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Abstract

Background: Previous elegant studies performed in the fission yeast Schizosaccharomyces pombe have identified a

requirement for heterochromatin protein 1 (HP1) for spindle pole formation and appropriate cell division. In

mammalian cells, HP1γ has been implicated in both somatic and germ cell proliferation. High levels of HP1γ protein

associate with enhanced cell proliferation and oncogenesis, while its genetic inactivation results in meiotic and

mitotic failure. However, the regulation of HP1γ by kinases, critical for supporting mitotic progression, remains to be

fully characterized.

Results: We report for the first time that during mitotic cell division, HP1γ colocalizes and is phosphorylated at

serine 83 (Ser83) in G2/M phase by Aurora A. Since Aurora A regulates both cell proliferation and mitotic aberrations,

we evaluated the role of HP1γ in the regulation of these phenomena using siRNA-mediated knockdown, as well as

phosphomimetic and nonphosphorylatable site-directed mutants. We found that genetic downregulation of HP1γ,

which decreases the levels of phosphorylation of HP1γ at Ser83 (P-Ser83-HP1γ), results in mitotic aberrations that can

be rescued by reintroducing wild type HP1γ, but not the nonphosphorylatable S83A-HP1γ mutant. In addition,

proliferation assays showed that the phosphomimetic S83D-HP1γ increases 5-ethynyl-2´-deoxyuridine (EdU)

incorporation, whereas the nonphosphorylatable S83A-HP1γ mutant abrogates this effect. Genome-wide expression

profiling revealed that the effects of these mutants on mitotic functions are congruently reflected in G2/M gene

expression networks in a manner that mimics the on and off states for P-Ser83-HP1γ.

Conclusions: This is the first description of a mitotic Aurora A-HP1γ pathway, whose integrity is necessary for the

execution of proper somatic cell division, providing insight into specific types of posttranslational modifications that

associate to distinct functional outcomes of this important chromatin protein.
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Background

Heterochromatin protein 1 (HP1), the reader of histone

H3 lysine 9 methylation (H3K9me), was originally dis-

covered through studies in Drosophila melanogaster of

mosaic gene silencing, known as position effect variega-

tion [1,2]. In human and other mammalian cells, the

three mammalian HP1 isoforms, HP1α, HP1β and HP1γ,

have been well-studied for their localization, as well as

their roles within the heterochromatic regions that asso-

ciate with gene silencing. However, subsequent investiga-

tions have made it increasingly unmistakable that HP1

proteins not only localize to heterochromatic regions

but also euchromatic regions [3,4]. These proteins are

involved in diverse cellular processes, ranging from

chromatin modification and epigenetic gene silencing to

replication and DNA repair to nuclear architecture and

chromosomal stability [3,4]. Moreover, HP1 proteins re-

spond to a diversity of signaling pathways and acquire
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various posttranslational modifications, which impact on

their function [5-9]. We have previously reported that,

during interphase, phosphorylation of HP1γ at serine 83 (P-

Ser83-HP1γ) via the cAMP-protein kinase A (PKA) pathway

upon activation of cell surface receptors relocates this pro-

tein to euchromatin, where it plays a role in transcriptional

elongation [8]. Thus, it is essential to define HP1-mediated

pathways to map useful networks of membrane-to-chroma-

tin signaling cascades for better understanding of the regu-

lation of important cellular processes.

Ample evidence indicates that HP1γ is important during

both somatic and germ cell proliferation. Indeed, high

levels of HP1γ protein associate with enhanced somatic

and meiotic cell proliferation [10]. Genetic inactivation of

HP1γ results in both meiotic and mitotic failure [11,12].

Studies in primordial germ cells demonstrate that loss of

HP1γ also reduces their cell number through impaired cell

cycle progression [13]. However, the responsible molecu-

lar mechanisms that link this vital biological process to

the functional regulation of HP1γ remain unknown.

Earlier investigations have found that HP1γ is phos-

phorylated throughout the cell cycle and, in particular,

hyperphosphorylated in mitosis [14]. In the current study,

we report a novel pathway, whereby HP1γ is regulated by

mitotic kinases, in particular, Aurora kinase A, a master

regulator of mitotic transitions [15]. We demonstrate that

HP1γ is phosphorylated at serine 83 (Ser83) in G2/M

where it colocalizes with Aurora A kinase, and its mitotic

targets, cyclin B1, cyclin B2 and cyclin-dependent kinase 1

(CDK1) during cell division. HP1γ is phosphorylated at

Ser83 by Aurora A in vitro and in cells. In addition,

siRNA-mediated knockdown of HP1γ leads to a decrease

of P-Ser83-HP1γ accompanied by mitotic aberrations. Not-

ably, reintroduction of wild type HP1γ rescues, to a sig-

nificant extent, these abnormal mitotic effects, while the

nonphosphorylatable S83A-HP1γ mutant is unable to res-

cue this consequence of HP1γ knockdown. Congruent

with these functions, phosphomimetic S83D-HP1γ results

in an increase of cell proliferation, whereas the

nonphosphorylatable S83A-HP1γ mutant abrogates this

effect. In addition, overexpression of either the S83A-

HP1γ or S83D-HP1γ mutant supports this effect in result-

ant cell cycle-related gene expression networks. Thus,

together, these results reveal that a novel Aurora A-HP1γ

pathway targeting Ser83 phosphorylation is necessary for

the proper execution of cell division, thereby extending

our knowledge of the biochemical and cell biological func-

tion of this important chromatin protein.

Results

HP1γ is phosphorylated at the G2/M phase of the cell

cycle

We have previously described that P-Ser83-HP1γ by

PKA mediates extracellular signals during interphase [8].

In the current study, we uncover a new Aurora kinase

A-mediated pathway that phosphorylates Ser83-HP1γ

during mitosis, which is necessary for the proper execu-

tion of this process. For this purpose, we initially analyzed

the kinetics of phosphorylation in HeLa cells arrested in

different phases of the cell cycle. Treatment with

roscovitine, a membrane permeable cyclin-dependent kin-

ase (CDK) inhibitor, that arrests cell cycle progression at

the G1/S and G2/M checkpoints [16], resulted in dose-

dependent inhibition of P-Ser83-HP1γ (Figure 1A). To bet-

ter define the temporal pattern of these events, we treated

with either aphidicolin to arrest cells in S phase, or

nocodazole to obtain mitotic arrest (G2/M). The mitotic

population demonstrated a striking increase in P-Ser83-

HP1γ levels in comparison to the normal cycling popula-

tion and S phase arrested cells (Figure 1B). To define these

events in the absence of kinase inhibitors, we synchronized

HeLa cells by double thymidine block to obtain cell ex-

tracts at subsequent time points of release from cell cycle

arrest. These experiments revealed that the levels of P-Ser
83-HP1γ peaked twice, the first at 2 hours post-release (G1/

S boundary, Figure 1C, Additional file 1: Figure S1 A). As

this peak was likely the phosphorylation event coinciding

with the previously described involvement of PKA during

interphase [8], we utilized the PKA-specific inhibitor,

KT5720, to treat HeLa cells upon release from double thy-

midine block. Upon KT5720 treatment, P-Ser83-HP1γ

levels at 2 hours post-release were significantly diminished

(Additional file 1: Figure S1 B). However, of greater inter-

est, a more prominent second peak across 8 to 10 hours

post-release from cell cycle arrest, which coincided with

G2/M, was observed (Figure 1C, Additional file 1: Figure

S1A). The lower P-Ser83-HP1γ levels seen in-between these

two peaks (4 to 6 hours post-release, Figure 1C)

corresponded with S phase (Additional file 1: Figure S1A),

similar to aphidicolin treatment. These results demonstrate

that levels of P-Ser83-HP1γ peak significantly at G2/M

phase during the cell cycle, suggesting that phosphoryl-

ation of this protein may play a role in cell division.

Subsequently, we sought to complement the biochem-

ical assays of phosphorylation described above by map-

ping the temporal pattern of staining for P-Ser83-HP1γ

during cell cycle progression. For this purpose, we

performed immunofluorescence using confocal micros-

copy in cells co-stained with the anti-P-Ser83-HP1γ and

different cell cycle markers. We utilized cyclin D as a

marker of G1, 5-ethynyl-2´-deoxyuridine (EdU)-pulse la-

beling for S phase, and cyclin B to indicate the G2 and

M phases of the cell cycle. Figure 2A,B,C, which repre-

sents a low magnification field of cells stained with the

anti-P-Ser83-HP1γ, demonstrates that the level and dis-

tribution of the signal for this modified form of HP1γ is

variable in epithelial cells growing under normal condi-

tions. Thus, we examined more carefully the levels and
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distribution of P-Ser83-HP1γ signals in relationship to

key cell cycle markers. P-Ser83-HP1γ localization in cyc-

lin D-positive cells (G1) appeared in the euchromatic

compartment of the nucleus as a fine punctate pattern

(Figure 2D,E,F). Quantification of cyclin D-positive cells

demonstrated that 76.6% of this population (160/209)

had P-Ser83-HP1γ staining. However, staining was

relatively negligible in cells that were positively marked

by a short pulse of EdU, indicative of S phase

(Figure 2G,H,I) with only 22.7% of EdU-positive cells

(34/150) having any P-Ser83-HP1γ signal. The stron-

gest P-Ser83-HP1γ signal was found in 88.3% of cyclin

B-positive cells (182/206), which corresponded to G2

(Figure 2J,K,L), and the signal continued through M in

prometaphase, metaphase and anaphase, until returning

to similar levels as G1 during telophase and cytokinesis

(Figure 2M,N,O,P,Q,R). Thus, these results were con-

gruent with our biochemical studies and confirmed

that P-Ser83-HP1γ occurs as two peaks, beginning at

G1 and ending at S, and the second peak which begins

at G2 and continues during M. Interestingly, a con-

spicuous feature of P-Ser83-HP1γ localization was its

staining in cyclin B-positive cells for which the nuclear

membrane has not yet disassembled (late G2 prophase),

in which the P-Ser83-HP1γ punctate pattern was stron-

ger and present not only in euchromatin but also

within centrosomes (Figure 2L). Although the cyclin B-

positive cells found in M demonstrated reduced P-Ser
83-HP1γ signal on chromosomes, a strong signal con-

tinued to localize at the centrosome region of the

mitotic spindle (Figure 2M,N,O,P). In all these cases,

P-Ser83-HP1γ coincided with the presence of cyclin B at

the centrosome. As several mitotic kinases are highly

enriched at this organelle [17], these studies prompted

us to identify the kinase responsible for the significant

P-Ser83-HP1γ event found during mitotic progression.

HP1γ is phosphorylated at G2/M by Aurora A

While PKA was implicated in the first peak of P-Ser83-

HP1γ levels that occur at G1, the kinase that mediates

the second peak of P-Ser83-HP1γ at G2/M, described

here, remained unknown. Interestingly, we found that

the temporal pattern of P-Ser83-HP1γ coincided with

phosphorylation of histone H3 at serine 10 (P-Ser10-H3,

Figure 1C). P-Ser10-H3 initiates during G2 in pericentric

foci and spreads along the chromosome arms, thus serv-

ing as a hallmark of mitosis [18]. Previously derived con-

sensus sequences for Aurora kinases suggested that,

similar to P-Ser10-H3, Ser83-HP1γ might be a target of

Aurora kinases [19]. Additional experiments demon-

strated that the temporal pattern of P-Ser83-HP1γ was

similar to both Aurora A and Aurora B (Figure 1C).

These results led us to hypothesize that the newly de-

scribed P-Ser83-HP1γ at G2/M was achieved through the

Figure 1 Levels of P-Ser83-HP1γ are cell cycle-dependent,

increasing significantly in G2/M. (A) Inhibition of HP1γ

phosphorylation in vivo by the cell cycle inhibitor, roscovitine. HeLa

cells incubated with roscovitine, an inhibitor of cell cycle progression

at the G1/S and G2/M checkpoints, display a dose-dependent

inhibition of phosphorylation as shown by anti-P-Ser83-HP1γ (top). α-

tubulin is shown as a loading control (bottom). (B) P-Ser83-HP1γ

levels are high in mitotic arrested cells. Cell extracts were obtained

from a normal cycling population (con), cells treated with

aphidicolin (aph) to arrest cells in G1/S phase (G1/S), or mitotic-

arrested cells (G2/M) from treatment with nocodazole (noc). An

increase of P-Ser83-HP1γ levels in mitosis is shown by comparison of

anti-P-Ser83-HP1γ (top) with total HP1γ (bottom). (C) P-Ser83-HP1γ

levels through the cell cycle. HeLa cells were synchronized by

double thymidine block and cell extracts were obtained at

subsequent time points of release. P-Ser83-HP1γ levels are highest

approximately 8 to 10 hours post-release, which corresponds to an

increase in the presence of other mitotic markers, including P-Ser10-

H3, Aurora A and Aurora B, indicating M phase entry. The relative

intensity indicated below was calculated as P-Ser83-HP1γ/pan-HP1γ

ratios and normalization with the ratio of 0 hour. aph, aphidicolin;

con, control; noc, nocodazole; P-Ser10-H3, phosphorylation of histone

H3 at serine 10; P-Ser83-HP1γ, phosphorylation of HP1γ at serine 83.
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activity of an Aurora kinase. Thus, we first performed im-

munofluorescence experiments to determine whether P-

Ser83-HP1γ co-localized with any of these kinases at G2/

M. Indeed, we found that P-Ser83-HP1γ localized to areas

rich in Aurora A (Figure 3A,B,C), but not Aurora B

(Figure 3D,E,F). P-Ser83-HP1γ was also confirmed to be

present at the Aurora A-rich area of the spindle poles

through colocalization with γ-tubulin (Figure 3G,H,I) and

α-tubulin (Figure 3J,K,L). More importantly, we found

that critical regulators of G2/M progression, which are

Figure 2 Biphasic P-Ser83-HP1γ is observed during cell cycle progression. (A,B,C) P-Ser83-HP1γ levels vary during the cell cycle. Panoramic

view of a growing population of HeLa cells staining with anti-P-Ser83-HP1γ (A, green) demonstrates that the signal for this protein varies in

intensity in different cells. Cells were counterstained with DAPI (B, blue) to show DNA and overlay is shown in (C). Three main populations are

observed according to the strength of the signal, namely strong, moderate and negligible. Scale bar represents 20 μM. (D,E,F) P-Ser83-HP1γ

displays punctate euchromatic localization in G1 phase. Localization of P-Ser83-HP1γ (D, green) was determined in cyclin D-positive cells (E, red),

indicative of G1 phase, as shown with arrows and in overlay (F). (G,H,I) Levels of P-Ser83-HP1γ diminish during S phase. Negligible P-Ser83-HP1γ

signal (G, green) is found in the majority of cells undergoing S phase (arrows), as determined by EdU positively labeled cells (H, red). Overlay is

shown in (I). (J,K,L) P-Ser83-HP1γ levels increase upon G2 entry. Cyclin B-positive cells (K, red), before nuclear envelope breakdown (G2), not only

shows the P-Ser83-HP1γ signal (J, green) as a strong punctate pattern in euchromatin, but also with separating centrosomes (L, overlay). Scale bar

represents 10 μM for panels (D to L). (M,N,O,P,Q,R) P-Ser83-HP1γ levels persist through mitosis. Cyclin B-positive, prometaphase cell demonstrates

an increase in P-Ser83-HP1γ in association with separating centrosomes (M). Metaphase cell shows the P-Ser83-HP1γ remains localized to

centrosomes, which are forming the mitotic spindle (N). Early (O) and late (P) anaphase, as well as telophase (Q) cells are shown, where the P-Ser
83-HP1γ signal intensity at the centrosomes is decreased as cells prepare to complete cell division. P-Ser83-HP1γ signal within euchromatic regions

is again observed during cytokinesis (R). Scale bar represents 5 μM for panels (M to R). DAPI, 4',6-diamidino-2-phenylindole; EdU, 5-ethynyl-2´-

deoxyuridine; P-Ser83-HP1γ, phosphorylation of HP1γ at serine 83.
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also targets of Aurora A, namely cyclin B1, cyclin B2 and

their partner kinase, CDK1, also colocalized with P-Ser83-

HP1γ (Figure 3M,N,O,P,Q,U). Together, these results

demonstrated that mitotic phosphorylation confers a dis-

tinct localization of this HP1γ subpopulation to the

spindle poles that is marked by the G2/M Aurora A-cyclin

B-CDK1 pathway, supporting the idea that this kinase

may be the enzyme involved in P-Ser83-HP1γ at G2/M.

To mechanistically test this hypothesis, we initially in-

cubated glutathione S-transferase (GST) fusion wild type

Figure 3 P-Ser83-HP1γ colocalizes with Aurora A at the mitotic spindle. Representative images are shown for localization in mitotic HeLa

cells. (A,B,C) Colocalization of P-Ser83-HP1γ (A, green) is shown with Aurora A (B, red) at the spindle poles. The overlay is shown in (C). (D,E,F)

Cells in metaphase were also stained for P-Ser83-HP1γ (D, green) and Aurora B (E, red), which demonstrates that there is no colocalization of

these two proteins as observed in the overlay (F). (G,H,I,J,K,L) P-Ser83-HP1γ (G,J, green) was confirmed to be present at the spindle poles

through co-staining with γ-tubulin (H, red) as well as α-tubulin (K, red) as shown in the overlays (I, L). (M,N,O,P,Q,R,S,T,U) In addition, CDK1

(N, red), cyclin B1 (Q, red) and cyclin B2 (T, red) were each shown to co-localize with P-Ser83-HP1γ (M,P,S, green) as shown by overlays (O,R,U).

Cells were counterstained with DAPI (blue) to show DNA. Scale bar represents 5 μM. CDK1, cyclin-dependent kinase 1; DAPI, 4',6-diamidino-2-

phenylindole; P-Ser83-HP1γ, phosphorylation of HP1γ at serine 83.
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and nonphosphorylatable mutant HP1γ proteins with

each Aurora kinase, Aurora A or Aurora B, followed by

western blot using the phospho-specific P-Ser83-HP1γ

antibody. These in vitro kinase assays demonstrated that

the wild type HP1γ, but not the dominant negative,

nonphosphorylatable S83A-HP1γ mutant [8], could be

phosphorylated in vitro by both Aurora A and Aurora B

(Figure 4A). To determine whether Aurora kinases also

phosphorylate HP1γ in vivo, we performed western blots

of siRNA-treated HeLa cells against Aurora A and B,

separately (Figure 4B). We found that Aurora A siRNA

can inhibit the P-Ser83-HP1γ in vivo, whereas Aurora B

siRNA demonstrated only a slight reduction in levels of

P-Ser83-HP1γ (56% of control levels). Of note, Aurora A

kinase depletion by siRNA also leads to arrest of cells at

G2/M [20], thus eliminating the influence of the G1

Figure 4 (See legend on next page.)
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phosphorylation in these experiments. To further investi-

gate the participation of Auroras in this event, Chinese

hamster ovary (CHO) cells, which have relatively low basal

levels of P-Ser83-HP1γ, were transfected with either wild

type Aurora A or Aurora B (Figure 4C). As a result, levels

of P-Ser83-HP1γ were higher in the Aurora-transfected

cells than control. This occurred with both Aurora A and

Aurora B transfection, as expected due to their effects on

cell cycle progression. In contrast, transfection of epithe-

lial cells, BxPC3, which have high basal levels of P-Ser83-

HP1γ, with the dominant negative form of Aurora A

[21,22] resulted in reduced levels of P-Ser83-HP1γ (Fig-

ure 4D). Similar to the siRNA experiments, dominant

negative Aurora B [21,23] had less effect on P-Ser83-HP1γ

levels than Aurora A. Therefore, we utilized the dominant

negative Aurora A in HeLa cells to confirm this

phenomenon by immunofluorescence. Compared to con-

trol cells (Figure 4E), transfections with dominant negative

Aurora A (Figure 4F) abolished the localization of the P-

Ser83-HP1γ in cell compartments rich in this kinase

(arrow). In contrast, transfection with dominant negative

Aurora A did not affect P-Ser83-HP1γ levels or

localization in interphase cells (Figure 4F). Furthermore,

we utilized the Aurora A- and Aurora B-specific pharma-

cological inhibitors, MLN8237 and hesperidin, respect-

ively, to determine the participation of each kinase in

P-Ser83-HP1γ. We found that specific inhibition of Aurora

A with 300 nM MLN8237, which was confirmed by loss

of activated phosphorylation of Aurora A at threonine 288

(P-Thr288) [24], diminished P-Ser83-HP1γ levels without

affecting total HP1γ protein levels (Figure 4G). However,

treatment with hesperidin (200 nM) for specific inhibition

of Aurora B did not reduce P-Ser83-HP1γ levels, while still

inhibiting the Aurora B target P-Ser10-H3 (Figure 4H, and

personal communication with H Dormann and CD Allis).

Combined, these results demonstrate that Aurora A kin-

ase is primarily responsible for the localization and

increased level of P-Ser83-HP1γ observed in G2/M.

Together with the biochemical experiments described

above, these data implicate, for the first time, Aurora kin-

ase in the cell cycle-regulated P-Ser83-HP1γ. This observa-

tion also represents the first evidence describing

mammalian HP1 at the spindle poles, a localization that is

preferred by a large amount of proteins involved in the

regulation of cell cycle transitions.

P-Ser83-HP1γ is required for normal mitotic function

Functionally, HP1γ has been previously shown to play a

role in cell cycle progression [10-13], although how this

protein is regulated to modulate this function remains

unknown. Inhibition of Aurora A leads to mitotic spin-

dle defects and misaligned chromosomes [25,26]. Thus,

as phosphorylation of HP1γ is downstream of this path-

way during mitosis, we investigated whether disrupting

the function of this protein also coincides with this ef-

fect. For this purpose, we performed stable lentiviral-

mediated shRNA knockdown of HP1γ (shHP1γ) in HeLa

cells. HP1γ knockdown was confirmed by western blot

with approximately 90% reduction in protein levels

(Figure 5A). These cells also displayed a significant de-

crease in P-Ser83-HP1γ staining by immunofluorescence

(Figure 5B), demonstrating that localization of P-Ser83-

HP1γ to the mitotic spindle pole was unambiguous. We

found that 25.5% of shHP1γ cells in mitosis displayed

abnormalities (n = 200, Figure 5C), including multipolar

spindles, centrosome disruption or lagging, unorganized

chromosomes (Figure 5D). shRNA control cells

(shCTRL) displayed abnormalities in only 1% (n = 200).

However, in spite of this informative outcome, since

HP1γ knockdown depleted all forms of the protein, the

contribution of Ser83 phosphorylation to this effect could

not be assessed by this experimental manipulation. Thus,

to better determine the role that phosphorylation of

Ser83 plays in this function, we sought to rescue the

knockdown phenotype with wild type and Ser83 mutant

HP1γ. Transduction with empty vector (EV) control did

(See figure on previous page.)

Figure 4 Aurora A phosphorylates Ser83-HP1γ in G2/M. (A) Aurora kinases phosphorylate Ser83 in vitro. In vitro kinase assays were performed

on GST fusion proteins, which demonstrate that wild type, not S83A-HP1γ mutant, is phosphorylated by Aurora kinases. (B) Aurora A siRNA

reduces P-Ser83-HP1γ. Aurora A siRNA significantly reduced P-Ser83-HP1γ, whereas Aurora B siRNA only slightly reduced P-Ser83-HP1γ (top). Aurora

A (AURKA) and Aurora B (AURKB) were effectively knocked-down (middle panels). Relative intensities were calculated as P-Ser83-HP1γ/β-actin ratios.

(C) Wild type Aurora kinases increase P-Ser83-HP1γ. CHO cells, with low basal P-Ser83-HP1γ, demonstrated increased P-Ser83-HP1γ (top) upon

transfection of Aurora kinases (Myc-tag; middle). (D) Aurora A-dominant negative (DN) reduces P-Ser83-HP1γ. P-Ser83-HP1γ (top) was significantly

reduced with Aurora A-DN in BxPC3, epithelial cells with high basal P-Ser83-HP1γ. Aurora B-DN also reduced P-Ser83-HP1γ, although still detected.

Aurora-DN levels are shown by Myc-tag. β-actin serves as loading control (B, C, D; bottom). (E,F) Aurora A-DN abolishes mitotic P-Ser83-HP1γ.

Representative images of overlays with DAPI counterstain are shown for P-Ser83-HP1γ (green) with control (E) or Aurora A-DN (F). Typical P-Ser83-

HP1γ localization was still observed in interphase with Aurora A-DN, but disrupted in metaphase (arrows). Scale bar represents 10 μM. (G,H).

Pharmacological inhibition of Aurora A, but not Aurora B, inhibits P-Ser83-HP1γ. Aurora A inhibition with MLN8237 was confirmed by loss of

activated P-Thr288 relative to total Aurora A (G, lower panels). P-Ser83-HP1γ was significantly reduced with MLN8237, without affecting pan-HP1γ

(G, upper panels). Conversely, Aurora B inhibition by hesperidin did not reduce P-Ser83-HP1γ (H, top). Aurora B inhibition was confirmed by P-Ser
10-H3, a well-known Aurora B target (H, bottom). CHO, Chinese hamster ovary; DAPI, 4',6-diamidino-2-phenylindole; DN, dominant negative; GST,

glutathione S-transferase; P-Ser10-H3, phosphorylation of histone H3 at serine 10; P-Ser83-HP1γ, phosphorylation of HP1γ at serine 83; P-Thr288,

phosphorylation of Aurora A at threonine 288; Ser83, serine 83.
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not change the number of abnormalities observed with

shHP1γ. Reintroduction of wild type HP1γ (+WT-HP1γ)

rescued, to a significant extent, the abnormal mitotic ef-

fects seen with knockdown of this protein (10% abnor-

mal, n = 200). Notably, an alanine substitution, which

rendered HP1γ unable to undergo phosphorylation at

Ser83 (+S83A), was unable to rescue the knockdown

phenotype (23% abnormal, n = 200). This data indicates

that first, normal HP1γ levels are necessary for proper

mitotic functions and second, HP1γ must be amenable

to Aurora A-mediated Ser83 phosphorylation to achieve

these effects.

P-Ser83-HP1γ status affects cell proliferation and mitotic

gene expression networks

Normal mitotic cell division is a prerequisite for prolifer-

ative homeostasis and proper cell cycle progression [27].

Thus, based on our results demonstrating the role of P-

Ser83-HP1γ in mitosis, we examined the resultant effects

of P-Ser83-HP1γ on cell proliferation by analyzing cells

transfected with wild type, S83A-HP1γ or S83D-HP1γ

mutant via EdU incorporation. We found that wild type

HP1γ had a slight increase in EdU incorporation

compared to EV control (103.9% ± 2.6% of EV control,

Figure 6A). However, nonphosphorylatable S83A-HP1γ

Figure 5 P-Ser83-HP1γ is necessary for proper mitotic function. (A) Stable knockdown of HP1γ in HeLa cells. Western blot of HP1γ levels

(top) is shown from HeLa cell lysates to confirm stable lentiviral-mediated shHP1γ compared to shCTRL. α-tubulin serves as a loading control

(bottom). (B) HP1γ knockdown eliminates P-Ser83-HP1γ at the spindle poles. Representative images are shown for immunofluorescence on

shCTRL and shHP1γ HeLa cells to demonstrate specific loss of P-Ser83-HP1γ (green) staining. Co-staining with γ-tubulin (red) was performed to

establish the localization of the spindle poles. Cells were counterstained with DAPI and the overlay is shown. Scale bar represents 5 μM.

(C) Mitotic aberrations caused by HP1γ knockdown are rescued by wild type, but not S83A-HP1γ mutant. Mitotic aberrations were quantified for

shCTRL and shHP1γ cells. In order to determine if Ser83 phosphorylation plays a role in this function, shHP1γ cells were infected with adenovirus

carrying wild type or S83A-HP1γ mutant. While reintroduction of wild type HP1γ was able to significantly rescue this effect, S83A-HP1γ mutant

was not, implicating Aurora A-mediated phosphorylation in this phenomenon. For each condition, 200 mitotic cells were analyzed. Western

blot is shown of endogenous HP1γ levels (inlay, top) as well as transduced His-tagged wild type and S83A-HP1γ mutant proteins (arrow).

α-tubulin serves as a loading control (inlay, bottom). *Transduction with EV control did not change the number of abnormalities observed with

shHP1γ. (D) Mitotic aberrations observed in stable shHP1γ cells include multipolar spindles, centrosome disruption and lagging, unorganized

chromosomes. Representative images are shown for the types of observed mitotic aberrations. γ-tubulin (red) marks spindle poles with DAPI

counterstain to show condensed mitotic chromosomes. Scale bar represents 5 μM. DAPI, 4',6-diamidino-2-phenylindole; EV, empty vector;

P-Ser83-HP1γ, phosphorylation of HP1γ at serine 83; Ser83, serine 83; shCTRL, shRNA control; shHP1γ, shRNA knockdown of HP1γ; shRNA,

short hairpin RNA.
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mutant decreased the levels of EdU (94.2% ± 1.6% of EV

control, P <0.05, Figure 6A). Notably, an aspartic acid

substitution (S83D), designed to mimic Ser83 phosphor-

ylation, had a significant increase in levels of EdU in-

corporation over control cells (111.2% ± 2.6% of EV

control, P <0.05, Figure 6A). Thus, these results support

the idea that phosphorylation of Ser83 is necessary for

the regulation of cell cycle progression by HP1γ.

We next investigated whether the changes observed in

EdU incorporation by both phosphomimetic and

nonphosphorylatable Ser83-HP1γ mutants were accom-

panied by changes in other biochemical surrogates for cell

cycle progression, such as known mitotic gene networks.

For this purpose, we performed a genome-wide query

using Affymetrix (Santa Clara, CA, USA) profiles as tran-

scriptional readouts of their effects. Hierarchical clustering

of targets significantly altered by HP1γ (526 targets),

S83A-HP1γ (492 targets) or S83D-HP1γ (1,727 targets)

overexpression demonstrated that gene networks modu-

lated by HP1γ experienced deregulation in the presence of

Figure 6 (See legend on next page.)
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the Ser83 mutation, indicating dependence of these pro-

cesses on regulation of Ser83 phosphorylation (Figure 6B).

Based on Euclidean distance calculation and the resulting

dendrogram, both control and nonphosphorylatable

S83A-HP1γ mutant samples were statistically the most

similar (Figure 6B). The fact that the EV and the S83A-

HP1γ mutant possessed the closest relationship suggested

that the latter worked predominantly as either an inactive or

dominant negative mutant. However, the phosphomimetic

S83D-HP1γ mutant, for the most part, reversed the effect of

the S83A-HP1γ mutant, suggesting that it likely worked in a

constitutively active manner thereby mimicking Aurora A-

mediated Ser83 phosphorylation. Pathway-specific RT-PCR

was used to validate a subset of significant targets

(Additional file 2: Table S1). These experiments revealed

that HP1γ and its phosphorylated form have the ability to

change the levels of transcripts related to mitosis.

Gene Ontology (GO) ANOVA analysis was utilized to

probe for differentially expressed functional groupings of

genes (Figure 6C). Overall, HP1γ overexpression resulted

in significant enrichment of targets related to regulation of

cellular proliferation, cell division, and mitosis (P <0.05).

S83A-HP1γ mutant overexpression yielded differential ex-

pression in targets related to protein localization to the

chromosome, regulation of the S phase of the mitotic cell

cycle and regulation of the G2/M transition of mitotic cell

cycle. S83D-HP1γ mutant overexpression showed signifi-

cant alteration in genes related to the regulation of the

mitotic cell cycle, regulation of the G2/M anaphase-

promoting complex, maintenance of centrosome location

and spindle pole structure, among others. Consequently,

from these data, we conclude that disruption of phosphor-

ylation status of HP1γ has diverse effects on multiple as-

pects of the mitotic cell cycle, which is congruent with its

cell cycle-associated phosphorylation pattern (Figures 1

and 2) indicating a pervasive role of the regulation of HP1γ

in cell division.

Interestingly, previous studies have shown that deple-

tion of HP1γ in primordial germ cells reduces their

number as a result of impaired cell cycle progression

[13]. Comparison of our expression dataset with a pub-

lished dataset in primordial germ cells revealed that the ex-

pression of the nonphosphorylatable S83A-HP1γ mutant

displayed a highly similar pattern as HP1γ depletion, in-

cluding targets related to cell cycle, proliferation and

growth. This ability of the S83A-HP1γ mutation to mimic

conditions of absolute HP1γ depletion at the level of gene

expression networks, combined with the inability of the

S83A-HP1γ mutant to rescue the mitotic defects observed

with HP1γ knockdown, indicates that posttranslational

modification of this residue is needed for proper progres-

sion through mitosis. Furthermore, it may be concluded

from our genome-wide analysis that HP1γ participates in

the regulation of processes, which support proper cell div-

ision and proliferation through phosphorylation-dependent

and phosphorylation-independent mechanisms.

Discussion
Based on the current study, our demonstration that HP1γ,

a well-known epigenetic regulator, undergoes robust phos-

phorylation at Ser83 in G2/M has significant biological rele-

vance and deserves careful consideration. Previous studies

demonstrating that HP1 proteins are ejected from chromo-

somes during mitosis [28,29] led to the assumption that

this protein is not involved in the regulation of this

process, even though it is highly express in rapidly dividing

cancer cells [10]. In this regard, the current study reveals

that, during G2/M, an extrachromosomal subpopulation of

HP1γ, P-Ser83-HP1γ, localizes with γ-tubulin, Aurora A

kinase and other mitotic targets, including cyclin B1, cyclin

B2 and CDK1, at the spindle poles. Thus, this data demon-

strates for the first time that, in spite of its ejection from

chromosomes, HP1γ does not disappear during mitosis,

but rather relocates to organelles, known for enrichment in

cell cycle regulators, where it undergoes G2/M-specific

phosphorylation at Ser83 by Aurora A. In addition, the

colocalization and coupling of Aurora A to HP1γ in cell

(See figure on previous page.)

Figure 6 P-Ser83-HP1γ status alters cell proliferation and cell cycle-related gene networks. (A) P-Ser83-HP1γ plays a role in cell proliferation.

Cell proliferation was measured in the presence of control (EV), wild type HP1γ, the nonphosphorylatable (S83A)- or phosphomimetic (S83D)-

HP1γ mutants by EdU incorporation, using both FACS and microscopy. Wild type HP1γ demonstrated only a slight increase in EdU incorporation

compared to EV. However, while mutation of S83A-HP1γ decreased the levels of EdU, the S83D-HP1γ mutant had a significant increase in levels

of EdU incorporation over control cells. Western blot controlling expression of His-tagged wild type and mutant HP1γ proteins is shown (top,

inlay). A representative immunofluorescence image (40 × magnification) of EdU-positive cells (green) is shown below each respective

experimental condition. Cells were counterstained with DAPI to detect total number of cells present in a field. *P values <0.05. (B) Genome-wide

expression analysis of HP1γ highlights consequences of Ser83 phosphorylation. Hierarchical clustering of significant targets (P value <0.05) from

Affymetrix Human Gene 1.0 ST microarray demonstrates the close relationship between EV and the nonphosphorylatable S83A-HP1γ mutant. Large

clusters of genes show deregulation in the presence of either the nonphosphorylatable (S83A)- or phosphomimetic (S83D)-HP1γ mutants. (C) P-Ser83-

HP1γ status influences the expression of G2/M-related genes. Gene Ontology (GO) ANOVA reveals significant differential expression of genes by both

wild type and mutant HP1γ in functional groupings related to mitosis and cell division, again indicating that the presence of an active phosphorylation

site at Ser83 is necessary for proper mitotic function as a sizeable number of targets are deregulated in the presence of the HP1γ mutants with altered

phosphorylation abilities. ANOVA, analysis of variance; DAPI, 4',6-diamidino-2-phenylindole; EdU, 5-ethynyl-2´-deoxyuridine; EV, empty vector; FACS,

fluorescence-activated cell sorting; GO, Gene Ontology; P-Ser83-HP1γ, phosphorylation of HP1γ at serine 83; Ser83, serine 83.
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cycle regulation is reconstituted in time and space in each

cell cycle.

Examination of the effect of the related kinase, Aurora

B, demonstrates that this enzyme can phosphorylate the

Ser83 site in vitro. However, siRNA and dominant nega-

tive experiments demonstrate that Aurora B was not as

robust as Aurora A on modulating levels of P-Ser83-

HP1γ in cells. Treatment of cells with the Aurora B in-

hibitor, hesperidin, does not impair P-Ser83-HP1γ and,

more importantly, Aurora B does not localize with P-Ser
83-HP1γ in mitotic cells. These results reveal a signifi-

cant level of specificity for these kinases in the phos-

phorylation of HP1 proteins.

We found that HP1γ, though ejected from chromo-

somes by the previously described Aurora-mediated P-

Ser10-H3 [28,29], remains tightly associated to a mitotic

organelle which is rich in cell cycle regulators. This re-

veals the existence of coupled mechanisms of ejection

and relocalization of HP1γ, which ultimately has signifi-

cant consequences for the regulation of cell division.

Both steps involved in this process, H3 and HP1γ phos-

phorylation, are mediated by Aurora kinases. Thus, it is

most likely that one function of Auroras has evolved, in

part, to secure that epigenetic regulators are turned on

and off during cell division in a highly synchronized

manner, to achieve the proper transfer of genetic-

epigenetic material through generations. Interestingly,

although HP1 proteins themselves have not been previ-

ously observed at the centrosome/spindle pole, several

HP1-interacting proteins are known to reside in this cell

compartment. For example, a subpopulation of origin

recognition complex 2 (Orc2) protein has been localized

to centrosomes [30]. However, contrary to the Aurora

A-cyclin B-CDK1 pathway, which links the phosphoryl-

ation of HP1γ at the spindle during G2/M transition,

Orc2 associates with HP1 only in the population that is

tightly bound to heterochromatin in G1 and early S

phase. In addition, immunoprecipitation of Orc2 shows

specific interaction with HP1α and HP1β, but not HP1γ

[30], the HP1 protein studied here. Since posttransla-

tional modifications of HP1 were not considered in the

Orc2 experiments, it remains possible that subpopula-

tions of distinct posttranslationally modified HP1 pro-

teins, such as P-Ser83-HP1γ, which cannot be detected

with pan-HP1 antibodies, also interact with Orc2. It is

not likely, however, that Orc2 is responsible for recruit-

ment of HP1γ to this cell compartment, given that Orc2

is localized there throughout the entire cell cycle [30].

Nevertheless, our results demonstrate a high degree of

selectivity for HP1γ to work with certain regulatory en-

zymes (kinases) to maintain mitotic functions.

Previous studies have shown that disruption of G9a,

one of the histone methyltransferases responsible for the

histone mark recognized and bound by HP1, H3 lysine

9, results in chromosome instability along with centro-

some abnormalities [31]. In addition to creating the

mark to which HP1 binds, G9a localizes with HP1α and

HP1γ, which is dependent upon its own automethylation

[32], and HP1γ has been shown to specifically form

complexes with G9a in the context of the E2F-6 gene si-

lencing complex [33]. Interestingly, in meiosis cell div-

ision during gamete production, HP1γ and G9a are

proposed to form an axis that is responsible for retaining

centromeric regions of unpaired homologous chromo-

somes in close alignment, and facilitating progression of

their pairing in early meiotic prophase [12]. In fact,

HP1γ-deficient mouse spermatocytes undergo meiotic

catastrophe [12]. An important observation of our stud-

ies is that siRNA-mediated knockdown of HP1γ leads to

a decrease of P-Ser83-HP1γ accompanied by mitotic ab-

errations. While reintroduction of wild type HP1γ res-

cues, to a significant extent, these abnormal mitotic

effects, the nonphosphorylatable S83A-HP1γ mutant is

unable to rescue this consequence of HP1γ knockdown,

highlighting the importance of Ser83 modification for

this function. Moreover, the S83D-HP1γ mutant that

mimics Aurora A phosphorylation facilitates cell prolif-

eration, whereas the nonphosphorylatable S83A-HP1γ

mutant inhibits this process. Therefore, it is tempting to

speculate whether modifications of HP1 influence inter-

actions with G9a and whether these proteins function

together in regulating proper cell division. Indeed, add-

itional studies using model organisms support that the

function described here for human HP1 proteins is con-

served. In Schizosaccharomyces pombe, the HP1

homologue, Swi6, is required to preserve genomic integ-

rity and proper segregation of chromosomes during mi-

tosis [34]. Impaired Swi6 function leads to mitotic

alterations that cause severe growth alterations. Further-

more, the HP1-like protein in Dictyostelium discoideum,

AX4 chromo domain-containing protein (hcpA), which

displays 79% similarity to human HP1γ, colocalizes with

electron-dense structures at the nuclear periphery that

are compatible with pericentrosomal material [35].

Overexpression of this protein causes growth defects

that are accompanied by an increase in the frequency of

atypical anaphase bridges. Genetic studies in Drosophila

have demonstrated that mutations in the HP1 protein

cause defective chromosome segregation [36,37]. Thus,

in combination with this data, the studies described here

indicate that HP1 proteins have evolved to support cell

division in organisms ranging from fission yeast to

humans.

Congruent with our results, previous experiments have

defined a role for HP1γ in human diseases that are char-

acterized by abnormal cell proliferation. High levels of

HP1γ have been observed in several cancer types, in-

cluding esophageal, breast, colon, lung and cervical
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cancer, the cell model used here [10]. In addition,

siRNA-mediated knockdown of HP1γ expression in-

hibits cervical cancer cell proliferation. Of note, Aurora

A, the kinase identified in this study as responsible for

P-Ser83-HP1γ at G2/M, is amplified and overexpressed

in cervical cancer, which induces centrosome amplifica-

tion, aneuploidy and transformation [38]. Cervical can-

cer patients with high Aurora A expression correlate

with a poorer disease-free survival and overall survival

rates than patients with low Aurora A expression, indi-

cating that this protein could be used as a prognostic

marker [39]. Based on the current study, the high levels

of both HP1γ and Aurora kinases in cervical cancer cells

would suggest that there is a resultant increase in P-Ser
83-HP1γ. Thus, targeting this pathway would affect P-Ser
83-HP1γ-mediated cell proliferation, in addition to other

downstream Aurora effectors. In fact, Aurora kinase in-

hibitors have been shown to suppress proliferation of

cervical cancer cells and enhance chemosensitivity

[40,41], suggesting that targeting Aurora in combination

with the HP1-histone methyltransferase pathway may be

a beneficial therapy in these patients.

Conclusions

In summary, the current study identifies a novel Aurora-

HP1γ pathway that involves P-Ser83-HP1γ by Aurora A

in G2/M and localization of this HP1γ subpopulation to

the spindle pole, which is necessary for proper cell div-

ision. Combined, these results constitute robust evidence

that P-Ser83-HP1γ plays a role in mitosis and bears im-

portance for understanding impairments, which have

been shown to be characterized by abnormally high

levels of HP1γ and Aurora kinase activity, including can-

cer. Our results also suggest a teleological interpretation,

namely that certain regulators of chromatin dynamics

and transcription, such as HP1γ, may undergo functional

pressures (for example Aurora A phosphorylation) to

maintain the integrity of cell division so that their own

epigenetic inheritance is reproducible from cell gener-

ation to cell generation.

Methods

Cell lines, reagents and cell treatments

Cell lines were obtained from the American Type Cul-

ture Collection (ATCC, Rockville, MD, USA) and

maintained according to the manufacturer’s protocol.

The human LX2 cell line was obtained as a generous gift

from Dr Steve Freeman (Mount Sinai, NY, USA).

Roscovitine (Sigma-Aldrich, St Louis, MO, USA) treat-

ment was added at increasing concentrations (0, 5, 10

and 20 μM) for 8 hours, and lysates were harvested.

Cells were treated with 3 μg/ml aphidicolin or 2 μg/ml

nocodazole (both from EMD Millipore, Billerica, MA,

USA) for 16 hours to arrest at G1/S and G2/M,

respectively. Control cells were treated with vehicle, di-

methyl sulfoxide (DMSO). HeLa cells were synchronized

by double thymidine block. Thymidine (2 mM, Sigma-

Aldrich) was added to asynchronous cells for 18 hours.

Cells were subsequently released for 9 hours in regular

growth media prior to the second thymidine (2 mM)

block. After 17 hours, cells were released for the thymi-

dine block and lysates were collected at the indicated

time points. KT5720 was obtained from EMD Millipore.

MLN8237 and hesperidin were purchased from

Selleckchem (Houston, TX, USA). For hesperidin treat-

ment, HeLa cells were arrested in mitosis by treatment

with nocodazole for 16 hours. Arrested cells were

treated with 200 nM hesperidin for the indicated times

in the presence of 10 μM of the proteasome inhibitor

MG132 (Sigma-Aldrich) to prevent mitotic exit [28].

Plasmids, siRNA and recombinant adenovirus

Standard molecular biology techniques were used to clone

HP1γ into the pGEX and Ad5CMV vectors. For HP1γ-

specific transient shRNA-mediated knockdown, comple-

mentary oligonucleotides were synthesized for the target

sequence (GCAAATCAAAGAAGAAAAG), annealed and

ligated into the pCMS3 vector (kindly provided by Dr

Daniel Billadeau, Mayo Clinic, Rochester, MN, USA). For

stable shRNA-mediated HP1γ knockdown, control or

HP1γ-specific shRNA lentiviral particles (Santa Cruz Bio-

technology, Inc, Santa Cruz, CA, USA) were used to infect

cells according to the manufacturer’s protocol, followed

by puromycin selection (2 μg/ml). Myc-tagged wild type

and dominant negative constructs for Aurora A and Aur-

ora B were a kind gift from Dr Paolp Sassone-Corsi [21].

S83A-HP1γ and S83D-HP1γ mutations were obtained

using the QuickChange Site-Directed Mutagenesis Kit, as

suggested by the manufacturer (Agilent Technologies, Inc,

Santa Clara, CA, USA). All constructs were verified by se-

quencing at the Molecular Biology Core at Mayo Clinic,

Rochester, MN, USA. Aurora A (AURKA) and Aurora B

(AURKB) Silencer validated siRNAs were purchased from

Ambion-Life Technologies (Carlsbad, CA, USA). Epitope-

tagged (6xHis-Xpress) HP1γ, S83A-HP1γ and S83D-HP1γ

, as well as EV (Ad5CMV), were generated as recombinant

adenovirus in collaboration with the Gene Transfer Vector

Core at the University of Iowa, IA, USA.

Western blot analysis

Samples were run on 4 to 20% gradient SDS-PAGE gels

(Lonza, Walkersville, MD, USA) or 12% SDS-PAGE gels

and electroblotted onto polyvinylidene difluoride (PVDF)

membranes (EMD Millipore). The membranes were

blocked in 5% BSA in tris-buffered saline Tween-20

(TBST) for 1 hour at room temperature. The blots

were incubated for 2 hours at room temperature or over-

night at 4°C with primary antibody (P-Ser83-HP1γ [8],
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1:1,000; HP1γ, 1:1,000; and P-Ser10-H3, 1:5,000 (all from

EMD Millipore); Aurora A, 1:1,000 (BD Biosciences

Pharmingen, San Diego, CA, USA); Aurora B, 1:500; cyc-

lin B1, 1:1,000; cyclin B2, 1:1,000; and CDK1, 1:1,000

(Abcam, Cambridge, MA, USA); β-actin, 1:1,000; and α-

tubulin, 1:1,000 (Sigma-Aldrich); c-Myc (9E10) for Myc-

tagged proteins, 1:1,000 (Thermo Scientific, Rockford, IL,

USA); and OMNI D8 for His-tagged proteins, 1:1,000

(Santa Cruz Biotechnology)). After repeated washes in

TBST, horseradish peroxidase (HRP)-conjugated anti-

rabbit or mouse IgG secondary antibody (1:5,000) was

added for 1 hour at room temperature. Blots were devel-

oped by Pierce ECL chemiluminescent substrate (Thermo

Scientific).

Immunofluorescence and confocal microscopy

Immunofluorescence and confocal microscopy were

performed as previously described [42]. The primary

antibodies were used at the following dilutions: P-Ser83-

HP1γ, 1:200; and γ-tubulin, 1:500 (Sigma-Aldrich); Aur-

ora A, 1:50; and Aurora B, 1:50 (BD Biosciences

Pharmingen); cyclin B1, 1:500; cyclin B2, 1:100; and

CDK1, 1:40 (Abcam); and cyclin D3, 1:200 (Cell Signal-

ing Technology, Danvers, MA, USA). For localization of

P-Ser83-HP1γ during S-phase, EdU incorporation was

combined with immunofluorescence. Prior to fixation,

cells were incubated for 30 minutes in media containing

10 uM EdU. Subsequently, cells were processed for im-

munofluorescence, followed by EdU labeling using the

Click-iT EdU Imaging Assay Kit (Invitrogen, Carlsbad,

CA, USA) according to the manufacturer’s protocol. For

mitotic aberrations, spindle poles were labeled by im-

munofluorescence with γ-tubulin and counterstained

with 4',6-diamidino-2-phenylindole (DAPI) containing

mounting media (Vector Laboratories, Burlingame, CA,

USA). For each condition, at least 200 mitotic cells were

analyzed to quantify mitotic aberrations.

GST fusion protein purification and in vitro kinase assays

GST fusion protein purification was done as previously

described [8]. For Aurora A and Aurora B in vitro kinase

assays, HP1 fusion proteins (10 μg) were incubated with

recombinant kinases (EMD Millipore) and 10 mM ATP

(Sigma-Aldrich) for 10 minutes at 30°C, in either the sup-

plied buffer (Aurora A) or buffer containing 50 mM Tris

pH 7.5, 0.1 mM ethylene glycol tetraacetic acid (EGTA),

and 15 mM dithiothreitol (DTT, Aurora B). Kinase reac-

tions were terminated by the addition of SDS loading dye

and then resolved by western blot as described above.

Cell proliferation assay

Cell proliferation was measured by EdU incorporation

using both fluorescence-activated cell sorting (FACS)

and microscopy. Cells were infected with adenovirus

carrying control, HP1γ, S83A-HP1γ or S83D-HP1γ vec-

tors. Forty-eight hours post-plating, cells were pulsed

with 10 μM EdU (Invitrogen) for 1 hour. Subsequently,

cells were processed using the Click-iT EdU Flow Cy-

tometry or Imaging Assay Kits (Invitrogen) according to

the manufacturer’s protocols. EdU incorporation was

measured by FACS analysis at the Mayo Flow Cytometry

Research Core Facility, Rochester, MN, USA, or confocal

microscopy. Each experiment was performed at least five

different times in triplicate, expressed as means with

standard error of mean (SEM) and statistical analyses

were performed using unpaired t-test.

Gene expression profiling, microarray analysis

Global gene expression profiling was carried out at the

Microarrays Facility of the Research Center of Laval

University, CRCHUL, QC, Canada, utilizing the

Affymetrix Human Gene 1.0 ST arrays (28,869 well-

annotated genes and 764,885 distinct probes). Intensity

files were generated by Affymetrix GCS 3000 7G and

the GeneChip Operating Software (Affymetrix, Santa

Clara, CA, USA). Data analysis, background subtraction

and intensity normalization was performed using robust

multi-array analysis (RMA) [43]. Genes that were differ-

entially expressed along with false discovery rate were

estimated from t-test (>0.005) and corrected using

Bayesian approach [44,45]. Data analysis, hierarchical

clustering and ontology were performed with the

oneChannelGUI to extend affylmGUI graphical interface

capabilities [46], and Partek Genomics Suite, version 6.5

(Partek Inc, St Louis, MO, USA) with ANOVA analysis.

Final fold changes were calculated as x = 2^log2value.

Probes with P value <0.05 and fold change ± 2.2 among

HP1γ versus EV, S83A-HP1γ versus EV, and S83D-HP1γ

versus EV were selected for further analysis. For GO

ANOVA, a minimum threshold of three genes and

P <0.05 was used to identify significant functional groups.

To validate the Affymetrix microarray, targets with sig-

nificant alteration (P <0.05) were compared to the real-

time data using an arbitrary cutoff of ± 2.2 fold change

compared to EV control.

Additional files

Additional file 1: Figure S1. (A) FACS-assisted cell cycle analysis of

double thymidine block samples. HeLa cells were synchronized by

double thymidine block and released for the indicated time points.

Enrichment of cells is shown at the G1/S boundary 2 hours post-release,

in S phase at 5 hours post-release and in mitosis at 8 hours post-release.

(B) G1/S boundary peak of P-Ser83-HP1γ levels at 2 hours post-release

from double thymidine block are diminished with PKA inhibition. PKA

was inhibited with increasing concentrations of KT5720 as indicated

upon release from double thymidine block and cell lysates were

collected at 2 hours post-release. Pan-HP1γ levels are shown as a loading

control. FACS, fluorescence-activated cell sorting; PKA, protein kinase A; P-

Ser83-HP1γ, phosphorylation of HP1γ at serine 83.
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Gene 1.0 ST microarray.
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