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Abstract. In the recent years, the use of light emitting diodes (LEDs) has become commonplace in 

fluorescence microscopy. LEDs are economical, easy to couple to commercial microscopes and 

provide powerful and stable light that can be triggered by TTL pulses in the range of tens of 

microseconds or shorter. LEDs are usually installed on the epifluorescence port of the microscope to 

obtain whole field illumination which is ideal for fluorescence imaging. In contrast, photolysis or 

channelrhodopsin stimulation often requires localised illumination, typically achieved using lasers. 

Here we show that insertion of a long-pass (>411 nm) filter with appropriately sized pinhole in the 

epifluorescence pathway, combined with dual UV/visible illumination, can produce efficient whole 

field visible illumination and spot UV illumination of 15-20 µm. We tested our system by performing 

calcium imaging experiments combined with L-glutamate or NMDA photo-release in hippocampal 

neurons from brain slices or dissociated cultures, demonstrating the ability to obtain local activation of 

NMDA receptors exclusively in the illuminated spot. The very inexpensive and simple system that we 

report here will allow many laboratories with limited budget to run similar experiments in a variety of 

physiological applications. 
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1. Introduction 

For functional imaging applications, solid state lasers and light emitting diodes (LEDs) are 

progressively replacing the arc lamps or lamp-based illumination systems that were routinely used for 

more than three decades.
1
 Modern solid state lasers provide high power, stable and monochromatic 

illumination, but despite typically delivering fewer photons to the sample, several advantages make 

LEDs preferable in many situations. First, LEDs are cheaper, more compact and easier to control; they 

can be powered by a constant current source and triggered by TTL pulses with microsecond precision. 

Second, LEDs produce incoherent light over a wide range of angles which can be easily collimated 

and mounted onto the standard epifluorescence port of commercial microscopes to obtain nearly 

uniform illumination of the whole visual field, which is ideal for fluorescence imaging using a camera. 

Third, LEDs are safer and do not produce the laser speckle associated with coherent light sources, 

while they can still be mounted in cascade to obtain multi-colour illumination. The light of LEDs, 

although less powerful than that of lasers, is bright enough not only for fluorescence excitation but also 

for photo-stimulation, for instance for activation of Channelrhodopsin (ChR)
2
 or for molecular photo-

release from caged compounds.
3
 However, some applications require local photo-stimulation and 

therefore illumination from relatively small spots. Diffraction limited spots of <1 µm can only be 

generated using a laser.
4
 Nevertheless, lasers are more difficult to work with and, because they produce 

a tight collimated beam, they require more stringent safety procedures, which are not always 

convenient when working with physiological preparations. Thus, it is extremely useful to explore to 

what extent local photo-stimulation can be achieved, in a simpler and cheaper way, using LED 

illumination. To investigate this possibility, we used the flexibility of the Olympus BX microscope, 

which has an adjustable field stop designed to reduce the field of fluorescence illumination. We 

replaced this field stop with a device where we alternatively mounted pinholes of different sizes, 

drilled through 411 nm long pass filters. In this way, we could combine local UV illumination and 

whole-field visible illumination. As the light intensity decreased with the diameter of the UV spot, we 

found that the intensity is still >10% for a spot of 15-20 µm and sufficient to obtain significant 
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photolysis using short pulses from commonly used 4-Methoxy-7-nitroindolinyl (MNI) caged 

compounds. 

 

2. Materials and Methods 

Experiments were performed using an Olympus BX51 microscope equipped with a 60X/1.0 NA 

Nikon objective. A dual-port coupler for LEDs, equipped with a 409nm dichroic mirror (FF409, 

Semrock, Rochester, New York) was mounted on the epifluorescence port the microscope. A 365 nm 

LED controlled by an OptoFlash (CAIRN Research Ltd., Faversham, UK) and 470 nm LED controlled 

by an OptoLED (also from Cairn) were mounted on the two ports of the coupler and used for uncaging and 

fluorescence excitation respectively. A silica condenser lens was used with the ultraviolet LED which allowed 

full-field illumination if required. Alternative optics to concentrate light over a smaller area may allow 

throughput improvements in future, but the purpose of this paper was to investigate the diffractive losses 

associated with masking a full-field beam. To manufacture “long-pass” (LP) pinholes, holes of 100 µm, 

150 µm, 200 µm and 300 µm were drilled by Small Hole Drilling s.r.o. (Náměšť nad Oslavou, Czech 

Republic) on 411 nm LP Wratten gelatin filters (411 WY 75, Comar, Cambridge, UK) and mounted on 

a black plastic ring. The ring, shown in the bottom picture of Fig. 1(a) on the right, was inserted in a 

custom-made slider (bottom picture of Fig. 1(a) left) to replace the field-stop of the Olympus BX51 

microscope as illustrated in the top picture of Fig. 1(a). The position of the pinhole, relative to the 

specimen, could be adjusted with two screws, in our case in the middle of the field of view of the CCD 

camera used for imaging. This device is now commercially available from Cairn. The LED light 

downstream of the LP pinhole was directed to the objective [Fig. 2(b)] using a 506 nm dichroic mirror 

(FF506, Semrock) and fluorescence emission was filtered at 510 ± 42 nm, demagnified by 0.5X and 

acquired using a NeuroCCD-SM camera (RedShirtImaging LLC, Decatur, GA) at 1000 frames/s. 

Calcium fluorescence signals were expressed as fractional changes of fluorescence (ΔF/F0). 

Hippocampal slices (250 µm thick) were prepared from a 32 postnatal days old C57Bl6 mouse using a 

VF-200 compresstome (Precisionary Instruments, Greenville, NC). Experiments were approved by the 

Isere prefecture (Authorisation n. 38 12 01) and the specific protocol (n. 197) by the ethics committee 
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of the Grenoble Institute of Neuroscience. Hippocampal cell cultures were prepared from embryonic 

day 18 (E18) rat embryos by the laboratory of Yves Goldberg as described in Belly et al.
5
 and used 

after two weeks. The extracellular solution used in our recordings contained (mM): 125 NaCl, 26 

NaHCO3, 20 glucose, 3 KCl, 1 NaH2PO4, 2 CaCl2 and 0.001 tetrodotoxin bubbled with 95% O2 and 

5% CO2. The intracellullar solution contained (mM): 125 KMeSO4, 5 KCl, 8 MgSO4, 5 Na2-ATP, 0.3 

Tris-GTP, 12 Tris-Phosphocreatine, 20 HEPES, adjusted to pH 7.35 with KOH. Calcium indicators, 

either Oregon Green 5N (OG5N) or Oregon Green BAPTA-1 (OGB1) were purchased from Invitrogen 

(Carlsbad, CA) and added at a concentration of 500µM to the internal solution. Patch-clamp 

recordings were made using a Multiclamp amplifier 700A (Molecular Devices, Sunnyvale, CA). 

Photo-release of L-glutamate or N-Methyl-D-aspartic acid (NMDA) was produced from the caged 

compounds MNI-glutamate 
6
 and MNI-NMDA 

7
, purchased from Tocris (Bristol, UK). Caged 

compounds were dissolved at 1 mM concentration in extracellular solution and applied locally near the 

cell with a large pipette to obtain a uniform concentration in the area of photolysis while avoiding light 

absorption in the pathway from the objective to the cell.  

 

3. Results 

The goals of this work were: 1. to quantify the intensity and spatial distribution of UV light through LP 

pinholes; 2. to test whether UV light through LP pinholes could produce efficient and localised 

photolysis from commercial caged compounds in simple proof-of-principle uncaging/Ca
2+

 experiments 

in cellular preparations. Fig. 1(c) shows images from a fluorescent slide, illuminated either at 470 nm 

or at 365 nm, without any pinhole or with the 100 µm, 150 µm, 200 µm and 300 µm diameters 

pinholes. These images illustrate that the UV illumination is concentrated in spots of ~10 µm, 15 µm, 

20 µm and 30 µm respectively. To quantify the spatial profile of the UV illumination with the 

pinholes, we plotted the light intensity in the central row, normalised to the maximal intensity without 

the pinhole [Fig. 1(d) left] and to the maximal intensity with the pinholes [Fig. 1(d) right]. The first 

plot shows that the light intensity with the pinholes, reduced by diffraction, is respectively 5%, 10%, 

15% and 21% of the maximal intensity without the pinhole, including a background of 3% of 
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bleedthrough passing through the gelatin filter. The second plot shows that for the four pinholes, the 

diameter within which the light intensity is >50 % of its maximum is 6 µm, 11.5 µm, 14.5 µm and 20.5 

µm respectively. The power of our 365 nm LED at the back-aperture of the objective is >50 mW. This 

power produces very efficient photolysis from MNI-caged compounds with light exposures >100 µs 

microseconds. Thus, we expected to obtain efficient photolysis with light pulses >1-ms through the 

150-200 µm pinholes. To test this hypothesis in a biological application, we filled a CA1 hippocampal 

pyramidal neuron from a brain slice with the low affinity indicator OG5N (Kd = 35 µM 
8
) and we 

measured the ΔF/F0 Ca
2+

 signal via NMDA receptors (NMDARs) generated by L-glutamate uncaging 

with pulses of 1-4 ms using the 150 µm LP pinhole [Fig. 2(a)]. To mimic a physiological scenario, we 

uncaged L-glutamate onto a spot in the main apical dendrite located ~100 µm from the soma where 

Shaffer collateral synapses are expected to form. We then compared the spatial distribution of the 

ΔF/F0 signal generated by a 3 ms UV pulse through the 150 µm LP pinhole with that generated by a 

200 µs UV pulse without pinhole [Fig. 2(b) and SupplementaryMovie1]. As shown in Fig. 2(c), the 

amplitude of the ΔF/F0 signal in the two cases is similar in the photolysis spot (dotted circle) but Ca
2+

 

elevation outside the spot is observed only without the LP pinhole, in agreement with the larger 

somatic current recorded with the patch clamp electrode [Fig. (2c) bottom-left]. A Ca
2+

 elevation 

outside the spot was however still observed with the LP pinhole for pulses >5 ms (data not shown). 

This phenomenon could be due to the leak of UV light through the gelatin filter and to the L-glutamate 

diffusion after photo-release. Thus, to quantitatively test photolysis localisation with short pulses, we 

performed experiments of NMDA photo-release in dissociated cultures. For our purpose, experiments 

in cultures have two advantages. First, the caged compound applied extracellularly equilibrates by 

diffusing in free space and it is uniform over the area of UV illumination. Second, also the released 

NMDA equilibrates by diffusion in the free space-interacting exclusively with NMDARs and not to 

other receptors or to glutamate transporters. The hippocampal cell in Fig. 2(d) was filled with 500 µM 

of OG5N. In the image of the recording position on the left, we added a dark shadow to indicate the 

region of the UV spot and selected three regions of interest (A, B and C) in the middle, in the 

periphery and outside the spot. Fig. 2(e) shows the NMDA current and the associated ΔF/F0 signals in 
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regions A-C following a 2 ms UV pulse through the 200 µm. The spatial profiles of ΔF/F0, averaged 

over two time windows (11-18 ms and 59-88 ms) are illustrated in Fig. 2(f) using a colour scale. The 

spatial profile of activated NMDARs does not necessarily coincide with that of photolysis because 

NMDARs can be also activated by lateral diffusion of NMDA from the uncaging site. In addition, the 

spatial profile of Ca
2+

 fluorescence evolves following diffusion of the indicator bound to Ca
2+

. This 

component, however, depends on the affinity of the indicator since Ca
2+

 unbinding from high affinity 

indicators is slower.
8
 Thus, to appreciate this effect, we repeated the same experiment in another cell 

[Fig. 2(g)] filled with 500 µM of the high affinity indicator OGB1 (Kd = 200 nM 
9
). As shown in the 

traces of Fig. 2(h) and from the averaged ΔF/F0 profiles in Fig. 3(i), the Ca
2+

 bound to OGB1 is 

initially observed exclusively in the spot and it later diffuses outside the spot, an effect less evident 

with OG5N. We further analyse the UV illumination profile and Ca
2+

 fluorescence averaged over the 

two time windows of Fig. 2(f) and Fig. 2(i) in the rectangular region depicted in Fig. 2(j) [left]. In 

particular, we averaged light intensities over the y axis and plotted the results over the x axis as a 

function of the distance from the point of maximal UV illumination. This analysis allows a comparison 

of distributions of UV light intensity and of ΔF/F0 signals in the two time windows. The x-profiles of 

ΔF/F0 signals at 11-18 ms after UV exposure remarkably match the profile of UV illumination. In 

contrast, ΔF/F0 signals are clearly present outside the UV spot at 59-88 ms after UV exposure. 

Because the non-co-localised signal is much larger with OGB1, we conclude that this effect is due to 

the diffusion of the bound indicator and not to the photo-released NMDA. The same analysis also 

indicates that the contribution of NMDA photo-release by the UV leak through the gelatin filter is 

negligible. We can therefore conclude that the profile of NMDARs activation matches that of the UV 

spot that we created with the pinhole. The time-course of the ΔF/F0 signal in these two cells is 

illustrated in the Supplementary Movie2. 

 

4. Discussion 

Combining photo-stimulation with Ca
2+

 imaging 
8
 or voltage imaging 

10
 is important to address a 

variety of physiological questions. Some experiments can be performed by illumination of the whole 



7 
 

field of view using either a flash-lamp 
11

 or an LED. In contrast, local photo-stimulation is typically 

achieved using lasers. Thus, one-photon 
4
 or two-photon 

12
 laser photo-stimulation permits 

illumination of spots <1 µm, i.e. an area close to that of a dendritic spine. The implementation of laser 

photo-stimulation, however, can be expensive and difficult to combine with other illumination systems 

used for fluorescence excitation. For this reason we explored to what extent usefully local photo-

stimulation could be achieved using a simple and economic multicolour LED system that is 

simultaneously used for fluorescence excitation. We implemented this solution by inserting a LP filter 

with a pinhole in the illumination pathway. The localisation of small spots is less precise than would 

be predicted by the magnification of the objective lens and epi-condenser optics and is instead limited 

by diffraction which also reduced the light intensity in the illuminated area. The practical question we 

addressed was therefore to find out the smallest spot size that could allow efficient and local 

photolysis. We have shown here that this could be achieved with MNI-caged compounds in spots of 

15-20 µm using illumination pulses of 1-4 ms. The size of this spot is sufficiently small for many 

photolysis applications, including extra-synaptic activation of receptors or local activation of 

intracellular pathways. The principle of drilling a pinhole in a LP filter can be extended to longer 

wavelengths permitting local ChR stimulation and imaging with a combination of blue and green or 

red light illumination. In conclusion, this solution is now commercially available and we foresee that it 

will be adopted by several laboratories. 
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MOVIES LEGEND 

 

SupplementaryMovie1: ΔF/F0 Ca
2+

 signals following L-glutamate uncaging from a CA1 

hippocampal pyramidal neuron filled with 500 µm OG5N; right: with 150 µm pinhole, 3 ms pulse; 

right: without pinhole, 0.2 ms pulse. 

 

SupplementaryMovie2: ΔF/F0 Ca
2+

 signals following NMDA uncaging (200 µm pinhole) from 

cultured hippocampal neurons; left cell filled with 500 µm OG5N; right cell filled with 500 µm OGB1 

http://www.ncbi.nlm.nih.gov/pubmed/9331338
http://www.ncbi.nlm.nih.gov/pubmed/9331338
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FIGURES  

 

 

 

Figure 1: LED illumination with LP pinholes. (a) Picture of a device designed for Olympus BX 

microscopes to insert and position LP pinholes in the epifluorescence pathway (left); gelatin filters 

where the pinholes were drilled glued on plastic rings and placed in the device (right). (b) Scheme of 

the 365/470 nm illumination; LP pinholes produce whole field visible illumination and spot UV 

illumination. (c) Illumination patterns at 470 nm and 365 nm with a 60X objective (top); patterns 

correspond to illumination without pinholes and with 100 µm, 150 µm, 200 µm and 300 µm pinholes; 

scale bar 20 µm. (d) Illumination profiles of a pixel line in the middle row of the image; left: profiles 

normalised to image without pinhole; right: profiles normalised to their maxima; spot diameters with 

more than 50% of the light intensity (double arrows) were 6 µm, 11.5 µm, 14.5 µm and 20.5 µm.  
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Figure 2: Simultaneous photolysis and Ca
2+

 imaging. (a) Reconstruction of a hippocampal neuron 

filled with 500 µM OG5N; in the recording position image below the UV spot (150 µm pinhole) 

represented by a dotted circle; red and black traces are respectively the ΔF/F0  Ca
2+

 signals in the red 

square and the somatic currents associated with UV flashes of 1, 2, 3 and 4 ms uncaging glutamate. (b) 

Spatial distributions of ΔF/F0 superimposed to the image represented in a colour scale during the 

period of 150-200 ms after a 3 ms pinhole UV flash (left) and after a 0.2 ms whole field UV flash 

(right). (c) ΔF/F0 signals after the pinhole UV flash (red traces) and after the whole field UV flash 

(green traces) in the three regions A-C indicated on the left image; correspondent somatic currents 

indicated below. (d) Reconstruction of a cultured hippocampal neuron filled with 500 µM OG5N; in 

the recording position image on the right the position of the UV spot (200 µm pinhole) is represented 

by a gray shadow; the coloured frames indicate three regions of interest (A, B and C) in the middle of 

the spot, in the periphery and outside the spot. (e) ΔF/F0 associated with a UV flash (occurring at t=0) 

uncaging NMDA from the regions A-C in d; somatic recording of the NMDA current below (black 
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trace); duration of UV flash 2 ms. (f) Spatial distribution of ΔF/F0 superimposed to the image 

represented in a colour scale during the periods of 11-18 ms and 59-88 ms after the UV flash (t=0). (g-

i) Same as A-C in another cultured hippocampal neuron filled with OGB1. (j) Another picture of the 

200 µm pinhole with a rectangle of 40 X 16 pixels (x X y axes); the dotted line represents the profile of 

UV light intensity averaged over the 16 pixels on y axis as a function of the distance of the pinhole 

centre; below, superimposed to the UV light intensity profile, the profiles of normalized ΔF/F0 during 

the periods of 11-18 ms and 59-88 ms after the UV flash (t=0) as a function of the distance of the 

pinhole centre.  

 


