

Adherence to a Mediterranean diet and risk of fractures in French older persons.

Catherine Feart, Simon Lorrain, Vanessa Ginder Coupez, Cécilia Samieri, Luc Letenneur, Damien Paineau, Pascale Barberger-Gateau

► To cite this version:

Catherine Feart, Simon Lorrain, Vanessa Ginder Coupez, Cécilia Samieri, Luc Letenneur, et al.. Adherence to a Mediterranean diet and risk of fractures in French older persons.. Osteoporosis International, 2013, 24 (12), pp.3031-41. 10.1007/s00198-013-2421-7. inserm-00850189

HAL Id: inserm-00850189 https://inserm.hal.science/inserm-00850189

Submitted on 23 Jun2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TITLE PAGE

Title

Adherence to a Mediterranean diet and risk of fractures in French older persons

Authors

Catherine FEART^{1,2}, Simon LORRAIN^{1,2}, Vanessa GINDER COUPEZ³, Cécilia SAMIERI^{1,2}, Luc LETENNEUR^{1,2}, Damien PAINEAU³, Pascale BARBERGER-GATEAU^{1,2}

Author Affiliations:

- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- 2. INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- Danone Research, Centre Daniel Carasso, Global Nutrition Department, F-91767 Palaiseau Cedex, France

Corresponding author:

Catherine FEART

Address: Equipe Epidémiologie de la nutrition et des comportements alimentaires, INSERM, U897,

Université Bordeaux Ségalen, ISPED case 11, 146 rue Léo-Saignat, F-33076 BORDEAUX Cedex -

France

Phone: (33) 5 47 304 204; Fax: (33) 5 57 57 14 86

E-mail: Catherine.Feart@isped.u-bordeaux2.fr

KEY WORDS: Mediterranean diet, fracture, aging

Abstract word count: 250

Text word count: 4,417

Number of tables: 5

Number of references: 44

Summary

Prevention of fractures is a considerable public health challenge. In a population-based cohort of French elderly people, a diet closer to a Mediterranean-type had a borderline significant deleterious effect on the risk of fractures, in part linked to a low consumption of dairy products and a high consumption of fruits.

1 ABSTRACT

2

3 Purpose: Higher adherence to the Mediterranean diet (MeDi) is linked to a lower risk of several 4 chronic diseases, but its association with the risk of fractures is unclear. Our aim was to investigate the 5 association between MeDi adherence and the risk of fractures in older persons. 6 Methods: The sample consisted of 1,482 individuals aged 67yrs +, from Bordeaux, France, included 7 in the Three-City Study in 2001-2002. Occurrences of hip, vertebral and wrist fractures were self-8 reported every two years over 8 years and 155 incident fractures were recorded. Adherence to the 9 MeDi was evaluated at baseline by a MeDi score, on a 10-point scale based on a food frequency 10 questionnaire and a 24h recall. Multivariate Cox regression were performed to estimate risk of 11 fractures according to MeDi adherence. 12 Results: Higher MeDi adherence was associated with a non-significant increased risk of fractures at 13 any site (HR per 1-point increase of MeDi score=1.10, P=0.08) in fully adjusted model. Among MeDi 14 components, higher fruits consumption (>2 servings/day) was significantly associated with an 15 increased risk of hip fractures (HR=1.95, P=0.04), while low intake of dairy products was associated 16 with a doubled risk of wrist fractures (HR=2.03, P=0.007). An inverse U-shaped association between 17 alcohol intake and risk of total fracture was observed (HR high vs moderate=0.61, P for trend 0.03). 18 Conclusions: Greater MeDi adherence was not associated with a decreased risk of fractures in French 19 older persons. The widely recognized beneficial effects of the MeDi do not seem to apply to bone 20 health in these people.

21 **TEXT**

22 INTRODUCTION

Osteoporosis and osteoporotic fractures, the hallmarks of a long-term initiated process, are responsible for a considerable public health challenge since they are associated with an increased risk of disability, morbidity and mortality with a major economical impact [1-2]. The prevalence of fractures among the elderly persons is estimated at 9 million worldwide, amongst which more than one third are European [3-4]. Therefore, effective strategies to prevent osteoporosis and related fractures must be developed.

29 The prevention of fractures by modifiable factors including falls prevention and lifestyle, such as 30 physical activity and nutrition, has been well documented in older persons [5-6]. Among dietary 31 factors, much attention has been focused on the beneficial effects of calcium and vitamin D on bone 32 metabolism [7-8]. The role of macronutrients (mainly proteins) and other vitamins (A, B, C, E and K) 33 has also been examined, although their ability to reduce the risk of fractures remains controversial [9]. 34 One explanation of these discordant results could rely on potential additive, synergistic or antagonist 35 effects between components of the diet which are ignored by studies based on single nutrient [10]. 36 Thus, considering comprehensive dietary patterns is an appealing approach [11]. 37 In this context, the Mediterranean diet (MeDi) combines several foods and nutrients already proposed 38 as potential protective factors against development and progression of several age-related diseases [12-39 13]. A limited number of cross-sectional studies have examined the relationship between MeDi 40 adherence and bone health, and they have reported conflicting results. On the one hand, adherence to a 41 traditional MeDi has been associated with higher bone mineral density (BMD) among 100 Spanish 42 postmenopausal women (54 years on average) [14] whereas on the other hand, among 196 Greek 43 women (48 years on average), Kontogianni et al. [15] failed to evidence any association between 44 adherence to the MeDi and indices of bone mass. To our knowledge, the potential protective effect of 45 the MeDi against the risk of hip fractures has been evaluated prospectively only once, in the European 46 Prospective Investigation into Cancer and Nutrition (EPIC) study [16]. In this large cohort of adults 47 (N=188,795, 49 years on average and followed for a median of 9 years), a greater MeDi adherence 48 was associated with a significant 7% reduced risk of hip fractures. This analysis was restricted to the

- 49 risk of hip fractures, although the risk factors of fractures are site specific [17]. Moreover, the authors
- 50 were restrained to develop a modified MeDi score, to better take into account the low consumption of
- 51 olive oil in non-Mediterranean populations [16].
- 52 The aim of the present study was to investigate prospectively the relationship between adherence to a
- 53 MeDi and risk of fractures of the hip, wrist or vertebrae over 8 years, in a large population-based
- sample of older community-dwellers of both genders living in south-western France.

55 SUBJECTS AND METHODS

56 **Participants**

57 The data came from the Three-City (3C) study, a prospective cohort study of vascular risk factors of 58 dementia whose methodology has been described elsewhere [18]. The 3C study protocol was approved 59 by the Consultative Committee for the Protection of Persons participating in Biomedical Research at 60 Kremlin-Bicêtre University Hospital (Paris). A sample of 9,294 community dwellers aged 65+ was 61 selected in 1999-2000 from the electoral rolls of three French cities (Bordeaux, Dijon and 62 Montpellier). All participants gave written informed consent. At baseline, data collection included 63 socio-demographic information, lifestyle, symptoms and complaints, medical history, blood pressure, 64 anthropometric data, neuropsychological testing, and blood sampling. Four follow-up examinations 65 were performed, two (wave 1, in 2001-2002), four (wave 2, in 2003-2004), seven (wave 3, in 2006-66 2007) and ten years (wave 4, in 2009-2010) after baseline examination. The present study extends 67 between the wave 1 (baseline of this study) and wave 4 in Bordeaux, the only centre where the 68 standard data collection was completed with a comprehensive dietary survey at wave 1. 69 Among the 1,811 individuals from 3C-Bordeaux who accepted to participate at wave 1, 1,774 70 completed the dietary survey. We first excluded 62 participants who had two missing data or more 71 among dietary items and subsequently excluded 230 participants who were never visited between 72 wave 1 and wave 4 or who never completed history of fractures at visits; leaving 1,482 individuals for 73 the present analyses.

74

75 Fractures

Occurrence of new fractures since the previous examination was self-reported at each visit, as previously described [19]. Hip, vertebrae, wrist, upper member (shoulder, collarbone) and lower member (excluding hip) fractures were recorded. The outcome of interest was incidence of a fracture since wave 1. Because the risk factors of fractures are specific to the site of fracture [17], we studied separately the three main sites of osteoporosis-related fractures: hip fractures, wrist fractures and vertebral fractures. We also created a composite endpoint defined as incidence of a fracture whatever the type among the three sites: hip or wrist or vertebrae.

83

84 Dietary assessment and MeDi score

85 Participants were visited at home by a trained dietician who administered a food frequency 86 questionnaire (FFQ), not semi-quantitative, and a 24H dietary recall at wave 1 [20-21]. The 24H recall 87 was used to estimate nutrient intake in g/d, total energy intake in kcal/d and to compute the ratio of 88 monounsaturated to saturated fat (MUFA-to-SFA). Based on the FFQ, frequency of consumption of 89 40 categories of foods and beverages for each of the 3 main meals and 3 between-meals snacks was 90 recorded in 11 classes (from never to every days). The food items were aggregated into 20 food and 91 beverage groups as described elsewhere [21]. We identified the food groups considered to be part of 92 the MeDi: vegetables, fruits, legumes, cereals including bread, pasta and rice (whole and refined 93 grains), fish and seafood, meat, dairy products including yoghurts, milk and cheese, and alcohol. 94 Intake of each food group was determined in servings/week. Adherence to the traditional 95 Mediterranean-type diet was assessed by the MeDi score, a 10-point Mediterranean-diet scale. The 96 MeDi score was computed as follows: a value of 0 or 1 was assigned to each food group using sex-97 specific medians of the population as cut-offs, as suggested earlier by Trichopoulou et al. [22]. For 98 presumed beneficial components for health (ie vegetables, fruits, legumes, cereals and fish), 99 individuals whose consumption was above the median were assigned a value of 1, vs 0 for the others. 100 For components presumed to be detrimental for health (ie meat and dairy products), individuals whose 101 consumption was below the median were assigned 1, vs. 0 for the others. For alcohol, 1 point was 102 assigned to men if their consumption was within 7-to-14 glasses/week (10-to-20g/d) and to women if 103 their consumption was within 1-to-4 glasses/week (1.4-to-5.7g/d). These cut-offs, corresponding to the 104 second quartile of distribution of total alcohol intake in this population, were chosen to represent mild-105 to-moderate consumption. Finally, participants with a MUFA-to-SFA ratio above the sex-specific 106 median were assigned a value of 1, vs. 0 for those below the median. The MeDi score was generated 107 by adding the scores (0 or 1) for each food category. Thus, the MeDi score could range from 0 to 9 for 108 each participant, with higher scores indicating greater adherence [22].

109

110 Covariates

111 Socio-demographic information recorded at baseline included age, gender and education (six 112 educational levels grouped into four classes: no education or primary school only, secondary (middle) 113 school, high school or vocational school and university). Socio-demographic characteristics also 114 included marital status (married, divorced or separated, widowed, single) and income in four 115 categories (< 750 euros, 750 to 1500 euros, 1500 to 2250 euros, > 2250 euros per month). Height (in 116 m) and weight (in kg) were measured by the interviewers at wave 1. BMI was computed as the 117 weight/height² ratio and considered in four categories (< 21 kg/m², 21 to 25 kg/m², 25 to 30 kg/m², > 118 30 kg/m^2). Diabetes was defined as self-reported or as having an anti-diabetic medication at wave 1. 119 Smoking status (never, ex-smoker or current smoker) and regular practice of physical activity (ie 120 doing sport regularly or having at least 1 hour of leisure or household activity per day) were also 121 recorded. Self-reported history of osteoporosis was recorded at each wave. All drugs consumed at least 122 once a week during the last month were collected and prevention or treatment for osteoporosis was 123 recorded, including biphosphonates, raloxifene, strontium ranelate, teriparitide, calcitonine, and 124 supplementation with calcium and/or vitamin D. Long-term corticotherapy was defined as declaring 125 systemic or inhalation corticoid use at both baseline of the 3C study and at wave 1.

126

127 Statistical analyses

In a previous report on the same study sample (N=1,482), baseline demographic and clinical characteristics have been compared between individuals who reported an incident fracture (n=155) and those who remained free from fracture during follow-up [19]. In the present study, we also described the demographic, clinical and dietary characteristics of individuals who reported an incident fracture of the hip, the wrist or the vertebrae separately.

133 The frequency of consumption of each food group composing the MeDi score, expressed as mean

134 number of servings/week, was compared between men and women by Student's t test.

135 We then explored associations between MeDi score and incidence of fractures using Cox

136 proportional hazards models taking age as the time scale. Hazard ratios (HR) and 95% confidence

137 intervals (95% CI) were estimated for 1-point increase of the MeDi score considered as a continuous

138 variable.

139 These analyses were also performed for each individual MeDi component, adjusted for all other 140 components. For these analyses, MeDi components were considered dichotomously, as defined for the 141 computation of the MeDi score, and a three-level variable was generated to better describe the 142 consumption of alcohol. Indeed, a mild-to-moderate consumption of alcohol, corresponding to the 143 second quartile of distribution of total alcohol intake, was defined by a consumption within 7-to-14 144 glasses/week for men, and within 1-to-4 glasses/week for women and chosen as reference. The first 145 quartile of distribution of total alcohol intake (<7 or 4 glasses/week for men and women respectively) 146 was therefore defined as "no or low consumption", whereas a "high consumption" corresponded to the 147 third and fourth quartiles of distribution (>14 or 4 glasses/week for men and women respectively). 148 Since dairy products constitute a MeDi component of primary interest for bone health, additional 149 Cox proportional hazards analyses were performed considering yoghurts, milk and cheese 150 consumption as individual food categories (1 was assigned to each individual whose consumption of 151 milk, yoghurts or cheese was lower than the respective sex-specific medians of consumption of the 152 sample, otherwise 0). These models were also adjusted for all other dietary components. 153 Covariates were selected for multivariate models when associated with either incidence of hip or 154 wrist or vertebral fracture at a statistical level $\alpha < 0.20$ in univariate analyses, as described elsewhere 155 [19]. Two models were performed. First, we adjusted for age, gender, physical activity and total 156 energy intake (model 1). Then, we considered additional adjustment for educational level, marital 157 status, BMI, self-reported osteoporosis, osteoporosis treatment, and intake of calcium and/or vitamin 158 D supplements (model 2).

All statistical analyses were performed with SAS Statistical package (Version 9.1 SAS Institute).

160 **RESULTS**

161 At baseline, the mean age of the participants (N=1,482, 550 men, 932 women) was 75.9y (range

- 162 67.7-94.9). Over the 8-y follow-up, 155 individuals reported a fracture at any of the three sites,
- 163 including 57 hip fractures (46 among women), 43 vertebral fractures (37 among women) and 73 wrist
- 164 fractures (65 among women). Among men (N=550), 23 (4.2%) incident fractures were reported over 8
- 165 years: 11 (2.0%) hip fractures, 8 (1.5%) wrist fractures and 6 (1.1%) vertebral fractures. Among 932
- 166 women of the study sample, 132 (14.1%) incident fractures were reported over 8 years, divided as 46
- 167 (4.9%) of hip fractures, 65 (7.0%) wrist fractures and 37 (4.0%) vertebral fractures. The
- 168 sociodemographic and health characteristics of all participants are described in Table 1. Regarding
- 169 MeDi adherence, individuals with an incident fracture at any of the three sites had a higher mean
- 170 MeDi score at baseline than those who remained free of fracture during follow-up (4.64, (standard
- 171 deviation (sd) 1.72) vs. 4.35 (sd 1.67), P=0.04).
- 172

173 The sex-specific medians of consumption of food groups used to compute the MeDi score are 174 presented in Table 2. Mean consumption of cheese, meat, legumes and alcohol was significantly lower 175 in women, while mean consumption of yoghurts was significantly higher in women than in men. Mean 176 consumption of vegetables, fruits, fish, milk and of the MUFA-to-SFA ratio was not significantly 177 different between both genders (**Table 2**).

178

In multivariate analyses adjusted for age, gender, physical activity, total energy intake, educational level, marital status, BMI, self-reported osteoporosis, osteoporosis treatment, calcium and/or vitamin D treatment, a borderline significant association between MeDi score and an increased risk of fracture at any site (HR = 1.10, 95% CI 0.99-1.21, P=0.08), and, specifically of hip fracture (HR = 1.18, 95% CI 0.99-1.39, P=0.06) was observed (**Table 3**, model 2). Conversely, adherence to the MeDi was not significantly associated with the risk of vertebral or wrist fracture.

In secondary analyses, we examined whether associations between MeDi adherence and risk of
fractures were driven by particular food categories (**Table 4**). In fully adjusted models, greater fruit

188 consumption (i.e. >14 servings/week in men and women combined) was significantly associated with 189 a doubled 8-y risk of hip fracture (HR high vs low = 1.95, 95% CI 1.04-3.66, P=0.04). Furthermore, 190 lower intake of dairy products (i.e. <17.0 servings/week in men and <17.9 servings/week in women) 191 was significantly associated with an increased risk of fracture at any site (HR low vs high = 1.51, 95%192 CI 1.07-2.11, P=0.02), and, specifically, with a doubled risk of wrist fracture (HR low vs high = 2.03, 193 95% CI 1.22-3.39, P=0.007), but not other sites. Higher levels of alcohol intake (>14 glasses/week in 194 men and >4 glasses/week in women) and marginally, low alcohol intake were associated with a 195 significant reduction (39% for high intake, 33% for low intake, P for trend=0.03) of risk of fracture at 196 any site. A MUFA-to-SFA ratio higher than 0.8 was significantly associated with a reduced risk of 197 vertebral fracture in the model adjusted for age, gender, physical activity, total energy intake and all 198 other dietary components the MeDi score. However, this association was no longer significant in fully 199 adjusted models.

200

We further analyzed the association between the type of dairy product and the risk of fracture (**Table** 5). Elderly subjects who declared a consumption of yoghurts lower than the median, i.e. <6 servings/week in men and <7 in women, were at increased risk of wrist fracture only (HR low *vs* high = 1.98, 95% CI 1.22-3.21, P=0.005). By contrast, a low consumption of milk or cheese was not associated with the risk of fracture of the hip, the wrist or the vertebrae, in fully adjusted models (**Table 5**). When considering the risk of fracture whatever the type among the three sites, the low consumption of yoghurts, milk or cheese was not associated with the overall risk of fracture.

208 **DISCUSSION**

209

210 In this longitudinal population-based study of French older adults, a greater adherence to a 211 Mediterranean-type diet was significantly associated with an increased risk of fracture, after 212 adjustment for age, gender, physical activity and total energy intake. Two MeDi components appeared 213 to independently drive this association: a high consumption of fruits (>2 servings/day) and a low 214 consumption of yoghurts (<1 serving/day) were significantly associated with a doubled risk of fracture 215 of the hip and the wrist respectively, in fully adjusted models. Moreover, a consumption of alcohol 216 higher than 14 glasses/week for men or 4 glasses/week for women was significantly associated with a 217 39% reduced risk of fracture at any site over time.

218

219 To our knowledge, a single study reported an inverse association between adherence to a 220 Mediterranean-type diet and the risk of hip fracture in European older persons [16], which was not in 221 agreement with the present results. Indeed, in this large cohort of adults enrolled in the EPIC study 222 (N=188,795 participants, 802 incident hip fractures), higher adherence to the MeDi was associated 223 with a 7% decrease in hip fracture incidence, notably among participants aged 60y + and among men 224 in the model adjusted only for age [16]. In analyses where the dietary components of the MeDi were 225 mutually adjusted, as in the present study, the components that were significantly associated with the 226 risk of hip fracture in the overall sample were vegetables, meat and ethanol intake. However, several 227 differences between the EPIC study and the present one could explain such discrepancies. First, the 228 statistical power of this French study (only 57 incident hip fractures in the present study) was greatly 229 lower than that of the European study. This may have reduce our chance to evidence stronger or 230 additional associations between MeDi adherence and risk of fracture at any site (or at specific site) 231 among French people. Second, the results from the EPIC study suggested that the prevention of hip 232 fracture might be more challenging in women than in men. Only 11 men (among 57) were identified 233 with an incident hip fracture in the present study which prevented us to stratify our analyses based on 234 gender. Third, country specific characteristics of the dietary patterns may partly explain the 235 discrepancies between the French and the EPIC studies. Indeed, a modified MeDi score has been

236 defined in the EPIC cohort, by substituting the monounsaturated lipids (MUFA) with the sum of 237 mono- and poly- unsaturated fatty acids in the numerator of the lipid ratio, to better take into account 238 the low consumption of olive oil and MUFA in non-Mediterranean populations [16]. Among the eight 239 countries participating in the EPIC study, only three have Mediterranean origins (Greece, Italy and 240 Spain) but there were no data from France. Traditionally, even among Mediterranean countries, 241 distinct dietary habits exist, as already described by Sofi [23]. More importantly, the MeDi score was 242 computed according to sex-specific medians of consumption of only 9 food groups of each study 243 sample, which limited the generalization of the results and prevented definite conclusions. Altogether, 244 these differences could in part explain the lack of homogeneous results of the association between a 245 Mediterranean-type diet and risk of hip fracture among European and French elderly. Finally, 246 adherence to the MeDi may be considered as lifestyle and may reflect specific health concerns and 247 behaviors that may differ between countries, particularly regarding practice of physical exercise or use 248 of supplements, part of lifestyle but not considered in the diet score computation. 249 Besides, the impact of MeDi adherence on bone health remains unclear. Indeed, of the existing 250 literature, only two cross-sectional studies, including small samples of women, younger than the 251 participants of the present study, were available and yielded mixed results [14-15]. Moreover, a cross-252 sectional study using another diet quality assessment tool failed to report any significant relation 253 between the Healthy Eating Index (HEI-2005) and several bone turnover markers among post-254 menopausal women aged 45y + [24].

255

256 A posteriori derived dietary patterns, independent of any assumption on the beneficial or harmful 257 effects of food intakes, have also been examined in association with bone health, but less often with 258 fracture risk. For instance, a pattern characterized by a high consumption of fruits, vegetables and 259 whole grains might be an optimal dietary strategy to avoid fractures, particularly in older women, in a 260 Canadian study [25]. However, among Japanese adult women, a pattern characterized by high 261 consumption of vegetables was associated with an increased risk of fractures, and another one 262 characterized by a high consumption of meat was associated with a reduced risk of fractures [26]. 263 Finally, in the 3C study, we previously reported that dietary patterns rich in cheese, milk and

264 charcuteries derived from principal component analysis, were related to a lower risk of hip and wrist265 fractures over 8-y of follow-up [19].

266

267 Among the food groups composing the MeDi score, and unlike most previous studies, we identified 268 an increased risk of hip fractures in participants with a high consumption of fruits, in the fully adjusted 269 model. The association between fruit intake and risk of fractures has scarcely been assessed 270 independently of that of vegetables, which were not associated with the risk of fractures in the present 271 study [27]. A higher fruit consumption was not associated with a significant reduced risk of hip 272 fractures, in the overall sample, in analyses mutually adjusted for the food groups composing the 273 MeDi score in different reports from the EPIC cohort [16][28], suggesting that the relationship 274 between fruit intake and risk of hip fracture remains questionable. The potential benefit of fruits and 275 vegetables is based on their ability to emphasize alkaline status, therefore counterbalancing the acidic 276 load that might lead to osteoporosis [27, 29]; however, conflicting results have also been reported [30]. 277 A meta-analysis, which has called the dietary acid-ash hypothesis on bone loss into question, 278 concluded that there is no evidence that an alkaline diet is protective of bone health [29]. Given the 279 lack of biological plausibility for an adverse effect of fruits on bone health, another explanation might 280 be that older adults consuming high amounts of fruits have specific behaviours or health conditions 281 associated with an increased risk of hip fracture, acting as confounding factors that cannot be totally 282 ruled out here despite multivariate adjustment. Finally, we cannot exclude that our unexpected result 283 may be due to chance finding.

284

As expected, we found that a low consumption of dairy products was significantly associated with an increased risk of fractures. Less attention has been paid in the literature to specific categories of dairy products. In our study, consuming less than one serving of yoghurt/day was associated with a doubled risk of wrist fracture. Dairy products are the main dietary providers of calcium. In a previous paper, we reported that higher MeDi adherents of the 3C study are those with the lowest calcium intake [31]. Calcium homeostasis and vitamin D status are closely related, particularly with respect to fracture risk [7], although the impact of calcium and/or vitamin D supplementation on the prevention of fracture

risk remains questionable [32-33]. Regarding milk consumption, our results are in agreement with
those of two meta-analyses in which a low intake of milk was not associated with any marked increase
in fracture risk, notably hip fracture risk [34-35].

295

296 Alcoholism is known to have negative effects on bone [16, 36], but an inverse U-shaped association 297 between alcohol intake and risk of fracture at any site was observed in the present study. Conversely, a 298 J-shaped relationship between alcohol consumption and hip fracture risk has already been reported 299 [37] and a threshold effect (2 units per day or more) has been defined [38]. Several explanations for 300 these results could be evoked. A first interpretation would be the relevance of using non-drinkers as a 301 reference group, unlike in the current study. Indeed, present non-drinkers may have given up alcohol 302 for medical reasons and be in poorer health status than drinkers. A second interpretation would be that 303 adjustment for major potential confounders was missing in most studies of the existing literature [37], 304 while our models are fully adjusted, including other food groups composing the MeDi score and 305 energy intake. Finally, high alcohol consumers of the current study, identified as men with a 306 consumption >2 glasses/day and women with a consumption >4 glasses/week, should not be 307 considered as excessive drinkers but as ordinary elderly consumers with French cultural lifestyles 308 including regular alcohol drinking [20]. 309 Among the other food groups composing the MeDi score, we did not observe any association with

the risk of fractures, whereas some relationships could have been expected. For instance, fish intake, as main provider of dietary vitamin D, has been suggested to be protective against bone loss if consumption was at or over 3 servings/week, while some opposite results exist as well [39-40], and we

313 previously reported that high MeDi adherents of the 3C study had a mean consumption of 3.7 servings

of fish a week [41]. Although still debated, many epidemiological studies, but not the EPIC study,

315 have suggested a positive impact of diets rich in proteins on bone health, especially on the risk of

316 fracture [16, 42-43].

317

318 There are nevertheless some potential limitations to our findings. First, the FFQ used in the present 319 study did not allow estimation of portion sizes. The lack of estimation of portion size may lead to 320 consider people with the same frequency of intake of each food group of the MeDi score as 321 comparable, although they may have different quantitative food consumptions [31, 44]. Regarding 322 outcomes, the self-reported history of fractures could induce an information bias which cannot be 323 checked against objective measures of osteoporosis in this cohort. This could be a major issue 324 especially for vertebral fractures which are initially asymptomatic and thus escape to personal and 325 clinical detection. The lack of association between MeDi adherence, or a component of the MeDi 326 score, with vertebral fractures in fully adjusted models could be in part attributed to their 327 underdiagnosis. Third, a selection bias cannot be dismissed and could have limited our ability to find 328 additional or stronger associations. Not included individuals (n=230) were significantly older, with 329 lower BMI, were more often sedentary, and had less often diabetes (data not shown). They took less 330 often calcium and/or vitamin D supplements, and had less often treatment for osteoporosis and long-331 term corticotherapy. Moreover, not included individuals had a lower mean MeDi score than included 332 participants (4.1 (sd 1.5) vs. 4.4 (sd 1.7), P=0.02). However, the frequency of reported events among 333 participants included in the present study was slightly lower than that expected among European older 334 people [4].

335 Despite these limitations, the strengths of the present study are the population-based design, 336 including both genders, with long follow-up, the respective account of hip, wrist and vertebrae fracture 337 risk, and the accuracy of food-intake assessment [31]. Moreover, we controlled our analyses for 338 numerous potential confounders including energy intake, BMI, and physical activity. There is a very 339 few vitamin D fortification in most food groups in France, and the calcium and/or vitamin D 340 supplementation and the osteoporosis treatment were also considered as confounders, since they could 341 influence bone health, unlike in the EPIC study.

342

In conclusion, we found in this large cohort of French elderly community dwellers that a diet closer to a Mediterranean-type diet had a borderline significant deleterious effect on the risk of fractures, in part linked to a low consumption of dairy products and a high consumption of fruits, for which the explanation remains unclear. A high adherence to this French MeDi, as assessed by the MeDi score in the current study, seems not to be beneficial to the prevention of fractures and consequently to bone

- 348 health in French elderly adults [16]. The present results suggested that the widely recognized
- 349 beneficial effects of the MeDi on health could be reviewed, although more studies are needed to
- 350 disentangle these results.

ACKNOWLEDGMENTS

Funding / Support: The Three-City Study is conducted under a partnership agreement between the Institut National de la Santé et de la Recherche Médicale (INSERM), the Institut de Santé Publique et Développement of the Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l'Education Nationale, Institut de la Longévité, Regional Governments of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research - INSERM Programme "Cohortes et collections de données biologiques."

This specific analysis within the Three-City Study was funded by a research agreement between the INSERM and Danone Research.

Conflict of interest

Catherine Féart received fees for conferences from Danone Research. Cécilia Samieri and Simon Lorrain report no conflict of interest. Luc Letenneur receives research support from Danone Research. Vanessa Ginder Coupez and Damien Paineau are members of Danone Research. Pascale Barberger-Gateau served on a scientific advisory board for Caisse Nationale pour la Solidarite et l'Autonomie (CNSA); has received funding for travel and speaker honoraria from Lesieur, Bausch & Lomb, Aprifel, Danone Institute, Canadian Association of Gerontology, and the Jean Mayer Human Nutrition Research Center on Aging, Tufts University; serves on the editorial boards of Disability and Rehabilitation; has received consultancy fees from Vifor Pharma; and receives research support from Lesieur, Danone, Agence Nationale de la Recherche, Conseil Régional d'Aquitaine, Institut Carnot LISA and Groupe Lipides et Nutrition.

Authors' contributions to manuscript

I) designed research (project conception, development of overall research plan, and study oversight):PBG, DP

2) conducted research (hands-on conduct of the experiments and data collection): PBG, LL

- 3) provided essential reagents or provided essential materials: PBG, LL
- 4) analyzed data or performed statistical analysis: CF, SL
- 5) wrote paper: CF, PBG
- 6) had primary responsibility for final content: CF
- 7) provided significant advice: PBG, LL,VC, CS, DP
- All the authors read the draft critically.

REFERENCES

- 1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. *J Bone Miner Res* 2007, 22(3):465-475.
- 2. Rachner TD, Khosla S, Hofbauer LC: Osteoporosis: now and the future. *Lancet* 2011, 377(9773):1276-1287.
- 3. Johnell O, Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. *Osteoporos Int* 2006, 17(12):1726-1733.
- 4. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C: A systematic review of hip fracture incidence and probability of fracture worldwide. *Osteoporos Int* 2012, 23(9):2239-2256.
- 5. Body JJ, Bergmann P, Boonen S, Boutsen Y, Bruyere O, Devogelaer JP, Goemaere S, Hollevoet N, Kaufman JM, Milisen K *et al*: Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. *Osteoporos Int* 2011, 22(11):2769-2788.
- 6. Tucker KL: Osteoporosis prevention and nutrition. *Curr Osteoporos Rep* 2009, 7(4):111-117.
- 7. Chung M, Lee J, Terasawa T, Lau J, Trikalinos TA: Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated metaanalysis for the U.S. Preventive Services Task Force. *Ann Int Med* 2011, 155(12):827-838.
- 8. Bischoff-Ferrari HA, Willett WC, Orav EJ, Lips P, Meunier PJ, Lyons RA, Flicker L, Wark J, Jackson RD, Cauley JA *et al*: A pooled analysis of vitamin D dose requirements for fracture prevention. *N Engl J Med* 2012, 367(1):40-49.
- 9. Ahmadieh H, Arabi A: Vitamins and bone health: beyond calcium and vitamin D. *Nutr Rev* 2011, 69(10):584-598.
- 10. Kant AK: Dietary patterns and health outcomes. *J Am Diet Assoc* 2004, 104(4):615-635.
- 11. Jacobs DR, Jr., Gross MD, Tapsell LC: Food synergy: an operational concept for understanding nutrition. *Am J Clin Nutr* 2009, 89(5):1543S-1548S.
- 12. Sofi F, Abbate R, Gensini GF, Casini A: Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. *Am J Clin Nutr* 2010, 92(5):1189-1196.
- 13. Feart C, Samieri C, Barberger-Gateau P: Mediterranean diet and cognitive function in older adults. *Curr Opin Clin Nutr Metab Care* 2010, 13(1):14-18.
- Rivas A, Romero A, Mariscal-Arcas M, Monteagudo C, Feriche B, Lorenzo ML, Olea F: Mediterranean diet and bone mineral density in two age groups of women. *Int J Food Sci Nutr* 2012.
- 15. Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N: Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. *Nutrition* 2009, 25(2):165-171.
- 16. Benetou V, Orfanos P, Pettersson-Kymmer U, Bergstrom U, Svensson O, Johansson I, Berrino F, Tumino R, Borch KB, Lund E *et al*: Mediterranean diet and incidence of hip fractures in a European cohort. *Osteoporos Int* 2012.
- 17. Cummings SR, Melton LJ: Epidemiology and outcomes of osteoporotic fractures. *Lancet* 2002, 359(9319):1761-1767.
- 18. The 3C Study Group: Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. *Neuroepidemiol* 2003, 22:316-325.

- 19. Samieri C, Ginder Coupez V, Lorrain S, Letenneur L, Alles B, Feart C, Paineau D, Barberger-Gateau P: Nutrient patterns and risk of fracture in older subjects: results from the Three-City Study. *Osteoporos Int* 2012.
- 20. Feart C, Jutand MA, Larrieu S, Letenneur L, Delcourt C, Combe N, Barberger-Gateau P: Energy, macronutrient and fatty acid intake of French elderly community dwellers and association with socio-demographic characteristics: data from the Bordeaux sample of the Three-City Study. *Br J Nutr* 2007, 98:1046-1057.
- 21. Samieri C, Jutand MA, Feart C, Capuron L, Letenneur L, Barberger-Gateau P: Dietary patterns derived by hybrid clustering method in older people: association with cognition, mood, and self-rated health. *J Am Diet Assoc* 2008, 108(9):1461-1471.
- 22. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D: Adherence to a Mediterranean diet and survival in a Greek population. *N Engl J Med* 2003, 348(26):2599-2608.
- 23. Sofi F: The Mediterranean diet revisited: evidence of its effectiveness grows. *Curr Opin Cardiol* 2009, 24(5):442-446.
- 24. Hamidi M, Tarasuk V, Corey P, Cheung AM: Association between the Healthy Eating Index and bone turnover markers in US postmenopausal women aged >/=45 y. *Am J Clin Nutr* 2011, 94(1):199-208.
- 25. Langsetmo L, Hanley DA, Prior JC, Barr SI, Anastassiades T, Towheed T, Goltzman D, Morin S, Poliquin S, Kreiger N: Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged >/= 50 y: a population-based cohort study. *Am J Clin Nutr* 2011, 93(1):192-199.
- 26. Monma Y, Niu K, Iwasaki K, Tomita N, Nakaya N, Hozawa A, Kuriyama S, Takayama S, Seki T, Takeda T *et al*: Dietary patterns associated with fall-related fracture in elderly Japanese: a population based prospective study. *BMC Geriatr* 2010, 10:31.
- 27. Hamidi M, Boucher BA, Cheung AM, Beyene J, Shah PS: Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. *Osteoporos Int* 2011, 22(6):1681-1693.
- 28. Benetou V, Orfanos P, Zylis D, Sieri S, Contiero P, Tumino R, Giurdanella MC, Peeters PH, Linseisen J, Nieters A *et al*: Diet and hip fractures among elderly Europeans in the EPIC cohort. *Eur J Clin Nutr* 2011, 65(1):132-139.
- 29. Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA: Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. *Nutr J* 2011, 10:41.
- 30. McLean RR, Qiao N, Broe KE, Tucker KL, Casey V, Cupples LA, Kiel DP, Hannan MT: Dietary acid load is not associated with lower bone mineral density except in older men. *J Nutr* 2011, 141(4):588-594.
- 31. Feart C, Alles B, Merle B, Samieri C, Barberger-Gateau P: Adherence to a Mediterranean diet and energy, macro-, and micronutrient intakes in older persons. *J Physiol Biochem* 2012, 68(4):691-700.
- 32. Ott SM: Review: Vitamin D with calcium reduces fractures in adults. *Ann Int Med* 2012, 156(12):JC6-7.
- 33. Rabenda V, Bruyere O, Reginster JY: Relationship between bone mineral density changes and risk of fractures among patients receiving calcium with or without vitamin D supplementation: a meta-regression. *Osteoporos Int* 2011, 22(3):893-901.
- 34. Kanis JA, Johansson H, Oden A, De Laet C, Johnell O, Eisman JA, Mc Closkey E, Mellstrom D, Pols H, Reeve J *et al*: A meta-analysis of milk intake and fracture risk: low utility for case finding. *Osteoporos Int* 2005, 16(7):799-804.

- 35. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, Kiel DP, Burckhardt P, Henschkowski J, Spiegelman D *et al*: Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies. *J Bone Miner Res* 2011, 26(4):833-839.
- 36. Drake MT, Murad MH, Mauck KF, Lane MA, Undavalli C, Elraiyah T, Stuart LM, Prasad C, Shahrour A, Mullan RJ *et al*: Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. *J Clin Endocrinol Metab* 2012, 97(6):1861-1870.
- 37. Berg KM, Kunins HV, Jackson JL, Nahvi S, Chaudhry A, Harris KA, Jr., Malik R, Arnsten JH: Association between alcohol consumption and both osteoporotic fracture and bone density. *Am J Med* 2008, 121(5):406-418.
- Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA, Pols H, Tenenhouse A: Alcohol intake as a risk factor for fracture. *Osteoporos Int* 2005, 16(7):737-742.
- 39. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL: Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. *Am J Clin Nutr* 2011, 93(5):1142-1151.
- 40. Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS: Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. *J Bone Miner Res* 2010, 25(9):1972-1979.
- 41. Feart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues JF, Scarmeas N, Barberger-Gateau P: Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. *Jama* 2009, 302(6):638-648.
- 42. Dargent-Molina P, Sabia S, Touvier M, Kesse E, Breart G, Clavel-Chapelon F, Boutron-Ruault MC: Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study. *J Bone Miner Res* 2008, 23(12):1915-1922.
- 43. Jesudason D, Clifton P: The interaction between dietary protein and bone health. *J Bone Miner Metab* 2011, 29(1):1-14.
- 44. Feart C, Samieri C, Alles B, Barberger-Gateau P: Potential benefits of adherence to the Mediterranean diet on cognitive health. *Proc Nutr Soc* 2013, 72(1):140-152.

Table 1. Ba	seline demographic, l	health and dietary	v characteristics	of the participant	s at baseline a	according to	8-year incidence	of a fracture,	in the
Bordeaux sa	ample of the Three-Ci	ity study (2001-24	009) (N=1482)						

	F	lip fracture (n=57)	Verte	ebral fracture (n=43)	Wris (t fracture n=73)	Fractur (]	re at any site* N=155)	No incio (N	dent fracture I=1327)
Sociodemographic characteristics										
Age v mean (SD)	78.1	(4.6)	76.6	(4.5)	76.0	(47)	769	(4.6)	759	(49)
Male sex $n(\%)$	11	(19.3)	6	(14.0)	8	(11.0)	23	(14.8)	527	(39.7)
Education, n (%)		(1).5)	0	(1110)	0	(11.0)	20	(11.0)	521	(3).()
None or primary	20	(35.1)	13	(30.2)	23	(31.5)	50	(32.3)	441	(33.2)
Secondary	16	(28.1)	11	(25.6)	19	(26.0)	41	(26.5)	358	(27.0)
High school	11	(19.3)	11	(25.6)	25	(34.3)	42	(27.1)	273	(20.6)
University	9	(15.8)	8	(18.6)	5	(6.9)	21	(13.6)	247	(18.6)
Refused to answer	1	(1.8)	0	(0.0)	1	(1.4)	1	(0.7)	8	(0.6)
Income, n (%)								()	-	
<750 €	7	(12.3)	3	(7.0)	5	(6.9)	13	(8.4)	92	(6.9)
[750-1500] €	12	(21.)	15	(34.9)	27	(37.0)	47	(30.3)	392	(29.5)
[1500-2250]€	15	(26.3)	13	(30.2)	18	(24.7)	42	(27.1)	334	(25.2)
> 2250 €	19	(33.3)	8	(18.6)	14	(19.2)	38	(24.5)	412	(31.1)
Refused to answer	4	(7.0)	4	(9.3)	9	(12.3)	15	(9.7)	97	(7.3)
Marital status, n (%)		× ,				× ,		~ /		
Married	30	(52.6)	15	(34.9)	28	(38.4)	69	(44.5)	732	(55.2)
Divorced /	3	(5.3)	3	(7.0)	3	(4.1)	9	(5.8)	105	(7.9)
separated		~ /								
Widowed	21	(36.8)	18	(42.0)	33	(45.2)	63	(40.7)	408	(30.7)
Single	3	(5.3)	7	(16.3)	9	(12.3)	14	(9.0)	82	(6.2)
Health indicators										
BMI, n (%)										
< 21	4	(7.0)	7	(16.3)	10	(13.7)	17	(11.0)	82	(6.2)
[21-25[23	(40.4)	10	(23.3)	25	(34.3)	53	(34.2)	389	(29.3)
[25-30]	22	(38.6)	21	(48.8)	24	(32.9)	61	(39.4)	590	(44.5)
> 30	6	(10.5)	3	(7.0)	13	(17.8)	21	(13.6)	232	(17.5)
Refused to answer	2	(3.5)	2	(4.7)	1	(1.4)	3	(1.9)	34	(2.6)

]	Hip fracture (n=57)	Vert	tebral fracture (n=43)	Wris (1	t fracture n=73)	Fractur (1	re at any site* N=155)	No incie (N	dent fracture V=1327)
						,		·		·
Diabetes, n (%)	5	(8.8)	4	(9.3)	4	(5.5)	13	(8.4)	138	(10.4)
Smoking, n (%)										
Never	34	(59.7)	26	(60.5)	59	(80.8)	108	(69.7)	812	(61.2)
Former	18	(31.6)	10	(23.3)	11	(15.1)	37	(23.9)	429	(32.3)
Current	5	(8.8)	6	(14.0)	2	(2.7)	9	(5.8)	85	(6.4)
Physical activity, n										
(%)										
Yes	12	(21.1)	10	(23.3)	17	(23.3)	38	(24.5)	375	(28.3)
No	27	(47.4)	23	(53.5)	44	(60.3)	82	(52.9)	731	(55.1)
Refused to answer	18	(31.6)	10	(23.3)	12	(16.4)	35	(22.6)	221	(16.6)
Calcium and/or	8	(14.0)	11	(25.3)	11	(15.1)	27	(17.4)	104	(7.8)
vitamin D treatment,								· · ·		
n (%)										
Osteoporosis	5	(8.8)	8	(18.6)	2	(2.7)	11	(7.1)	47	(3.5)
treatment, n (%)				× ,		~ /		~ /		
Long-term	1	(1.8)	0	(0.0)	3	(4.1)	4	(2.6)	35	(2.6)
corticotherapy ^a , n				~ /				~ /		
(%)										
. ,										
Dietary										
characteristic										
MeDi score, mean	4.72	(1.51)	4.49	(1.72)	4.66	(1.80)	4.64	(1.72)	4.35	(1.67)
(SD)		· · ·		· · ·		. ,		· · ·		

Abbreviations: BMI: Body Mass Index.

 $^{\rm a}$ systemic or inhalation corticoid use both at baseline of the 3C study and at wave 1

* Fracture at any sites among the hip, the wrist and the vertebrae

		Men		V			
	r	n=550		r	n=932		
Food categories, servings per week	Median	Mean	SD	Median	Mean	SD	P*
Dairy products	17.0	18.0	7.8	17.9	18.6	7.8	0.15
Yoghurt	6.0	5.8	4.9	7.0	8.0	5.2	< 0.0001
Milk	0.25	3.7	4.4	0.25	3.4	4.5	0.13
Cheese	7.0	8.4	4.7	7.0	7.2	4.5	< 0.0001
Meat	5.0	5.3	2.6	4.0	4.5	2.3	< 0.0001
Vegetables	19.1	19.6	7.3	18.0	19.0	7.2	0.13
Fruits	14.0	13.2	6.7	14.0	13.7	7.0	0.17
Legumes	0.5	0.8	0.8	0.5	0.5	0.5	< 0.0001
Cereals ^a	23.6	23.2	5.2	23.0	21.3	6.5	< 0.0001
Fish	2.8	2.9	1.7	2.5	2.8	1.8	0.35
MUFA-to-SFA ratio ^b	0.8	0.9	0.3	0.8	0.9	0.3	0.99
Alcohol ^c		16.9	14.6		5.9	6.8	< 0.0001
No or low		1.8	1.8		0.0	0.0	< 0.0001
Mild-to-moderate		9.7	3.0		2.0	1.1	< 0.0001
High		27.9	12.9		11.2	6.4	< 0.0001

Table 2. Baseline median and mean number of servings per week for individual MeDi components and mean MUFA-to-SFA ratio by gender, among older persons living in Bordeaux, The Three-City study (2001-2002) (N=1482)

Abbreviations: MUFA-to-SFA Monounsaturated fatty acid-to-saturated fatty acid ratio

^a Cereals included consumption of cereals, bread, pasta and rice (whole and refined grains)

^b The 24H recall was used to compute the MUFA-to-SFA ratio (intake g/d)

^c Number of glasses per week. For the computation of the MeDi score, we attributed a value of 1 for people whose consumption was mild-to moderate, corresponding to the second quartile of distribution of total alcohol intake. One point was given to men if their consumption was within 7-to-14 glasses per week (10-to-20g/d) (N=150) and to women if consumption was within 1-to-4 (1.4-to-5.7g/d) glasses per week (N=238). "No or low consumption" corresponded to the first quartile of distribution of total alcohol intake (less than 7 or 4 glasses per week for men (N=126) and women (N=244) respectively). "High consumption" corresponded to the third and fourth quartiles of distribution (over 14 or 4 glasses per week for men (N=274) and women (N=450) respectively).

* *P*-value for Student's t test comparing mean consumption of individual food intake or ratios between men and women.

Table 3. Multivariate associations between adherence to a Mediterranean diet, as assessed by the MeDi Score (continuous) at baseline, and incidence of fracture among older persons living in Bordeaux, The Three-City study (2001-2009)

	Hip fracture		Vertebral fracture		Wrist frac	ture	Fracture at any site*	
	HR	Р	HR	Р	HR	Р	HR	Р
	(95% CI)		(95% CI)		(95% CI)		(95% CI)	
Model 1 (N=1,482)								
MeDi Score	1.18 (1.00-1.39)	0.05	1.06 (0.88-1.28)	0.54	1.12 (0.97-1.29)	0.13	1.12 (1.02-1.24)	0.02
Model 2 (N=1,435)								
MeDi Score	1.18 (0.99 -1.39)	0.06	1.06 (0.87-1.29)	0.55	1.09 (0.94-1.26)	0.25	1.10 (0.99-1.21)	0.08

Abbreviations: MeDi Mediterranean diet; HR Hazard ratio; CI Confidence Intervals

Hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated for 1-unit increase of the MeDi score

P -value for Cox proportional hazard models

* Fracture at any sites among the hip, the wrist and the vertebrae

Model 1 was adjusted for age, gender, physical activity and total energy intake

Model 2 as Model 1 plus additional adjustment for educational level, marital status, BMI, self-reported osteoporosis, osteoporosis treatment, calcium and/or vitamin D treatment

	Hip fractur	e	Vertebral frac	ture	Wrist fractu	ire	Fracture at any	v site*
	HR	Р	HR	Р	HR	Р	HR	Р
	(95%CI)		(95%CI)		(95%CI)		(95%CI)	
Model 1 (N=1,482)†								
Low dairy products	1.03 (0.60-1.76)	0.92	1.73 (0.91-3.27)	0.09	1.97 (1.20-3.24)	0.008	1.58 (1.13-2.20)	0.007
Low meats	0.96 (0.55-1.68)	0.88	0.71 (0.37-1.39)	0.32	0.74 (0.44-1.22)	0.23	0.78 (0.56-1.10)	0.16
High vegetables	1.51 (0.86-2.68)	0.15	1.45 (0.75-2.77)	0.27	0.69 (0.43-1.11)	0.12	1.01 (0.72-1.40)	0.97
High fruits	1.74 (0.96-3.16)	0.07	0.75 (0.40-1.39)	0.36	1.15 (0.71-1.85)	0.58	1.16 (0.83-1.62)	0.38
High legumes	0.93 (0.54-1.59)	0.78	1.06 (0.56-2.00)	0.85	0.93 (0.58-1.50)	0.76	0.96 (0.69-1.33)	0.78
High cereals ^a	1.09 (0.62-1.90)	0.77	0.95 (0.51-1.80)	0.88	1.41 (0.86-2.31)	0.18	1.11 (0.79-1.55)	0.56
High fish	1.07 (0.62-1.85)	0.81	1.54 (0.82-2.91)	0.18	1.05 (0.65-1.70)	0.83	1.33 (0.95-1.85)	0.10
High MUFA-to-SFA ratio	0.98 (0.57-1.67)	0.94	0.48 (0.25-0.91)	0.02	1.47 (0.90-2.38)	0.12	0.94 (0.68-1.31)	0.73
Alcohol ^b								
No or low	0.48 (0.23-1.03)	0.15	0.46 (0.19-1.13)	0.17	0.94 (0.52-1.69)	0.13	0.66 (0.43-1.02)	0.03
Mild-to-moderate	1		1		1		1	
High	0.69 (0.38-1.25)		0.60 (0.31-1.18)		0.59 (0.34-1.03)		0.63 (0.43-0.90)	
Model 2 (N=1,435) †								
Low dairy products	0.95 (0.54-1.68)	0.86	1.53 (0.79-2.95)	0.21	2.03 (1.22-3.39)	0.007	1.51 (1.07-2.11)	0.02
Low meats	0.99 (0.55-1.78)	0.96	0.70 (0.35-1.40)	0.31	0.62 (0.36-1.05)	0.08	0.74 (0.52-1.06)	0.10
High vegetables	1.52 (0.84-2.74)	0.17	1.40 (0.70-2.79)	0.34	0.70 (0.42-1.14)	0.15	1.00 (0.71-1.41)	0.99
High fruits	1.95 (1.04-3.66)	0.04	0.70 (0.36-1.36)	0.29	1.13 (0.69-1.86)	0.63	1.15 (0.82-1.63)	0.42
High legumes	0.84 (0.47-1.48)	0.54	0.92 (0.47-1.80)	0.80	1.02 (0.62-1.70)	0.93	0.92 (0.65-1.29)	0.62
High cereals ^a	0.98 (0.55-1.75)	0.94	1.05 (0.54-2.06)	0.88	1.25 (0.76-2.07)	0.39	1.04 (0.74-1.47)	0.81
High fish	1.18 (0.67-2.09)	0.57	1.58 (0.81-3.08)	0.18	0.98 (0.60-1.61)	0.94	1.29 (0.92-1.81)	0.14
High MUFA-to-SFA ratio	1.00 (0.57-1.75)	0.99	0.61 (0.31-1.18)	0.14	1.40 (0.85-2.31)	0.19	0.94 (0.67-1.31)	0.72
Alcohol ^b								0.03
No or low	0.45 (0.20-1.00)	0.12	0.46 (0.18-1.22)	0.24	1.01 (0.55-1.86)	0.07	0.67 (0.43-1.05)	
Mild-to-moderate	1		1		1		1	
High	0.64 (0.35-1.18)		0.64 (0.32-1.30)		0.55 (0.31-0.98)		0.61 (0.42-0.88)	

Table 4. Multivariate associations between individual food groups component of the Mediterranean diet score at baseline and incidence of fracture among older persons living in Bordeaux, The Three-City study (2001-2009)

Abbreviations: HR Hazard ratio; CI Confidence Intervals

Hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated for 1-unit increase of the MeDi score

P -value for Cox proportional hazard models

* Fracture at any sites among the hip, the wrist and the vertebrae

[†] These consumptions corresponded to one point attributed in the computation of the Mediterranean diet score. A low consumption of dairy products corresponded to less than 17.0 servings/week for men and 17.9 for women. A low consumption of meats corresponded to less than 5.0 servings/week for men and 4.0 for women. A high consumption of vegetables corresponded to more than 19.1 servings/week for men and 18.0 for women. A high consumption of fruits corresponded to more than 14.0 servings/week for men and women. A high consumption of legumes corresponded to more than 0.5 serving/week for men and women. A high consumption of cereals corresponded to more than 23.6 servings/week for men and 23.0 for women. A high consumption of fish corresponded to more than 2.8 servings/week for men and 2.5 for women. A high MUFA-to-SFA ratio corresponded to a ratio higher than 0.8 for men and women.

^a Cereals included consumption of cereals, bread, pasta and rice (whole and refined grains)

^b For the computation of the MeDi score, we attributed a value of 1 for people whose consumption was mild-to moderate, corresponding to the second quartile of distribution of total alcohol intake. One point was given to men if their consumption was within 7-to-14 glasses per week and to women if consumption was within 1-to-4 glasses per week. This category was chosen as reference in this analysis. "No or low consumption" corresponded to the first quartile of distribution of total alcohol intake (less than 7 or 4 glasses per week for men and women respectively). "High consumption" corresponded to the third and fourth quartiles of distribution (over 14 or 4 glasses per week for men and women respectively).

Model 1 was adjusted for each individual food group component of the Mediterranean diet score, age, gender, physical activity and total energy intake

Model 2 as Model 1 plus additional adjustment for educational level, marital status, BMI, self-reported osteoporosis, osteoporosis treatment, calcium and/or vitamin D treatment

Table 5	. Multivariate	association	between dair	y products of	consumption	at baseline a	nd incidence	of fracture	among older	persons 1	living in
Bordeau	ix, The Three-	City study ((2001-2009)								

	Hip fracture		Vertebral fracture		Wrist fractu	re	Fracture at any site *	
	HR P		HR	Р	HR	Р	HR	Р
	(95%CI)		(95%CI)		(95%CI)		(95%CI)	
Model 1 (N=1,482) †								
Low yoghurts	1.06 (0.61-1.87)	0.82	0.87 (0.45-1.70)	0.68	1.85 (1.16-2.94)	0.01	1.25 (0.90-1.75)	0.18
Low milk	1.23 (0.72-2.10)	0.45	1.26 (0.68-2.36)	0.46	0.99 (0.62-1.58)	0.95	1.16 (0.84-1.60)	0.38
Low cheese	1.44 (0.84-2.49)	0.19	1.49 (0.80-2.78)	0.21	1.08 (0.67-1.76)	0.75	1.23 (0.88-1.71)	0.23
Model 2 (N=1,435) †								
Low yoghurts	1.11 (0.62-1.99)	0.72	0.85 (0.42-1.70)	0.64	1.98 (1.22-3.21)	0.005	1.29 (0.92-1.81)	0.15
Low milk	1.16 (0.67-2.02)	0.60	1.15 (0.60-2.20)	0.68	0.96 (0.59-1.56)	0.88	1.10 (0.79-1.53)	0.57
Low cheese	1.28 (0.72-2.28)	0.40	1.55 (0.80-2.99)	0.19	0.98 (0.59-1.62)	0.93	1.14 (0.81-1.61)	0.46

Abbreviations: HR Hazard ratio; CI Confidence Intervals

Hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated for 1-unit increase of the MeDi score

* Fracture at any sites among the hip, the wrist and the vertebrae

[†] These consumptions corresponded to one point attributed for the considered food group in the computation of the Mediterranean diet score. Participants received 1 point if their intake of yoghurts was lower than 6 servings/week for men and 7 servings/week for women; if their intake of milk was lower than 0.25 serving/week for men and women; and if their intake of cheese was lower than 7 servings/week for men and women.

Model 1 was adjusted for each individual food group component of the Mediterranean diet score, age, gender, physical activity and total energy intake

Model 2 as Model 1 plus additional adjustment for educational level, marital status, BMI, self-reported osteoporosis, osteoporosis treatment, calcium and/or vitamin D treatment