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Abstract

A large number of RNA-sequencing studies set out to predict mutations, splice junctions or fusion RNAs. We

propose a method, CRAC, that integrates genomic locations and local coverage to enable such predictions to be

made directly from RNA-seq read analysis. A k-mer profiling approach detects candidate mutations, indels and

splice or chimeric junctions in each single read. CRAC increases precision compared with existing tools, reaching

99:5% for splice junctions, without losing sensitivity. Importantly, CRAC predictions improve with read length. In

cancer libraries, CRAC recovered 74% of validated fusion RNAs and predicted novel recurrent chimeric junctions.

CRAC is available at http://crac.gforge.inria.fr.

Rationale
Understanding the molecular processes responsible for

normal development or tumorigenesis necessitates both

identifying functionally important mutations and explor-

ing the transcriptomic diversity of various tissues. RNA

sequencing (RNA-seq) provides genome-scale access to

the RNA complement of a cell with unprecedented

depth, and has therefore proven useful in unraveling the

complexity of transcriptomes [1,2]. The analyses of

RNA-seq reads aim at detecting a variety of targets:

from transcribed exons and classical splice junctions with

canonical splice sites, to alternatively spliced RNAs, RNAs

with non-standard splice sites, read-through and even

non-colinear chimeric transcripts [3]. Moreover, RNA-seq

also gives access to those somatic mutations and genetic

polymorphisms that are transcribed. Chimeric RNAs

result from the transcription of genes fused together by

chromosomal rearrangements [4], especially in cancer [5],

and they can also be induced by trans-splicing between

mature messenger RNAs (mRNAs) [6]. RNA-seq can also

capture these complex, non-colinear transcripts, whose

molecular importance is still poorly assessed and which

may provide new diagnostic or therapeutic targets [7,8].

As next generation sequencing (NGS) improves and

becomes cheaper, bioinformatic analyses become more

critical and time consuming. They still follow the same

paradigm as in the first days of NGS technologies: a multi-

ple step workflow - mapping, coverage computation, and

inference - where each step is heuristic, concerned with

only a part of the necessary information, and is optimized

independently from the others. Consequently analyses suf-

fer from the drawbacks inherent to this paradigm: (a) per-

vasive erroneous information, (b) lack of integration, and

(c) information loss, which induces re-computation at sub-

sequent steps and prevents cross-verification. An example

of the lack of integration is that the mapping step cannot

use coverage information, which prevents it from distin-

guishing biological mutations from sequencing errors

early in the analysis.

Here, we design a novel and integrated strategy to ana-

lyze reads when a reference genome is available. Our

approach extracts information solely from the genome

and read sequences, and is independent of any annota-

tion; we implemented it in a program named CRAC. The

rationale behind it is that an integrated analysis avoids re-

computation, minimizes false inferences, and provides

precise information on the biological events carried by a

read. A peculiarity of CRAC is that it can deliver compu-

tational predictions for point mutations, indels, sequence

errors, normal and chimeric splice junctions, in a single

run. CRAC is compared with state-of-the-art tools for

mapping (BWA, SOAP2, Bowtie, and GASSST) [9-13],

and both normal (GSNAP, TopHat, and MapSplice)
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[3,14,15] and chimeric (TopHat-fusion) [16] splice junc-

tion predictions. The results show the relevance of the

approach in terms of efficiency, sensitivity, and precision

(which is also termed specificity in the literature). We

also provide true assessments of the sensitivity of each

method by analyzing complex simulated data.

Availability: CRAC is distributed under the GPL-com-

pliant CeCILL-V2 license and is available as source code

archive or a ready-to-install Linux package from the

CRAC project website [17] or the ATGC bioinformatics

platform [18]. It includes two programs: crac-index to

generate the index of the genome, and crac for analyz-

ing the reads.

Algorithm
Overview

CRAC is a method for analyzing reads when a reference

genome is available, although some procedures (for

example, the support computation) can be used in other

contexts as well. CRAC analysis is solely based on the

read collection and on the reference genome, and is

thus completely independent of annotations. CRAC dis-

regards the sequence quality information of reads. Here,

analyzing reads means detecting diverse biological

events (mutations, splice junctions, and chimeric RNAs)

and sequencing errors from a RNA-seq read collection.

CRAC analysis is based on two basic properties: P1

and P2.

P1: For a given genome size, a sequence of a specific

length will match on average to a unique genomic posi-

tion with high probability. This length, denoted k, can

be computed and optimized [19]. Thus, in a read any

k-mer (a k-long substring) can be used as a witness of

the possible read matching locations in the genome. A

k-mer may still have a random match to the reference

genome. However, in average over all k-mers, the prob-

ability of getting a false location (FL) is approximately

10−4 with k = 22 for the human genome size [19].

P2: As reads are sequences randomly sampled from bio-

logical molecules, several reads usually overlap a range of

positions from the same molecule. Hence, a sequencing

error that occurs in a read should not affect the other

reads covering the same range of positions. In contrast, a

biological variation affecting the molecule should be visible

in many reads overlapping that position.

CRAC processes each read in turn. It considers the

k-mers starting at any position in the read (that is, m -

k + 1 possible k-mers). It computes two distinct k-mer

profiles: the location profile and the support profile.

• The location profile records for each k-mer its exact

matching locations on the genome and their number.

• The support profile registers for each k-mer its

support, which we define as the number of reads

sharing this k-mer (that is, the k-mer sequence

matches exactly a k-mer of another read). The sup-

port value has a minimum value of one since the

k-mer exists in the current read.

CRAC’s strategy is to analyze these two profiles jointly

to detect multiple events and predict sequencing errors in

a single analysis, as well as potential genetic variations,

splice junctions, or chimeras (Additional file 1). The geno-

mic locations of a k-mer are computed using a com-

pressed index of the reference genome, such as a

compressed Burrows-Wheeler transform [20], while the

support of a k-mer is obtained on-the-fly by interrogating

a specialized read index, called a Gk arrays [21]. CRAC

ignores the pairing information of paired end reads. Each

read in a pair is processed independently of the other.

Clearly, the support is a proxy of the coverage and

allows property P2 to be exploited for distinguishing

sequencing errors from variations, and gaining confidence

in predictions. As illustrated below, the location profile

delivers a wealth of information about the mapping, but

the originality of CRAC is its ability to detect the concor-

dance of variations in the two profiles.

Description of the algorithm

In a collection, some reads will exactly match the refer-

ence genome, while others will be affected by one or

more differences (with a probability that decreases with

the number of differences). Here, we describe how a

read is processed and concentrate on reads that differ

from the reference. For clarity, we make simplifying

assumptions: (a) k-mers have no false genomic locations,

(b) the read is affected by a single difference (substitu-

tion, indel, or splice junction), and (c) this difference is

located >k nucleotides away from the read’s extremities

(otherwise, we say it is a border case). These assump-

tions are discussed later.

Consider first a substitution, which may be erroneous

(a sequencing error) or of biological origin (an SNP, sin-

gle nucleotide variant (SNV), or editing). Say the substi-

tution is at position h in the read. All k-mers overlapping

position h incorporate this difference and will not match

the genome. Thus, the location profile will have zero

location for k-mers starting in the range [h - k + 1, h]. In

contrast, k-mers starting left (respectively right) of that

range will have one location in the genome region where

the RNA comes from. Moreover, locations of the k-mers

starting in h − k and h + 1 are k + 1 nucleotides apart on

the genome. We call the range of k-mers having zero

location, a break (Figure 1a). This allows the location of

the difference in both the read and the genome to be

found, but does not distinguish erroneous from biological

differences. The support profile will inform us on this

matter.
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If the substitution is a sequencing error, it is with high

probability specific to that read. Hence, the k-mers overlap-

ping the substitution occur in that read only: their support

value is one (minimal). If the substitution is biological, a

sizeable fraction of the reads covering this transcript posi-

tion share the same k-mers in that region. Their support

remains either similar to that of k-mers outside the break

or at least quite high depending on the homozygosity or

heterozygosity of the mutation. An erroneous difference

implies a clear drop in the support profile over the break

(Figure 1b). Thus, the ranges of the location break and the

support drop will coincide for an error, while a biological

difference will not specifically alter the support profile over

the break. To detect this drop we compare the average

support inside versus outside the break using a separation

function (Figure 1b and Additional file 2). Using this proce-

dure, support profiles are classified as undetermined if the

support is too low all along the read, and otherwise as

either dropping or non-dropping. Reads with a dropping

support profile are assumed to incorporate sequencing

errors, and those with a non-dropping support to accu-

rately represent sequenced molecules.

This procedure can be generalized to differences that

appear as long indels; all cases are summarized by a detec-

tion rule. We can apply a similar location/support profile

analysis to predict such events.

Rule 1 (Figure 1c): Consider a read affected by a single

difference (substitution, indels) compared to the genome.

Read

SNV

error

k-mers

k-mer mappability

break

(a) Analysis of the location profile

Analysis of the support variation

29 reads share the k-

mer starting here

30

1

Stable

There is only one read

with this erroneous k-mer

30

1

Variable

(b) Analysis of the support profile

k-mer that does not exactly map to the genome

Starting position of a k-mer that does not exactly map to the genome

k-mer that exactly maps to the genome

Starting position of a k-mer that exactly maps to the genome

(c)

Genome

Read

expected break

False locations

mirage breaks

(d)

Figure 1 The CRAC algorithm. (a) Illustration of a break in the location profile. We consider each k-mer of the read and locate it exactly on the

genome. In all figures, located k-mers are shown in blue, and unmapped k-mers in light orange. If the read differs from the genome by, for

example an SNV or an error, then the k-mers containing this position are not located exactly on the genome. The interval of positions of

unmapped k-mers is called a break. The end position of the break indicates the error or SNV position. (b) The support profile. The support value

of a k-mer is the number of reads from the collection in which this k-mer appears at least once. The two plots show the support profile as a

black curve on top of the location profile (in blue and orange). The support remains high (left plot) over the break if many reads covering this

region are affected by a biological difference (for example, a mutation); it drops in the region of the break when the analyzed read is affected

by a sequencing error; in this case, we say the support is dropping. (c) Rules for differentiating a substitution, a deletion, or an insertion

depending on the break. Given the location profile, one can differentiate a substitution, a deletion, or an insertion by computing the difference

between the gap in the genome and the gap in the read between k-mers starting before and after the break. (d) False locations and mirage

breaks. When false locations occur inside or at the edges of a break they cause mirage breaks. False locations are represented in red. The break

verification and break merging procedures correct for the effects of false locations to determine the correct break boundaries (and for example

the correct splice junction boundaries) to avoid detecting a false chimera (Rule 2a) instead of a deletion. SNV: single nucleotide variant
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Let jb <ja (where b stands for before and a after) be the

positions immediately flanking the observed break in the

location profile (that is, the break is in the range [jb + 1,

ja − 1]). Let l := ja − jb. L denotes the offset between the

genomic locations of the k-mers starting in jb and ja, so

that L := loc(ja) - loc(jb). (1) If l = L = k + 1 the difference

consists of a single substitution at position ja − 1 in the

read and loc(ja) − 1 in the genome. (2) If l = k and L =

k + p for some integer p, then this is a p nucleotide dele-

tion with respect to the reference genome, which is

located between position ja − 1 and ja in the read, and

between loc(ja) − p and loc(ja) − 1 on the genome. (3)

Symmetrically, if l = k + p and L = k for some integer p,

the difference is a p nucleotide insertion with respect to

the reference.

We call the k-mer concordance the condition that loc

(ja) and loc(jb) are on the same chromosome, the same

strand, and that loc(ja) − loc(jb) equals ja - jb plus or

minus the inferred difference (that is, 0 for a substitu-

tion and p for indels). This notion can be extended to

all k-mer pairs on each side of the break (that is, not

merely jb, ja).

The observed missing part in the read can be due to a

polynucleotidic deletion or the removal of intronic or

intragenic regions by splicing. Without annotations, only

the expected length (that is, the value of p) can distin-

guish these cases. CRAC uses arbitrary, user-defined

thresholds to classify such biological deletions into short

deletions and splice junctions. CRAC does not use splice

site consensus sequences.

Rule 2: Other reads may present profiles not considered

in Rule 1. In particular, some reads will have a break but

the genomic locations at its sides are either on distinct

chromosomes or not colinear on the same chromosome.

We term these chimeric reads (by chimeric we mean

made of a non colinear arrangement of regions rather

than unreal), and consider three subcases corresponding

to possible known combinations [4]: (a) same chromo-

some, same strand but inverted order, (b) same chromo-

some but different strands, and (c) different chromosomes.

(For chimeric RNAs, CRAC can even distinguish five sub-

classes; see Additional file 2 for details). CRAC can handle

such cases with the profile analysis. These cases resemble

that of deletions (Rule 1, case 2), except that the genomic

locations are not colinear. Indeed, CRAC checks the break

length l = k, as well as the coherence of adjacent k-mers

left or right of the break. Coherence means that, for some

(small) integer δ, k-mers in the range [jb − δ, jb] (respec-

tively, [ja, ja + δ]) have adjacent locations on the genome.

Reads satisfying these criteria and harboring a non-drop-

ping support profile are primarily classified as chimeric

reads, which may reveal artifactual or sheer chimeric

RNAs (chRNAs) (see Discussion).

CRAC processes reads one by one, first by determining

the location breaks, then analyzing the support profile,

and applying the inference rules whenever possible. A

read is classified according to the events (SNV, error,

indels, splice, or chimera) that are predicted, and its map-

ping unicity or multiplicity. Additional file 1 gives an

overview of the classification. The CRAC algorithm is

described for the analysis of an individual read, but its

output can be parsed to count how many reads led to the

detection of the same SNV, indel, splice, or chimera; this

can serve to further select candidates. CRAC accepts the

FASTA and FASTQ formats as input, and outputs dis-

tinct files for each category, as well as a SAM formatted

file with mapping results.

In describing CRAC’s method above, we first assumed

simplifying conditions: especially the absence of false

locations (FLs) and border cases. Some details will clar-

ify how the actual procedure handles real conditions.

Differences with the genome at a read’s extremities

(border cases)

Border cases are not processed with a specific procedure

by CRAC; instead, the sequencing depth of NGS data

indicates border cases. While processing a read, if an

event (say, a splice junction) generates a break at one of

the read’s extremities, the coverage ensures that the

same event is likely located in the middle of other reads,

and will be detected when processing these. The border

case read is classified either as undetermined or biologi-

cally undetermined depending on its support profile,

and it is output in the corresponding files.

False locations (Figure 1d)

Our criterion to set k ensures a low average probability of

a random k-mer match on the genome [19], but it does

not prevent random matches, which we term false loca-

tions. Compared to true (unique or multiple) locations, FL

of a k-mer will generally not be coherent with those of

neighboring k-mers. It may also alter the break length in

an unexpected manner, making the break length another

criterion of verification (Rule 1). When a read matches the

genome, CRAC considers ranges of k-mers having coher-

ent locations to infer its true genomic position. In the case

of a break, CRAC faces two difficulties. First, when a FL

happens at the end of a break, CRAC may incorrectly deli-

mit the break. When a FL occurs inside a break, it makes

adjacent false breaks, termed mirage breaks. In both cases,

the FL may cause CRAC to avoid Rule 1, apply Rule 2,

and predict a false chimeric read. To handle a FL at a

break end, CRAC uses a break verification procedure, and

it applies a break fusion procedure to detect and remove

mirage breaks.

These procedures are detailed in Additional file 2, which

also includes explanations of the distinction of dropping

and non-dropping supports around a break, on read
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mapping at multiple locations, on the subclassification of

chimeric reads, and on the simulation protocol.

Results
We evaluated CRAC for mapping reads, predicting candi-

date SNVs, indels, splice junctions, and chimeric junctions,

and compared it to other tools. Simulated data are needed

to compute exact sensitivity and accuracy levels, while real

data enable us to study predictions with biologically vali-

dated RNAs. For simulating RNA-seq, we first altered a

reference genome with random substitutions, indels, and

translocations to derive a mutated genome, then reads

were sequenced in silico using FluxSimulator [22], the

annotated RefSeq transcripts, and a realistic distribution of

random expression levels (Additional file 2). As read

lengths will increase, we used two simulated datasets to

assess different strategies: one (hs75) with a typical read

length of 75, another (hs200) with reads of 200 nt repre-

senting the future.

Mapping with current (75 nt) and future (200 nt) reads

Mapping, that is, the process of determining the location

of origin of a read on a reference genome, provides critical

information for RNA-seq analysis. Currently used mappers

(Bowtie, BWA, SOAP2 and Bowtie2) compute the best

continuous genome-read alignments up to a certain num-

ber of differences [9,11,12,23]. CRAC and GSNAP [14],

also consider discontinuous alignments to search for the

locations of reads spanning a splice junction: they can find

both continuous and spliced alignments.

An overview of mapping results with 75 nt reads

(Table 1) indicates a high level of precision, but strong

differences in sensitivity among tools. All achieve a global

precision >99%, meaning that output genomic positions

are correct. Bowtie, BWA, and SOAP2 are similar by

design, and all look for continuous alignments with a few

substitutions and small indels. Although its approach dif-

fers, GASSST also targets these (and is better for longer

indels). Even within this group, the sensitivity varies sig-

nificantly: from 70% for GASSST to 79% for BWA. These

figures are far from what can be achieved on RNA-seq

data since GSNAP and CRAC, which also handle spliced

reads, reach 94% sensitivity: a difference of at least 15

points compared to widely used mappers (Bowtie2

included). As only uniquely mapping reads were counted,

the sensitivity cannot reach 100%: some reads are taken

from repeated regions and thus cannot be found at a

unique location.

One gets a clearer view by considering the subsets of

reads that carry an SNV, an indel, an error, a splice, or a

chimeric junction (Figure 2). Strikingly, CRAC is the only

tool that achieves similar performance, a sensitivity of 94%

to 96%, in all categories. For instance with indels, GSNAP

yields 65% and 83% sensitivity on insertions and deletions

respectively, Bowtie2 yields 70% sensitvity for both inser-

tions and deletions, while the other tools remain below

30%. BWA, GASSST, Bowtie, and SOAP2 output continu-

ous alignments for 9% to 19% of spliced reads, and Bow-

tie2 up to 35%. Although their output locations are

considered correct, for they are in one exon, their align-

ments are not. Such reads are considered as mapped and

thus not reanalyzed by tools like TopHat or MapSplice in

a search for splice junctions, which may lead to missing

junctions.

Analyzing longer reads (200 nt) is another challenge: the

probabilities for a read to carry one or several differences

(compared to the reference) are higher. In this dataset,

36% of the reads cover a splice junction, and 50% carry an

error. Compared to the 75 nt data, while their precision

remains >99%, BWA, GASSST, Bowtie, Bowtie2, SOAP2,

and GSNAP, have lower sensitivity (approximately 10

points less for BWA-SW, GASSST, and GSNAP, 14 for

Bowtie2, and 20 for Bowtie). Only CRAC remains as pre-

cise and gains 1.5 points in sensitivity (Table 1). The detail

by category confirms this situation (Figure 2), showing

CRAC is better than current tools. CRAC’s k-mer profiling

approach can accurately handle reads altered by distinct

categories of biological events, and importantly adapts well

to longer reads.

The same analyses have been performed on Drosophila

datasets and these show that all tools perform better, but

the differences between tools remain (Additional file 3).

The run times and memory usage of all tools are given in

Additional file 3, Table S3. CRAC requires a large memory

and its run time for analyzing reads ranges between that of

Bowtie and TopHat, which are practical tools. Indexing

the human genome with crac-index takes two hours on an

x86_64 Linux server on a single thread and uses 4.5 giga-

bytes of memory.

Table 1 Comparative evaluation of mapping sensitivity

and precision

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

Bowtie 75.42 99.59 55.72 99.81

Bowtie2 76.64 99.26 62.31 98.78

BWA/BWA-SW 79.29 99.13 68.66 96.86

CRAC 94.51 99.72 95.9 99.79

GASSST 70.73 99.09 59.43 97.86

GSNAP 94.62 99.88 84.84 99.28

SOAP2 77.6 99.52 56.08 99.78

We compared the sensitivity and precision of different tools on the human

simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome

for mapping. The sensitivity is the percentage of correctly reported cases over

all sequenced cases, while the precision is the percentage of correct cases

among all reported cases. Values in bold in the three tables indicate the

maximum of a column, and those in italics the second highest values. For all

tasks with the current read length, CRAC combines good sensitivity and very

good precision. Importantly, CRAC always improves sensitivity with longer

reads, and delivers the best sensitivity while keeping a very high precision.
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Predicting distinct categories of biological events

Mapping is not a goal per se, but only a step in the analy-

sis; the goal of read analysis is to detect candidate biolo-

gical events of distinct categories (SNVs, indels, and

splice and chimeric junctions) from the reads. The ques-

tion is: if, for example, there is an SNV or splice junction

that has been sequenced, can it be predicted and not bur-

ied under a multitude of false positives (FPs)? Here, sen-

sitivity and precision are relative to the number of events,

not to the number of reads covering them. We assessed

CRAC’s prediction ability and compared it to splice junc-

tion prediction tools on our simulated datasets.

Figure 3 gives CRAC’s precision and sensitivity for

each category of events and for sequencing error detec-

tion. For SNVs and indels (<15 nt), CRAC achieves a

sensitivity in the range [60,65]% and a precision in the

range [96.5,98.5]% (Figure 3), making it a robust solu-

tion for such purposes. Typically, CRAC missed SNVs

that either have low coverage (42% of them appear in

≤2 reads) or are in reads carrying several events (66% of

missed SNV reads also cover a splice junction). For the

splice junction category, CRAC delivers 340 false and

67,372 true positives (TPs).

An overview and the effect of read length on sensitivity

and precision are shown in Table 2. With 75 nt, all splice

detection tools achieve good sensitivity, ranging from

79% for CRAC to 85% for TopHat, but their precision

varies by more than 10 points (range [89.59,99.5]). CRAC

reaches 99.5% precision and thus outputs only 0.5% FPs;

for comparison, MapSplice and GSNAP output four

times as many FPs (2.32% and 2.97%), while TopHat

yields 20 times more FPs (10.41%). With 200 nt reads,

tools based on k-mer matching, that is CRAC and MapS-

plice, improve their sensitivity (6.5 and 5 points respec-

tively), while mapping-based approaches (GSNAP and

TopHat) lose, respectively, 12 and 30 points in sensitivity,

and TopHat2 gains 6.4 points in sensitivity. With long

reads, CRAC has the second best sensitivity and the best

precision (>99%). It also exhibits a better capacity than

MapSplice to detect junctions covered by few reads:

15,357 vs 13,101 correct junctions sequenced in ≤4 reads.

A comparison using chimeric RNAs shows that CRAC

already has an acceptable balance between sensitivity

and precision with 75 nt reads (53% and 93%, respec-

tively), while the sensitivities of TopHat-fusion and

MapSplice remain below 32% (Table 3). With 200 nt
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Figure 2 Comparison of mapping results by category for seven tools. The figure shows the mapping by event category on simulated RNA-seq

against the human genome on datasets with short and long reads (left 42M, 75 nt; right 48M, 200 nt) for seven different mapping tools: Bowtie, Bowtie2,

BWA/BWA-SW, CRAC, GASSST, GSNAP, and SOAP2. We consider six categories of reads depending on whether they contain an SNV, an insertion, a

deletion, a junction, a sequence error, or a chimeric splice junction (a chimera). In each category, the bar is the percentage of those reads mapped at a

unique location by the corresponding tool. The red tip at the top of the bar is the percentage of incorrectly mapped reads. With 75 nt reads, CRAC is

better than the other tools, reaching a sensitivity >90% and a precision >95% whatever the category. The other tools except GSNAP are below 50%

sensitivity for mapping reads in categories where spliced alignments are needed (for which they are not intended) and for reads containing insertions or

deletions. With 200 nt reads, CRAC remains by far the most sensitive and specific tool; the difference between CRAC and GSNAP and Bowtie2 increased in

all categories. Compared to short reads, the other tools had a better mapping of insertion and deletion containing reads. SNV: single nucleotide variant
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reads, only CRAC is able to predict chimeric splice

junctions with acceptable precision, and sensitivity is

improved compared to shorter reads (Table 3 and Addi-

tional file 3).

As with mapping, for all categories of event, CRAC’s

prediction performance improves with longer reads

(Figure 3).

Predicting distinct categories of biological events on

real data

Splice junction prediction

To evaluate CRAC’s ability to detect splice junctions in

real RNA-seq data, we compared it to state-of-the-art

tools (TopHat, GSNAP, and MapSplice) on a dataset of

75 million stranded 100 nt reads (ERR030856; see Addi-

tional file 4 Table S1). Splice junctions were searched for

using each tool and then compared to human RefSeq tran-

scripts. Each found junction consists of a pair of genomic

positions (that is, the exons 3’ end and 5’ start) and we

considered that it matches a RefSeq junction if the posi-

tions were equal within a 3 nt tolerance. Found junctions

were partitioned into known, new, and other junctions

(KJs, NJs, and OJs, respectively). Known junctions are

those already seen in a RefSeq RNA, new ones involve

RefSeq exons but in a combination that has not yet been

observed in RefSeq, while the remaining junctions go into

(A)

SNV Ins. Del. Splices Errors Chimera

200bp
True positives 37,833 3,347 3,290 125,530 31,023,122 1,185

False positives 1,899 151 68 1,027 139,676 129

75bp
True positives 18,670 1,641 1,637 67,372 10,324,528 624

False positives 609 57 26 340 37,660 41
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Figure 3 Sensitivity and precision of CRAC predictions by category for human simulated data. (A) Absolute numbers of true and false

positives reported by CRAC. These figures are the number of distinct events, say SNVs, reported by CRAC, not the number of reads containing

the same SNV. False positives represent a small fraction of its output, thereby indicating a high level of precision. (B) and (C) For each category,

the figure shows the proportion of events found by CRAC for the 75 nt and 200 nt datasets. The blue bars are the true positives, while the red

bars on top are the false positives. The height of a blue bar gives CRAC’s sensitivity, and the relative height of the red part of the bar gives the

precision. For the two read lengths, for all categories the sensitivity increases with longer reads, while the precision in each category varies only

a little. SNV: single nucleotide variant
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the class other. Note that known RefSeq junctions include

both junctions between neighboring exons and alternative

splicing cases, mostly caused by exon skipping or alterna-

tive splice sites [24]. Novel junctions will provide new

alternative splicing candidates, while junctions in class

other are totally new candidate RNAs.

For each tool, the distribution of junctions in the classes,

and the number of detected RefSeq RNAs and genes

(those having at least one KJ or NJ) are given in Figure 4a.

The agreement on known junctions (KJs) among the tools

is shown as a Venn diagram (Figure 4b); see Additional

file 4 for the corresponding figures and a Venn diagram

on novel junctions (NJs). Clearly, MapSplice, GSNAP, and

CRAC find between [140,876;144,180] known junctions

and all three agree on 126,723 of them. GSNAP and

CRAC share 93% of CRAC’s reported known junctions.

TopHat reports about 25,000 junctions fewer than the

other tools, and only 1,370 of its junctions are not detected

by any of them. For instance, CRAC covers 93% of

TopHat’s KJs. As known junctions likely contain truly

expressed junctions of well-studied transcripts, these fig-

ures assess the sensitivity of each tool and suggest that in

this respect CRAC equals state-of-the-art tools. Logically,

the numbers vary more and the agreements are less pro-

nounced among novel junctions. A marked difference

appears within the class other: CRAC yields only 20.36%

of other junctions, while with the other tools find [25;27]%

of detected junctions.

To further test CRAC with negative controls, we cre-

ated a set of 100,000 random junctions by randomly

associating two human RefSeq exons, and for each we

built a 76 nt read with the junction point in the middle

of the read (see Additional file 4). These 100,000 reads

were processed by CRAC with k = 22 and it predicted

no splice junctions.

Are the junctions in classes New and Other interesting

candidates? To check predicted junctions, we extracted a

50 nt sequence around each inferred junction point and

aligned it with BLAST against the set of human mRNAs/

ESTs (for details and results see Additional file 4). A 50 nt

sequence can either match over its entire length on an

EST or match only one side of the junction but not both

exons. The former confirms the existence of that junction

in the ESTs and yields a very low E-value (≤10-15), while

the latter has a larger value (≥10-10). As expected, at least

95% of KJs have very low E-values against ESTs, whatever

the tool. Among new and other junctions, BLAST reports

good alignments for respectively 68% and 69% of CRAC’s

junctions. The corresponding figures are 47% and 47% for

GSNAP, 49% and 50% for MapSplice, 51% and 44% for

TopHat. The percentages of OJs and NJs confirmed by

mRNAs are >13% for CRAC and <8% for all other tools

(excepted for OJs with TopHat, which was 17%, the same

as CRAC). If we consider all junctions, 93% of CRAC junc-

tions align entirely to an EST with a good hit. Whatever

the class of the junctions, CRAC predicts more unreported

junctions that are confirmed by mRNAs or ESTs than the

other tools. This corroborates the precision rates obtained

by these tools on simulated data.

Regarding expressed transcripts, all tools detect

>18,000 transcripts and agree on 17,131 of them (Addi-

tional file 4 Figure S1). GSNAP and CRAC agree on

97% (19,431) of CRAC’s detected transcripts, expressed

in 15,589 distinct genes, which represents 87% of the

17,843 multi-exon RefSeq genes.

By simultaneously exploiting the genomic locations and

support of all k-mers gives CRAC some specific abilities for

junction detection. CRAC reports 752 junctions with an

intron larger than 100 knt. The other tools find fewer of

these junctions: 695, 589, and 470 for GSNAP, MapSplice,

and TopHat, respectively, but both MapSplice and TopHat

find fewer than expected by chance according to the global

Table 2 Comparative evaluation of splice junction

prediction tools

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

CRAC 79.43 99.5 86.02 99.18

GSNAP 84.17 97.03 72.94 97.09

MapSplice 79.89 97.68 84.72 98.82

TopHat 84.96 89.59 54.07 94.69

TopHat2 82.25 92.71 88.65 91.35

We compared the sensitivity and precision of different tools on the human

simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome

for splice junction prediction. The sensitivity is the percentage of correctly

reported cases over all sequenced cases, while the precision is the percentage

of correct cases among all reported cases. Values in bold in the three tables

indicate the maximum of a column, and those in italics the second highest

values. For all tasks with the current read length, CRAC combines good

sensitivity and very good precision. Importantly, CRAC always improves

sensitivity with longer reads, and yields the best precision (that is the fewer

false positives) over all solutions, even against specialized tools like TopHat.

Table 3 Comparative evaluation of chimeric RNA

prediction tools

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

CRAC 53.89 93.84 64.86 90.18

MapSplice 2.33 0 2.63 0.01

TopHat2 77.72 7.32 70.72 12.50

TopHat-fusion 32.73 42.02

TopHat-fusion-post 12.26 97.22

We compared the sensitivity and precision of different tools on the human

simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome

for chimeric junction prediction. The sensitivity is the percentage of correctly

reported cases over all sequenced cases, while the precision is the percentage

of correct cases among all reported cases. Values in bold in the three tables

indicate the maximum of a column, and those in italics the second highest

values. For all tasks with the current read length, CRAC combines good

sensitivity and very good precision. Importantly, CRAC always improves

sensitivity with longer reads, and has the best balance between sensitivity

and precision. TopHat-fusion could not process 200 nt reads.
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agreement between these tools (Additional file 4). CRAC

also reveals 69,674 reads that cover exactly two known

RefSeq junctions, that is, that cover three distinct exons

and include one of them. An example of a double junction

covering a 29 nt exon of the CALM2 gene is shown in

Additional file 4. Moreover, of 9,817 of such junctions,

GSNAP, MapSplice, and TopHat, find respectively 8,338,

9,167, and 7,496, which for GSNAP and TopHat is less

than expected by taking a random sample of junctions

(Additional file 4). CRAC even maps reads spanning 3

successive junctions (4 exons), and finds an additional 89

junctions, which are not all reported by current tools. For

instance, GSNAP does not map such reads. An example

for the TIMM50 gene is shown in Figure 4c. Altogether,

these results suggest that numerous new splice junctions,

even between known exons, remain to be discovered [25],

but other predicted junctions that would correspond to

completely new transcripts may also be due in part to the

ERR030856 CRAC MapSplice TopHat GSNAP

% # % # % # % #

known SJ 77.63 142,000 68.67 140,876 71.02 116,687 68.12 144,180

new SJ 2.01 3,671 4.35 8,921 3.62 5,956 5.13 10,861

other SJ 20.36 37,254 26.98 55,349 25.35 41,667 26.76 56,626

RefSeq RNAs 19,998 19,549 18,326 20,313

RefSeq genes 15,868 15,825 15,223 15,935

(a)

(b)

(c)

Figure 4 Splice junction detection using human real RNA-seq: comparison and agreement. The figure shows the detection of splice

junctions by CRAC, MapSplice, TopHat, and GSNAP for a human six-tissue RNA-seq library of 75M 100 nt reads (ERR030856). (a) Number and

percentage of known, new, and other splice junctions detected by each tool with +/−3 nt tolerance for ERR030856. (b) Venn diagram showing

the agreement among the tools on known RefSeq splice junctions (KJs). Additional file 4 has pending data for novel junctions (NJs) and RefSeq

transcripts. (c) A read spanning four exons (2 to 5) and three splice junctions of the human TIMM50 gene displayed by the UCSC genome

browser. The included exons, numbers 3 and 4, measure 32 and 22 nt, respectively. So exon 3 has exactly the k-mer size used in this

experiment. KJ: known splice junction; SJ: splice junction
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inaccuracy of splice junction prediction tools. In this

respect, CRAC seems to ally sensitivity and precision,

which should help discriminate true from false candidates,

while it has good potential for detecting multiple junctions

occurring within the same read. Such reads with multiple

junctions will be more abundant with longer reads, and are

useful for the reconstruction of transcripts, which is done

on the basis of detected junctions [26].

Comparisons of chimeric splice junction prediction

Edgren et al. used deep RNA-sequencing to study chimeric

gene fusions in 4 breast cancer cell lines (BT-474, KPL-4,

MCF-7, and SK-BR-3; see Additional file 4 Table S1); they

found 3 known cases and validated 24 novel intergenic

fusion candidates (that is, involving 2 different genes) [27].

As CRAC, TopHat-fusion can predict both intragenic and

intergenic chRNA candidates and identify a chimeric junc-

tion in a spanning read [16]. For evaluation purposes, we

processed each library with TopHat-fusion and CRAC, and

compared their results. TopHat-fusion exploits both the

read sequence and the read pairs, while CRAC uses only

the single read sequence. Otherwise, TopHat-fusion per se1

and CRAC both select potential chRNAs based on compu-

tational criteria. We further filtered out all candidate chi-

meric reads for which an alternative, colinear alignment

was found by GSNAP (Additional file 4). Then, filtered

predictions were compared with valid chRNAs. A post-fil-

tering script, called TopHat-fusion-post, based on biologi-

cal knowledge, can be applied to TopHat-fusion results,

but in [16] its parameters were chosen ‘using the known

valid fusions as control’, and may have biased the compari-

son. So, we recalculated all predictions using TopHat-

fusion with and without TopHat-fusion-post.

The numbers of distinct candidate chimeric junctions

(chRNA for short) and chimeric single reads detected by

both tools in each library are given in Table 4.

The 50 nt reads, which are well suited for Bowtie and

TopHat, are unfavorable for CRAC, which performs better

with longer reads. Globally after filtering with GSNAP,

TopHat-fusion reports a total of 193,163 chRNAs, while

CRAC outputs 455: a 600-fold difference. Compared

to the results obtained above for a six-tissue library

(ERR030856), TopHat-fusion reports about as many chi-

meric junctions as CRAC, GSNAP, or MapSplice for nor-

mal splice junctions. Such a set likely includes a majority

of false positives as already noted [16], and cannot help in

estimating the quantity of non-colinear RNAs in a tran-

scriptome. In comparison, CRAC’s output is a practical

size and allows an in-depth, context-dependent investiga-

tion for promising candidates for validation.

In CRAC’s output, intragenic and intergenic chRNAs

account for 58% and 42% respectively, and are parti-

tioned into five subclasses (Methods, Additional file 5).

Looking at the intersection, TopHat-fusion also outputs

76% (346) of the chRNAs found by CRAC, therefore pro-

viding additional evidence in favor of their existence,

since the presence of some supporting read pairs is a

mandatory criterion in TopHat-fusion [16] (Additional

file 5).

When compared with the set of validated chimeras of

Edgren et al. [27], TopHat-fusion and CRAC detected 21

and 20 out of 27, and agreed on 17 of them (Table 5).2

The first 20 cases were found by CRAC, and the 7

remaining ones were not predicted by CRAC; however,

for the final 2, we could not detect any read matching the

15 to 20 nt over the junction. Among the seven cases

CRAC misses, only one (BCAS4-BCAS3) is a false nega-

tive, four are uncertain with not enough expressed candi-

dates (CPNE1-P13, STARD3-DOK5, WDR67-ZNF704,

and PPP1R12A-SEPT10), and no read seems to match

the junction of the two remaining ones (DHX35-ITCH

and NFS1-PREX1). As the BCAS4-BCAS3 junction

includes a substitution near the splice site, the reads

carry two events (SNV plus junction): CRAC does not

exactly position the junction and outputs them in the

BioUndetermined file, whose exploration could extract

BCAS4-BCAS3 as a candidate (future work). For the four

uncertain cases, the k-mer support over the junction

break equals one, meaning that only one read matches

the junction exactly; hence CRAC identifies a chimeric

junction, but classifies them as uncertain candidates

Table 4 Chimeric RNA detection in breast cancer libraries

Edgren
libraries

CRAC TopHat-fusion

Raw After GSNAP Raw After GSNAP

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

BT-474 692 9,661 153 460 109,711 349,801 81,327 189,523

KPL-4 407 5,157 60 199 32,412 98,330 23,075 53,165

MCF-7 466 3,475 90 180 42,738 121,544 27,267 57,676

SK-BR-3 703 9,354 152 577 86,249 241,219 61,494 130,682

TopHat-fusion reports approximately 200 times more raw candidates than CRAC; this ratio increases after filtering. Comparison with the set of validated chRNAs

by Edgren et al. [27] shows that both the filtered and unfiltered predictions of CRAC and TopHat-fusion include respectively 20 and 21 true chRNAs and they

agree for 17 of them.

Philippe et al. Genome Biology 2013, 14:R30

http://genomebiology.com/content/14/3/R30

Page 10 of 15



(Undetermined file). Three out of four are nevertheless

detected by TopHat-fusion, but with two or one spanning

reads (2,1,1) and few supporting pairs (6,5,0), thereby

corroborating CRAC’s view and confirming these are

expressed at very low levels in this dataset.

Considering validated intergenic chRNAs [27], the

sensitivity over the 27 valid chRNAs is comparable

between TopHat-fusion (77% = 21/27) and CRAC

(74% = 20/27), while the precision over the total num-

ber of candidates is markedly in favor of CRAC (21/

143,003 ≃ 0.01% vs 20/192 ≃ 10.4% ;3 Table 5, Addi-

tional file 5). Clearly, some experimentally validated

chRNAs (like DHX35-ITCH or NFS1-PREX1), happen

to have no read spanning their junction, and thus

should not be computationally predicted as candidates

on the basis of this read data. This important state-

ment illustrates how difficult computational chRNA

prediction is, thereby emphasizing the quality of

CRAC’s analysis. Moreover, the evidence suggests that

other promising candidate chRNAs populate CRAC’s

results.

Numerous chRNAs are predicted in classes 3/5, where

the RNA non-colinearity appears as an inversion. CRAC

detects three such chRNAs within the MAN1A2 gene,

which recur in up to three out of four breast cancer

libraries, and in a K562 library. These specific inversions

in MAN1A2 are described as post-transcriptional exon-

shuffling RNAs and found highly expressed in several

acute lymphoblastic leukemia samples [28]. Our results

support the existence of such mRNA-exhibiting shuffled

Table 5 CRAC and TopHat-fusion predictions for the set of validated chimeric junctions from breast cancer libraries

Library Fused genes Chromosomes 5’ position 5’ strand 3’ position 3’ strand Average supporta CRACb TopHat-fusionc

BT-474 SNF8-RPS6KB1 17-17 47,021,337 1 57,970,686 -1 36 Yes Yes

BT-474 CMTM7-GLB1 3-3 32,483,329 -1 33,055,545 1 2 Yes Yes

BT-474 SKA2-MYO19 17-17 57,232,490 -1 34,863,351 -1 6 Yes Yes

BT-474 ZMYND8-CEP250 20-20 45,852,968 -1 34,078,459 1 9 Yes Yes

BT-474 VAPB-IKZF3 20-17 56,964,572 1 37,934,021 -1 6 Yes Yes

BT-474 ACACA-STAC2 17-17 35,479,452 -1 37,374,427 -1 46 Yes Yes

BT-474 DIDO1-TTI1 20-20 61569147 -1 36,634,800 -1 2 Yes Yes

BT-474 RAB22A-MYO9B 20-19 56,886,178 1 17,256,205 1 9 Yes Yes

BT-474 MCF2L-LAMP1 13-13 11,371,8616 -1 113,951,811 -1 2 Yes No

KPL-4 NOTCH1-NUP214 9-9 139,438,475 -1 134,062,675 1 2 Yes Yes

KPL-4 BSG-NFIX 19-19 580,782 1 13,135,832 1 9 Yes Yes

MCF-7 RPS6KB1-TMEM49 17-17 57,992,064 1 57,917,126 1 5 Yes Yes

MCF-7 ARFGEF2-SULF2 20-20 47,538,548 1 46,365,686 -1 10 Yes Yes

SK-BR-3 PKIA-RARA 8-17 79,485,042 -1 38,465,537 -1 7 Yes Yes

SK-BR-3 TATDN1-GSDMB 8-17 125,551,264 -1 38,066,177 -1 334 Yes Yes

SK-BR-3 KCNB1-CSE1L 20-20 47,956,856 -1 47,688,990 -1 6 Yes No

SK-BR-3 CYTH1-EIF3H 17-8 76,778,283 -1 117,768,258 -1 11 Yes Yes

SK-BR-3 SUMF1-LRRFIP2 3-3 4,418,012 -1 37,170,640 -1 4 Yes Yes

SK-BR-3 SETD3-CCDC85C 14-14 99,880,273 1 100,002,353 1 3 Yes No

SK-BR-3 PCDH1-ANKHD1 5-5 141,234,002 1 139,825,559 -1 2 Yes Yes

BT-474 CPNE1-P13 20-20 34,243,123 NA 43,804,501 NA 1 No Yes

BT-474 STARD3-DOK5 17-17 37,793,479 NA 53,259,992 NA 1 No Yes

SK-BR-3 WDR67-ZNF704 8-8 124,096,577 NA 81,733,851 NA 1 No Yes

MCF-7 BCAS4-BCAS3 20-17 49,411,707 NA 59,445,685 NA 3 No Yes

KPL-4 PPP1R12A-SEPT10 12-2 80,211,173 NA 11,034,3414 NA 1 No No

SK-BR-3 DHX35-ITCH 20-20 Unknown NA Unknown NA NA No No

SK-BR-3 NFS1-PREX1 20-20 Unknown NA Unknown NA NA No No

NA: not applicable
a Average support value over the junction k-mers
b Detected by CRAC
c Detected by TopHat-fusion

CRAC and TopHat-fusion predictions on the set of validated chimeric junctions from four breast cancer libraries [27]. The first 20 cases were found by CRAC, and

the 7 remaining ones were not predicted by CRAC; however, for the final 2, we could not detect any read matching the 15 to 20 nt over the junction. A short

read length penalizes CRAC: indeed, with k = 22, only the 6 (= 50 - 2 × 22) middle positions of a read could be used to locate any event (splices or mutations)

exactly. Hence we expect that the spanning reads by which a chRNA is amenable to detection by CRAC to be rare. NA: not applicable. Columns: library, fused

genes ID, annotation of the junction points, chromosomes, 5’ position and strand, 3’ position and strand, average support value over the junction k-mers,

detection by CRAC and by TopHat-fusion (THF).
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exons, as well as cases where the inversion is short,

sometimes inducing a repeat within the read (see an

example in the LONP1 gene given in Additional file 4).

Notably, among 455 chRNAs, CRAC reports 36

chRNAs that appear to recur in two, three, or even all

four breast cancer libraries (Additional file 5). Among

these 36 chRNAs: 24 are intra- and 12 are inter-chro-

mosomal, 20 are intragenic, while 16 fuse different

genes. Moreover, 35 out of 36 (including the MAN1A2

and LONP1 cases) harbor exactly the same junction

point in all libraries in which they were detected. Pre-

vious investigations of these libraries [16,27] did not

report any recurrent chRNAs. However, when we ran

TopHat-fusion, it also output 23 of these chRNAs

among 193,163 candidates.

For instance, we found a HSPD1-PNPLA4 chRNA in

both KPL-4 and SK-BR-3 libraries: PNPLA4 (GS2) is

highly expressed in human SW872 liposarcoma cells

[29], while HSPD1, the heat shock protein Hsp60, shows

a broad antiapoptotic function in cancer [30]. Among the

intragenic chRNAs, we observed in all four libraries a

non-colinear chRNA within GNAS, a gene coding for the

G-protein alpha subunit, which is known to be associated

with multiple human diseases including some cancers

[31], and was recently found to be recurrently mutated in

cystic pancreatic lesions related to invasive adenocarcino-

mas [32], as well as amplified in breast cancers [33].

Moreover, we also found the same CTDSPL2-HNRNPM

chimeric RNA in the BT-474, MCF-7, and SK-BR-3

libraries. Both genes belong to the heterogeneous nuclear

ribonucleoprotein family and play a pivotal role in pre-

mRNA processing. Importantly, HNRNPM regulates the

alternative splicing of carcinoembryonic antigen-related

cell adhesion molecule-1 (CEACAM1) in breast cancer

cells [34].

Discussion
CRAC is a multi-purpose tool for analyzing RNA-seq

data. In a single run it can predict sequencing errors,

small mutations, and normal and chimeric splice junc-

tions (collectively termed events). CRAC is not a pipeline,

but a single program that can replace a combination of

Bowtie, SAMtools, and TopHat/TopHat-fusion, and can

be viewed as an effort to simplify NGS analysis. CRAC is

not simply a mapper, since it uses local coverage infor-

mation (in the support profile) before computing the

genomic position of a read. In contrast to the current

paradigm, mapping and post inferences are not disjoint

steps in CRAC. Instead, it implements a novel, integrated

approach that draws inferences by simultaneously analyz-

ing both the genomic locations and the support of all

k-mers along the read. The support of a k-mer, defined

as the number of reads sharing it, approximates the local

read coverage without having the reads mapped. The

combined k-mers location and support profiles enable

CRAC to infer precisely the read and genomic positions

of an event, its structure, as well as to distinguish errors

from biological events. Integration is not only the key to

an accurate classification of reads (Additional file 1), but

it avoids information loss and saves re-computation, and

is thereby crucial for efficiency. Indeed, CRAC takes

more time than state-of-the-art mappers, but is consider-

ably faster than splice junction prediction tools (for

example, Bowtie plus TopHat). The other key to effi-

ciency is the double-indexing strategy: a classical FM-

index (where FM stands for Ferragina - Manzini) for the

genome and the Gk arrays for the reads [21]. This makes

CRAC’s memory requirement higher than that of other

tools, but fortunately computers equipped with 64 giga-

bytes of memory are widespread nowadays. Experiments

conducted on simulated data (where all answers are

known), which are necessary for assessing a method’s

sensitivity, have shown that for each type of prediction

CRAC is at least competitive or surpasses current tools

in terms of sensitivity, while it generally achieves better

precision. Moreover, CRAC’s performances further

improve when processing longer reads: for example on

200 nt reads, it has 85% sensitivity and 99.3% precision

for predicting splice junctions.

CRAC analyzes how the location and support profiles

vary and concord along the read. Hence k-mers serve as

seeds (in the genome and in the read set), and k is thus

a key parameter. Its choice depends on the genome

length [19], and quite conservative values - k = 22 for

the human genome - have been used in our experi-

ments. Smaller k values are possible with smaller gen-

omes (like bacterial ones). k affects the number of false

genomic locations (FLs) that occur in the profile; a FL

indicates a wrong location for a k-mer, which differs

from the location of origin of the sequenced molecule.

This tends to induce a false location for the read (map-

ping) or a false location for a junction border (normal

and chimeric junction prediction). However, CRAC uses

two criteria to avoid these pitfalls: the coherence of

locations for adjacent k-mers over a range and the con-

cordance of locations for the k-mers around the break

(especially in the break verification and fusion proce-

dures; see Additional File 2). When k-mers surrounding

the break have a few, but several, locations, CRAC exam-

ines all possible combinations, and as FL occurrences are

governed mainly by randomness, this eliminates discor-

dant positions. FLs have a larger effect on the prediction

of chimeras. Overall, the results on both simulated and

real data, like the improved mapping sensitivity (+15

points compared to Bowtie, BWA, and SOAP2), show

that CRAC makes accurate predictions with conservative

values. k controls the balance between sensitivity (shorter

seeds) and precision. The breast cancer libraries we used
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have 50 nt reads, but CRAC could still find 74% of the

chimeric RNAs validated by Edgren et al. [27]. Of course,

the k value has two limitations: first, the minimal exon

size detectable in a read is ≥k, second, reads must be long

enough (>40 nt with k = 20 for the human genome).

However, NGS is progressing towards longer reads,

which should become standard, and Figure 4c illustrates

well CRAC’s ability to detect short exons within single

reads. The k-mer profiling approach detects events

located near the read extremities, but cannot exactly

determine their position in the read. Hence the inference

rules cannot be fully applied, and CRAC classifies such

reads as incompletely determined (Undetermined and

BioUndetermined files). However, the position of an

event in a read is random, and thus, the high coverage

delivered by NGS nearly ensures that the same event

occurs in the middle of other reads covering it. Conse-

quently, border cases do not hinder CRAC from detecting

mutations, splice junctions, etc. Only errors escape this

rule since they are mostly read specific. A more complex

drawback of k-mer profiling is when two events are

located <k positions apart on the genome (see the

BCAS4-BCAS3 chimera); again such cases even with a

high support are not fully resolved and end up in the

BioUndetermined file. A post-processing of reads in this

file, for example by an alignment program, could clearly

save such cases. Obviously, such cases are rare, and we

keep this as future work. As briefly mentioned, k-mer

profiling also detects when reads span a repeat border

region, which should help in inferring the locations of

mobile genetic elements, duplications, or copy number

variations; this suggests further developments and

CRAC’s usefulness for analyzing genomic data.

Determining the correct genomic location of reads is

crucial information for any NGS data analysis and espe-

cially for cataloging all transcripts of a cell with RNA-

seq. Generally, a mapping step computes this informa-

tion using efficient, well-known tools (BWA, Bowtie,

and SOAP2), but the mapping sensitivity is rarely ques-

tioned. We performed extensive mapping tests on simu-

lated data, which showed that sensitivity can truly be

improved and that CRAC makes a significant step in

this direction. Of course by considering discontinuous

alignments (as do CRAC and GSNAP) many reads cov-

ering splice junctions can be mapped, which BWA,

Bowtie/Bowtie2, and SOAP2 cannot detect. However,

the mapping results for categories of reads carrying one

mutation, a short indel, or even errors indicate that clas-

sical mappers missed between 15 to 20 points in sensi-

tivity, thereby confirming that the difference due to

splice junction reads is critical even for other events,

while CRAC performs equally well (>90%) whatever the

category (Figure 2). The other way around, those tools

are able to map 10% to 35% of reads containing a splice

junction. This can negatively affect downstream analyses

depending on the type of events under investigation. For

instance to predict splice junctions, in the current strat-

egy (TopHat, MapSplice, or TopHat-fusion), reads are

first mapped with Bowtie to divide the collection into:

(a) reads having a continuous alignment on the genome

and (b) unmapped reads. The former serve further to

delimit exons, and the latter are then processed again to

search for spliced alignments. If a read that requires a

discontinuous alignment is mapped by Bowtie, it is not

considered by TopHat, MapSplice, or TopHat-fusion as

potentially containing a junction, and they will not find

a spliced alignment for it. In contrast, CRAC’s k-mer

profiling approach is flexible, reliable in this respect

(Figure 3), and importantly, adapts well to longer reads

(for example, 200 nt). This last point is key since longer

reads will be available soon. They will much more likely

incorporate not one, but several events - errors, muta-

tions, splice junctions, etc. - and thus be harder to map.

Whatever the class of required predictions, CRAC’s sen-

sitivity is always improved with longer reads. This is

crucial for detecting multiple exons within single reads,

and CRAC exhibits a better ability in this as exemplified

by a transcript of TIMM50 gene (Figure 4c).

An issue in transcriptomics is to reliably extract the com-

plete set of splice junctions with a minimal number of false

positives [24]. In this regard, our results (Table 2) demon-

strate that k-mer profiling approaches (MapSplice and

CRAC) profit greatly in sensitivity from longer reads, and

that CRAC is the tool with the highest precision whatever

the read length. They also indicate that CRAC handles dif-

ficult cases with higher sensitivity, like long-distance

splices, multi-exon reads, or RNA expressed at a low level.

The analysis of a multi-tissue library shows that CRAC,

GSNAP, and MapSplice have a very large (>90%) agree-

ment on the set of reported known junctions (>140,000

distinct junctions), RefSeq transcripts, and genes, thereby

providing evidence of their ability to extract splice junc-

tions of well-annotated transcripts (Figure 4b and 4a). In

contrast, TopHat misses 21% of these known RefSeq junc-

tions. Comparatively, CRAC reports fewer novel or

unknown junctions than other tools, and tends to be more

conservative, which likely reflects its precision. Altogether,

CRAC is a solution for exploring qualitatively the tran-

scriptome of a sample with high sensitivity and precision,

and thus provides the primary material for determining all

transcript structures, which is indispensable for estimating

the expression levels of all RNA isoforms [3,26].

Recent investigations have suggested that non-colinear

RNAs are quantitatively more abundant in human tran-

scriptomes than previously thought, underlining the struc-

tural diversity of these chimeric RNAs and their

occurrence in cancers [8,27,28,35,36]. Predicting chimeric

RNAs (chRNAs) is the most difficult and error-prone
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computation when analyzing RNA-seq. The combinatorial

possibilities of aligning a read partly to two distinct regions

on the same or different chromosomes [4] increase the

likeliness of predicting FPs. It explains why filtering for

suboptimal but colinear alignments of an apparent chi-

meric read may still help, and also partly why TopHat-

fusion per se yields so many more chRNA candidates

compared to CRAC (Table 4). Paired end reads are not

sufficient: analyzing single reads by splitting them is inevi-

table for predicting the chimeric junction point; hence k-

mer profiling also suits this purpose. Nevertheless, paired

end reads are useful for performing a complementary con-

solidation of chRNA candidates, which we may develop in

the future. However, chRNAs can occur at low expression

levels and be much less expressed than their parental

genes; this impels CRAC to rely less on the support profile

than for mutation prediction. In addition, transcriptional

noise or template switching during library preparation

may generate true chimeric reads from biologically irrele-

vant chRNAs. Thus, subsequent criteria are definitely

needed to prioritize chRNA candidates: the consistent

finding of the same junction point has been suggested as

an important one [27,36,37]. Notably, CRAC predicted for

the four breast cancer libraries 36 recurrent chRNAs that

were not reported previously [16,27], and 35/36 always

harbor the same junction point in the different libraries

and among the distinct reads predicting them. Several of

these involve genes known to be implicated in tumorigen-

esis or tumor maintenance, like GNAS [31] or HSPD1

[30]. As CRAC outputs also included 74% of validated

chRNAs with a single clear false negative, this shows that

CRAC consistently reports interesting chRNA candidates

based on the read data. As already mentioned, CRAC dis-

tinguishes between five chRNA classes, included those

exhibiting small-scale sequence inversions, as illustrated

by a chRNA within the LONP1 gene, which recurs in nor-

mal and tumoral libraries. We also reported cases of

chRNAs, which although validated, do not constitute good

candidates for the computational inference step, since not

enough reads in the data support their existence. The lat-

ter point is critical and strengthens how difficult chimeric

RNA prediction is.

Here, the in silico experiments focus on transcrip-

tomic data, but the method is also applicable to geno-

mic sequencing. For instance, the counterparts of splice

junctions and chimeras in RNA-seq are large deletions

and rearrangements (translocation, inversion, and displa-

cement of a mobile element) in DNA. Thus, CRAC may

also prove useful for genomic analyses.

Endnotes
a TopHat-fusion without the extra post-filtering script.

b If TopHat-fusion-post is applied to TopHat-fusion’s

results with default parameters, it reports 27 chimera,

11 of them being validated chimeras, which is about half

those reported by TopHat-fusion alone.
c Only intergenic chRNAs are counted here.
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