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    Economic and simple system to combine single-spot photolysis and whole-field fluorescence imaging.

Introduction

For functional imaging applications, solid state lasers and light emitting diodes (LEDs) are progressively replacing the arc lamps or lamp-based illumination systems that were routinely used for more than three decades. [START_REF] Thomson | Evaluation of excitation light sources for incident immunofluorescence microscopy[END_REF] Modern solid state lasers provide high power, stable and monochromatic illumination, but despite typically delivering fewer photons to the sample, several advantages make LEDs preferable in many situations. First, LEDs are cheaper, more compact and easier to control; they can be powered by a constant current source and triggered by TTL pulses with microsecond precision.

Second, LEDs produce incoherent light over a wide range of angles which can be easily collimated and mounted onto the standard epifluorescence port of commercial microscopes to obtain nearly uniform illumination of the whole visual field, which is ideal for fluorescence imaging using a camera. Third, LEDs are safer and do not produce the laser speckle associated with coherent light sources, while they can still be mounted in cascade to obtain multi-colour illumination. The light of LEDs, although less powerful than that of lasers, is bright enough not only for fluorescence excitation but also for photo-stimulation, for instance for activation of Channelrhodopsin (ChR) [START_REF] Zhang | Channelrhodopsin-2 and optical control of excitable cells[END_REF] or for molecular photorelease from caged compounds. [START_REF] Mccray | Properties and uses of photoreactive caged compounds[END_REF] However, some applications require local photo-stimulation and therefore illumination from relatively small spots. Diffraction limited spots of <1 µm can only be generated using a laser. [START_REF] Trigo | Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration[END_REF] Nevertheless, lasers are more difficult to work with and, because they produce a tight collimated beam, they require more stringent safety procedures, which are not always convenient when working with physiological preparations. Thus, it is extremely useful to explore to what extent local photo-stimulation can be achieved, in a simpler and cheaper way, using LED illumination. To investigate this possibility, we used the flexibility of the Olympus BX microscope, which has an adjustable field stop designed to reduce the field of fluorescence illumination. We replaced this field stop with a device where we alternatively mounted pinholes of different sizes, drilled through 411 nm long pass filters. In this way, we could combine local UV illumination and whole-field visible illumination. As the light intensity decreased with the diameter of the UV spot, we found that the intensity is still >10% for a spot of 15-20 µm and sufficient to obtain significant photolysis using short pulses from commonly used 4-Methoxy-7-nitroindolinyl (MNI) caged compounds.

Materials and Methods

Experiments were performed using an Olympus BX51 microscope equipped with a 60X/1.0 NA Nikon objective. A dual-port coupler for LEDs, equipped with a 409nm dichroic mirror (FF409, Semrock, Rochester, New York) was mounted on the epifluorescence port the microscope. A 365 nm LED controlled by an OptoFlash (CAIRN Research Ltd., Faversham, UK) and 470 nm LED controlled by an OptoLED (also from Cairn) were mounted on the two ports of the coupler and used for uncaging and fluorescence excitation respectively. A silica condenser lens was used with the ultraviolet LED which allowed full-field illumination if required. Alternative optics to concentrate light over a smaller area may allow throughput improvements in future, but the purpose of this paper was to investigate the diffractive losses associated with masking a full-field beam. To manufacture "long-pass" (LP) pinholes, holes of 100 µm, Photo-release of L-glutamate or N-Methyl-D-aspartic acid (NMDA) was produced from the caged compounds MNI-glutamate [START_REF] Canepari | Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters[END_REF] and MNI-NMDA [START_REF] Palma-Cerda | New caged neurotransmitter analogs selective for glutamate receptor subtypes based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups[END_REF] , purchased from Tocris (Bristol, UK). Caged compounds were dissolved at 1 mM concentration in extracellular solution and applied locally near the cell with a large pipette to obtain a uniform concentration in the area of photolysis while avoiding light absorption in the pathway from the objective to the cell.

Results

The goals of this work were: 1. to quantify the intensity and spatial distribution of UV light through LP pinholes; 2. to test whether UV light through LP pinholes could produce efficient and localised photolysis from commercial caged compounds in simple proof-of-principle uncaging/Ca 2+ experiments in cellular preparations. Fig. 1(c) shows images from a fluorescent slide, illuminated either at 470 nm or at 365 nm, without any pinhole or with the 100 µm, 150 µm, 200 µm and 300 µm diameters pinholes. These images illustrate that the UV illumination is concentrated in spots of ~10 µm, 15 µm, 20 µm and 30 µm respectively. To quantify the spatial profile of the UV illumination with the pinholes, we plotted the light intensity in the central row, normalised to the maximal intensity without the pinhole [Fig. 1(d) left] and to the maximal intensity with the pinholes [Fig. 1(d) right]. The first plot shows that the light intensity with the pinholes, reduced by diffraction, is respectively 5%, 10%, 15% and 21% of the maximal intensity without the pinhole, including a background of 3% of bleedthrough passing through the gelatin filter. The second plot shows that for the four pinholes, the diameter within which the light intensity is >50 % of its maximum is 6 µm, 11.5 µm, 14.5 µm and 20.5 µm respectively. The power of our 365 nm LED at the back-aperture of the objective is >50 mW. This power produces very efficient photolysis from MNI-caged compounds with light exposures >100 µs microseconds. Thus, we expected to obtain efficient photolysis with light pulses >1-ms through the 150-200 µm pinholes. To test this hypothesis in a biological application, we filled a CA1 hippocampal pyramidal neuron from a brain slice with the low affinity indicator OG5N (K d = 35 µM [START_REF] Canepari | Kinetic, pharmacological and activity-dependent separation of two Ca 2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurons[END_REF] ) and we measured the ΔF/F 0 Ca 2+ signal via NMDA receptors (NMDARs) generated by L-glutamate uncaging with pulses of 1-4 ms using the 150 µm LP pinhole [Fig. 2(a)]. To mimic a physiological scenario, we uncaged L-glutamate onto a spot in the main apical dendrite located ~100 µm from the soma where Shaffer collateral synapses are expected to form. We then compared the spatial distribution of the ΔF/F 0 signal generated by a 3 ms UV pulse through the 150 µm LP pinhole with that generated by a 200 µs UV pulse without pinhole [Fig. 2 This phenomenon could be due to the leak of UV light through the gelatin filter and to the L-glutamate diffusion after photo-release. Thus, to quantitatively test photolysis localisation with short pulses, we performed experiments of NMDA photo-release in dissociated cultures. For our purpose, experiments in cultures have two advantages. First, the caged compound applied extracellularly equilibrates by diffusing in free space and it is uniform over the area of UV illumination. Second, also the released NMDA equilibrates by diffusion in the free space-interacting exclusively with NMDARs and not to other receptors or to glutamate transporters. The hippocampal cell in Fig. 2(d NMDARs can be also activated by lateral diffusion of NMDA from the uncaging site. In addition, the spatial profile of Ca 2+ fluorescence evolves following diffusion of the indicator bound to Ca 2+ . This component, however, depends on the affinity of the indicator since Ca 2+ unbinding from high affinity indicators is slower. [START_REF] Canepari | Kinetic, pharmacological and activity-dependent separation of two Ca 2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurons[END_REF] Thus, to appreciate this effect, we repeated the same experiment in another cell [Fig. 2(g)] filled with 500 µM of the high affinity indicator OGB1 (Kd = 200 nM [START_REF] Maravall | Estimating intracellular calcium concentrations and buffering without wavelength ratioing[END_REF] ). As shown in the traces of Fig. 2(h) and from the averaged ΔF/F 0 profiles in Fig. 3(i), the Ca 2+ bound to OGB1 is initially observed exclusively in the spot and it later diffuses outside the spot, an effect less evident with OG5N. We further analyse the UV illumination profile and Ca 2+ fluorescence averaged over the two time windows of Fig. 2(f) and Fig. 2(i) in the rectangular region depicted in Fig. 2(j Because the non-co-localised signal is much larger with OGB1, we conclude that this effect is due to the diffusion of the bound indicator and not to the photo-released NMDA. The same analysis also indicates that the contribution of NMDA photo-release by the UV leak through the gelatin filter is negligible. We can therefore conclude that the profile of NMDARs activation matches that of the UV spot that we created with the pinhole. The time-course of the ΔF/F 0 signal in these two cells is illustrated in the Supplementary Movie2.

Discussion

Combining photo-stimulation with Ca 2+ imaging [START_REF] Canepari | Kinetic, pharmacological and activity-dependent separation of two Ca 2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurons[END_REF] or voltage imaging [START_REF] Vogt | Combining membrane potential imaging with L-glutamate or GABA photorelease[END_REF] is important to address a variety of physiological questions. Some experiments can be performed by illumination of the whole field of view using either a flash-lamp [START_REF] Rapp | Flash lamp-based irradiation of caged compounds[END_REF] or an LED. In contrast, local photo-stimulation is typically achieved using lasers. Thus, one-photon [START_REF] Trigo | Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration[END_REF] or two-photon 12 laser photo-stimulation permits illumination of spots <1 µm, i.e. an area close to that of a dendritic spine. The implementation of laser photo-stimulation, however, can be expensive and difficult to combine with other illumination systems used for fluorescence excitation. For this reason we explored to what extent usefully local photostimulation could be achieved using a simple and economic multicolour LED system that is simultaneously used for fluorescence excitation. We implemented this solution by inserting a LP filter with a pinhole in the illumination pathway. The localisation of small spots is less precise than would be predicted by the magnification of the objective lens and epi-condenser optics and is instead limited by diffraction which also reduced the light intensity in the illuminated area. The practical question we addressed was therefore to find out the smallest spot size that could allow efficient and local photolysis. We have shown here that this could be achieved with MNI-caged compounds in spots of 15-20 µm using illumination pulses of 1-4 ms. The size of this spot is sufficiently small for many photolysis applications, including extra-synaptic activation of receptors or local activation of intracellular pathways. The principle of drilling a pinhole in a LP filter can be extended to longer wavelengths permitting local ChR stimulation and imaging with a combination of blue and green or red light illumination. In conclusion, this solution is now commercially available and we foresee that it will be adopted by several laboratories. 

  150 µm, 200 µm and 300 µm were drilled by Small Hole Drilling s.r.o. (Náměšť nad Oslavou, Czech Republic) on 411 nm LP Wratten gelatin filters (411 WY 75, Comar, Cambridge, UK) and mounted on a black plastic ring. The ring, shown in the bottom picture of Fig. 1(a) on the right, was inserted in a custom-made slider (bottom picture of Fig. 1(a) left) to replace the field-stop of the Olympus BX51 microscope as illustrated in the top picture of Fig. 1(a). The position of the pinhole, relative to the specimen, could be adjusted with two screws, in our case in the middle of the field of view of the CCD camera used for imaging. This device is now commercially available from Cairn. The LED light downstream of the LP pinhole was directed to the objective [Fig. 2(b)] using a 506 nm dichroic mirror (FF506, Semrock) and fluorescence emission was filtered at 510 ± 42 nm, demagnified by 0.5X and acquired using a NeuroCCD-SM camera (RedShirtImaging LLC, Decatur, GA) at 1000 frames/s. Calcium fluorescence signals were expressed as fractional changes of fluorescence (ΔF/F 0 ). Hippocampal slices (250 µm thick) were prepared from a 32 postnatal days old C57Bl6 mouse using a VF-200 compresstome (Precisionary Instruments, Greenville, NC). Experiments were approved by the Isere prefecture (Authorisation n. 38 12 01) and the specific protocol (n. 197) by the ethics committee of the Grenoble Institute of Neuroscience. Hippocampal cell cultures were prepared from embryonic day 18 (E18) rat embryos by the laboratory of Yves Goldberg as described in Belly et al. 5 and used after two weeks. The extracellular solution used in our recordings contained (mM): 125 NaCl, 26 NaHCO 3 , 20 glucose, 3 KCl, 1 NaH 2 PO 4 , 2 CaCl 2 and 0.001 tetrodotoxin bubbled with 95% O 2 and 5% CO 2 . The intracellullar solution contained (mM): 125 KMeSO 4 , 5 KCl, 8 MgSO 4 , 5 Na 2 -ATP, 0.3 Tris-GTP, 12 Tris-Phosphocreatine, 20 HEPES, adjusted to pH 7.35 with KOH. Calcium indicators, either Oregon Green 5N (OG5N) or Oregon Green BAPTA-1 (OGB1) were purchased from Invitrogen (Carlsbad, CA) and added at a concentration of 500µM to the internal solution. Patch-clamp recordings were made using a Multiclamp amplifier 700A (Molecular Devices, Sunnyvale, CA).

  (b) and SupplementaryMovie1]. As shown in Fig. 2(c), the amplitude of the ΔF/F 0 signal in the two cases is similar in the photolysis spot (dotted circle) but Ca 2+ elevation outside the spot is observed only without the LP pinhole, in agreement with the larger somatic current recorded with the patch clamp electrode [Fig. (2c) bottom-left]. A Ca 2+ elevation outside the spot was however still observed with the LP pinhole for pulses >5 ms (data not shown).

  ) was filled with 500 µM of OG5N. In the image of the recording position on the left, we added a dark shadow to indicate the region of the UV spot and selected three regions of interest (A, B and C) in the middle, in the periphery and outside the spot. Fig. 2(e) shows the NMDA current and the associated ΔF/F 0 signals in regions A-C following a 2 ms UV pulse through the 200 µm. The spatial profiles of ΔF/F 0 , averaged over two time windows (11-18 ms and 59-88 ms) are illustrated in Fig. 2(f) using a colour scale. The spatial profile of activated NMDARs does not necessarily coincide with that of photolysis because

  ) [left]. In particular, we averaged light intensities over the y axis and plotted the results over the x axis as a function of the distance from the point of maximal UV illumination. This analysis allows a comparison of distributions of UV light intensity and of ΔF/F 0 signals in the two time windows. The x-profiles of ΔF/F 0 signals at 11-18 ms after UV exposure remarkably match the profile of UV illumination. In contrast, ΔF/F 0 signals are clearly present outside the UV spot at 59-88 ms after UV exposure.
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 1 Figure 1: LED illumination with LP pinholes. (a) Picture of a device designed for Olympus BX
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 2 Figure 2: Simultaneous photolysis and Ca 2+ imaging. (a) Reconstruction of a hippocampal neuron
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