the subset X into some real number, it suffices to encode the corresponding sequence of prefixes ((p(i,j), q(i,j)))i,j≥0.

To beginwith, each pair of finite prefixes (p(i,j), q(i,j)) ∈ {0, 1}+×{0, 1}+ is first encoded by the finite sequence of natural
numbers p(p(i,j), q(i,j))q ∈ {0, 2, 4, 6}+ defined by

p(p(i,j), q(i,j))q = 6pp(i,j)q4pq(i,j)q,

where pp(i,j)q and pq(i,j)q are the encodings of finite prefixes defined in Section 4. For instance, p(01, 110)q = 6024220. Now,
the sequence of pairs of prefixes ((p(i,j), q(i,j)))i,j≥0 can be encoded by the infinite sequence of integers p((p(i,j), q(i,j)))i,j≥0q ∈
{0, 2, 4, 6}ω defined by the successive concatenation of all finite sequences p(pb−1(k), qb−1(k))q, for all k ≥ 0, namely

p((p(i,j), q(i,j)))i,j≥0q = p(pb−1(0), qb−1(0))qp(pb−1(1), qb−1(1))qp(pb−1(2), qb−1(2))q · · · .
Using this encoding, each finite block p(pb−1(k), qb−1(k))q can now be unambiguously re-encoded by the rational number
r((pb−1(k), qb−1(k))) ∈ [0, 1] given by the interpretation of the sequence p(pb−1(k), qb−1(k))q in base 7, namely

r((pb−1(k), qb−1(k))) =
|p(pb−1(k),qb−1(k))q|−1

i=0

p(pb−1(k), qb−1(k))q(i)
7i+1

.

Finally, the set X itself can also be unambiguously re-encoded by the real number r(X) ∈ [0, 1] given by the interpretation
in base 7 of the infinite sequence p(p(i,j), q(i,j)))i,j≥0q, namely

r(X) =

∞
i=0

p((p(i,j), q(i,j)))i,j≥0q(i)
7i+1

.

Now, a generalization of Lemma 2 in this precise context can indeed be obtained.
Lemma 4. Let X ⊆ {0, 1}ω be a Σ1

1 -set with corresponding sequence of pair of prefixes ((p(i,j), q(i,j)))i,j≥0. Then there exists an
ARNN Ñr(X) containing one input cell, one output cell, and a synaptic real weight equal to r(X), and such that, starting from the
zero initial state, and given the input signal (1− 2−k)0ω produces an output of the form 0∗r((pb−1(k), qb−1(k)))0

ω .
Proof. A straightforward generalization of the proof of Lemma 2. �

The next result now shows that any Σ1
1 -set of {0, 1}

ω can indeed be recognized by some non-deterministic ω-ARNN.

Proposition 4. Let X ⊆ {0, 1}ω such that X ∈ Σ1
1 . Then there exists a non-deterministic ω-ARNN ÑX such that L(ÑX ) = X.

Proof. The set X ∈ Σ1
1 can be written as X = π1(Y ), for some Y ∈ Π0

2 , and the set Y can itself be written as
Y =


i≥0


j≥0(p(i,j){0, 1}ω × q(i,j){0, 1}ω) for some p(i,j), q(i,j) ∈ {0, 1}+. Hence, a given infinite input s ∈ {0, 1}ω belongs
to X iff there exists a infinite guess g ∈ {0, 1}ω such that, for all index i ≥ 0, there exists an index j ≥ 0 satisfying (s, g) ∈
p(i,j){0, 1}ω × q(i,j){0, 1}ω . Equivalently, s ∈ X iff there exists g ∈ {0, 1}ω such that, for all i ≥ 0, there exists j ≥ 0 satisfying
both p(i,j) ( s and q(i,j) ( g . Thence, as for the deterministic case, the problem of determining whether some input-guess
(s, g)provided bit by bit belongs to Y or not can be decided in infinite time by the procedure described byAlgorithm2,which,
after ω computation steps, would have returned infinitely many 1’s iff (s, g) ∈


i≥0


j≥0(p(i,j){0, 1}ω × q(i,j){0, 1}ω) = Y .
Moreover, as for the deterministic case again, Algorithm 2 actually consists of a succession of recursive computational steps
as well as extrarecursive calls to the ARNN Ñr(X) provided by Lemma 4. Hence, the procedure can indeed by simulated
by some ARNN ÑX provided with two input cells as well as one output cell, and such that, when receiving the infinite
input stream (s, g) bit by bit, the network ÑX outputs infinitely many 1’s iff the procedure returns infinitely many 1’s, or
equivalently, iff (s, g) ∈ Y . Hence, the function fÑX

naturally associated with ÑX satisfies f −1
ÑX

(F∞) = Y . Finally, if we further

consider that ÑX is equipped with the accepting conditions of non-deterministic ω-ARNN, then the ω-language of ÑX is
precisely given by L(ÑX ) = π1( f −1ÑX

(F∞)) = π1(Y ) = X . �
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Algorithm 2

1: Input s and guess g are provided bit by bit at successive time steps
2: i← 0, j← 0
3: loop
4: k← b(i, j)
5: Submit input (1− 2−k) to Ñr(X) // where Ñr(X) is given by Lemma 4
6: Get output r((pb−1(k), qb−1(k))) from Ñr(X)

7: (pb−1(k), qb−1(k))← decode(r((pb−1(k), qb−1(k))))
8: if pb−1(k) ( s and qb−1(k) ( g then
9: return 1

10: i← i+ 1, j← 0
11: else
12: return 0
13: i← i, j← j+ 1
14: end if
15: end loop

Now, Propositions 1 and 2 induce the following characterization of the expressive power of non-deterministicω-ARNNs:

Theorem 3. Let X ⊆ {0, 1}ω . Then X is recognizable by some non-deterministic ω-ARNN iff X ∈ Σ1
1 .

Consequently, Theorem 3 ensures that non-deterministic ω-ARNNs turn out to be strictly more expressive than any
other kind of X-automata equipped with a Büchi or Muller acceptance condition (since the ω-languages recognized by
such machines strictly belong to the class Σ1

1 , and Σ1
1 ( Σ1

1 [19]). In particular, we state the result for the case of non-
deterministic Turing machines, for they correspond to the most powerful abstract devices on infinite words.

Theorem 4. Non-deterministic ω-ARNNs are strictly more expressive than non-deterministic Büchi or Muller Turing machines.

Proof. By Theorem 3 and [19], the classes ofω-languages recognized by non-deterministicω-ARNNs and non-deterministic
Büchi or Muller Turing machines correspond respectively to the classes of Σ1

1 -sets and Σ1
1 -sets. But it holds that Σ1

1 ) Σ1
1 ,

which concludes the proof [21]. �

Finally, Theorems1 and3 showa significant topological complexification between the expressive powers of deterministic
and non-deterministic ω-ARNNs from Π0

2 -sets to Σ1
1 -sets. It is worth noting that a similar topological gap also holds

for several Büchi or Muller X-automata. For instance, the translation from determinism to non-determinism increases
the expressive power of classical Büchi automata from Π0

2 -sets to ∆0
3-sets [13,14]. Moreover, the expressive power of

deterministic and non-deterministic Büchi 1-counter automata, k-counter automata, pushdown automata, and Turing
machines turns out to be increased from Π0

2 -sets to Σ1
1 -sets. The expressive power of all of their Muller counterparts also

turns out to be increased from ∆0
3-sets to Σ1

1 -sets [17–19]. However, such a complexification does not hold for all kind of
usual abstract machines. For instance, Muller automata, Rabin automata, and Streett automata are shown to have a same
expressive power of ∆0

3 in their deterministic and non-deterministic versions [13,14].

6. Extension to ω-ARNNs equipped with any kind of Borel Accepting Conditions

In the preceding sections, we have provided a complete characterization of the expressive power of ω-ARNNs equipped
with some simple yet natural Büchi-like accepting condition. More precisely, the accepting condition was represented
by the Π0

2 accepting set F∞, and the neural ω-languages of any deterministic and non-deterministic ω-ARNNs N and Ñ

were respectively given by L(N ) = f −1N (F∞) and L(Ñ ) = π1(f −1Ñ
(F∞)). Now, a natural extension of this work would be

to investigate the expressive power of ω-ARNNs equipped with more topologically complex accepting conditions. In this
context, we prove that a topological upper bound on the expressive power of ω-ARNNs equipped with any kind of Borel
accepting condition can easily be obtained.

Towards this purpose, for any Borel set F ⊆ {0, 1}ω , we say that N is a deterministic ω-ARNN with accepting condition
F if the neural ω-language of N is given by L(N ) = f −1N (F). We say that Ñ is a non-deterministic ω-ARNN with accepting
condition F if the neural ω-language of Ñ is given by L(Ñ ) = π1(f −1Ñ

(F)).
Now, we first prove that the expressive power of deterministic ω-ARNN is potentially increased by the consideration of

more topologically complex Borel accepting conditions.

Proposition 5. LetN be some deterministicω-ARNNwith accepting condition F ∈ Σ0
α , for some 0 < α < ω1. Then L(N ) ∈ Σ0

α .
The same result applies for F ∈ Π0

α , and F ∈ ∆0
α .

Proof. One has L(N ) = f −1N (F), and Lemma 1 shows that fN is Lipschitz, thus continuous. Yet since F ∈ Σ0
α , it follows that

L(N ) = f −1N (F) ∈ Σ0
α , see [20–22]. �
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However, in the non-deterministic case, the consideration of more topologically complex Borel accepting conditions
would absolutely not increase the expressive power of the corresponding non-deterministic ω-ARNNs above the analytic
level.

Proposition 6. Let Ñ be some non-deterministic ω-ARNN with accepting condition F ∈ Σ0
α ∪Π0

α , for some 0 < α < ω1. Then
L(Ñ ) ∈ Σ1

1 .

Proof. One has L(Ñ ) = π1( f −1Ñ
(F)), and Lemma 3 shows that fÑ is Lipschitz, thus continuous. Yet since F ∈ Σ0

α ∪ Π0
α , it

follows that f −1
Ñ

(F) ∈ Σ0
α∪Π0

α . Hence, L(Ñ ) = π1( f −1Ñ
(F)) consists of a projection of a Borel set of the space {0, 1}ω×{0, 1}ω ,

and therefore L(Ñ ) ∈ Σ1
1 , see [20–22]. �

Proposition 5 shows that the topological complexity of the expressive power of deterministic ω-ARNNs is bounded
by the topological complexity of their accepting conditions. Proposition 6 shows that, for any Borel accepting condition,
the expressive power of the corresponding class of non-deterministic ω-ARNNs stays confined into the analytic level.
Therefore, increasing the topological complexity of the accepting condition potentially reduces the topological gap between
the corresponding classes of deterministic and non-deterministic ω-networks. Moreover, note that in both deterministic
and non-deterministic cases, the question of whether a given accepting condition F ∈ Σ0

α (resp. F ∈ Π0
α ) would suffice to

exhaust the whole classes of Σ0
α (resp. Π0

α ) and Σ1
1 -sets (as for the condition F∞) cannot be solved by simply considering

the Borel rank of the condition.
Finally, as alreadymentioned, Siegelmann and Sontag proved that the class of ARNNs over finitewords admits unbounded

computational power, in the sense of being capable of recognizing all possible languages of {0, 1}+ [8]. In our case,
Propositions 5 and 6 directly imply that this result does actually not extend in the present infinite word context, since
the topological complexity of any class of deterministic or non-deterministic ω-ARNNs over some given Borel accepting
condition is always bounded.

7. Conclusion

We introduced a concept of deterministic and non-deterministic analog recurrent neural networks on infinitewords, and
proved that the ω-languages recognized by such networks exhaust precisely to the whole classes of Π0

2 -sets and Σ1
1 -sets.

Consequently, the expressive power of deterministic ω-ARNNs turns out to be topologically comparable to the expressive
power of deterministic Büchi abstract machines, whereas the expressive power of non-deterministic ω-ARNNs turns out to
be significantly more important than the expressive power of any non-deterministic Büchi or Muller abstract machines. Yet
it is worth noting once again that, in the deterministic case, even if their underlying ω-languages are bounded by the same
Borel rank, the class of ω-ARNNs still recognizes uncountably manymore ω-languages than any other class of deterministic
Büchi abstract machines. Besides, we also proved that a Borel upper bound on the expressive powers of deterministic and
non-deterministic ω-ARNNs equipped with any kind of Borel accepting conditions could also be obtained. Consequently, as
frequently observed for several Büchi or Muller abstract machines, we noticed the existence of a topological gap between
the expressive powers of the deterministic and non-deterministic versions of our computational model.

These results significantly differ from those of occurring in classical finite word context, where deterministic and non-
deterministic analog networks were shown to admit the same computational power, independently of the nature of their
synaptic weights (may they be rational or reals) [8,6].

Furthermore, apart from the Borel hierarchy, the Wadge hierarchy1 also provides a relevant tool for the study of the
topological complexity of ω-languages [32]. Indeed, the Wadge hierarchy provides an extensive refinement of the Borel
hierarchy, and hence permits a closer analysis of the topological complexity of classes of ω-languages. In this context,
Finkel surprisingly proved that the Wadge hierarchy – and hence also the Borel hierarchy – of ω-languages accepted by
non-deterministic real time 1-counter Büchi automata turns out to be the same as the Wadge hierarchy of ω-languages
accepted bynon-deterministic Büchi orMuller Turingmachines (i.e., the classΣ1

1 ) [18]. Consequently, theWadgehierarchies
– hence also the Borel hierarchies – of ω-languages accepted by all kind X-automata whose expressive powers are situated
between real time 1-counter Büchi automata and Muller Turing machines are the same.

In our case, Theorems 1 and 3 provide a direct characterization of the Borel and Wadge hierarchies of ω-languages
recognized by deterministic and non-deterministic ω-ARNNs, namely:

Theorem 5. • The Borel and Wadge hierarchies of ω-languages recognized by deterministic ω-ARNNs correspond respectively
to the Borel and Wadge hierarchies of the class of all Π0

2 -sets.
• The Borel and Wadge hierarchies of ω-languages recognized by non-deterministic ω-ARNNs correspond respectively to the

Borel and Wadge hierarchies of the class of all Σ1
1 -sets.

1 TheWadge hierarchy of a given class ofω-languages corresponds to the collection of allω-languages of this class ordered by theWadge reduction≤W .
The Wadge reduction≤W is defined by X ≤W Y iff there exists f continuous such that X = f −1(Y ).
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The preceding theorem together with the results presented by Finkel [18] permit to compare the Borel and Wadge
hierarchies of ω-ARNNs and X-automata. On the one hand, the Borel hierarchies of deterministic ω-ARNNs and Büchi
X-automata coincide, and the Borel hierarchy of non-deterministicω-ARNNs strictly contains the Borel hierarchy of any kind
of non-deterministic X-automata. On the other hand, the Wadge hierarchies of both deterministic and non-deterministic
ω-ARNNs strictly contain the Wadge hierarchies of any kind of deterministic and non-deterministic X-automata. Hence,
in the deterministic context, the Wadge complexity reveals a refined distinction between the expressive powers of
ω-ARNNs and Büchi X-automata that cannot be captured from the point of view of the Borel complexity. In the
non-deterministic context, both Borel and Wadge complexities show that ω-ARNNs are strictly more expressive that any
X-automata. Therefore, the refined Wadge analysis actually shows that the ω-ARNNs are strictly more expressive than any
other kind of X-automaton, both in their deterministic and non-deterministic versions. This difference of expressivity is
however clearly more significant in the non-deterministic than in the deterministic context.

Besides, thiswork canbe extended in several directions. For instance,we think that the study of analog neuralω-networks
equipped with more complex or more biologically oriented accepting condition would be of specific interest. Moreover,
Balcázar et al. described a hierarchical classification of analog networks according to the Kolmogorov complexity of their
real-weights [33]. This classification can directly be translated in the present infinite word context, for it is completely
independent of the accepting condition of the networks. Hence, a natural question would be to investigate the possible
links between the Kolmogorov and the topological complexity of analog ω-networks.

Moreover, a natural extension of this work would be to pursue the study the computational power of analog recurrent
neural networks in the context of interactive computation [34]. Indeed, van Leeuwen andWiedermann argued that classical
computation ‘‘no longer fully corresponds to the current notion of computing in modern systems’’, and proposed an
interactive infinite computational framework that turn out to be relevant for the modeling of the behavior of bio-inspired
complex information processing systems [35,36].

Finally, the comparison between diverse bio-inspired and artificial models of computation intends to capture the
fundamental distinctions and similarities that exist between the processes of transfer of information in biological systems
on the one side and in artificial devices on the other. We believe that this theoretical comparative approach to neural
computability might bring further insight into the key issue of information processing in the brain, and might contribute
ultimately to provide a better understanding of the intrinsic nature of biological intelligence. The present paper hopes to
make a step forward in this direction.
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