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ABSTRACT 

Potassium channel functions are often deciphered by the use of selective and potent 

scorpion toxins. Among these toxins, only a limited subset is capable to selectively block 

small conductance Ca2+-activated K+ (SK) channels. The structural bases of this selective SK 

channel recognition still remain unclear. In this work, we demonstrate the key role of the 

electric charges of two conserved arginine residues (R485 and R489) from the SK3 channel 

outer vestibule in the selective recognition by SK3-blocking BmP05 toxin. Indeed, 

individually substituting these residues by histidyl or lysyl (maintaining partially or fully the 

positive electric charge), while decreasing the affinity of BmP05, still preserves its 

toxin-sensitivity profile (as evidenced by the lack of recognition by the voltage-gated 

potassium channel (Kv)-blocking charybdotoxin (ChTX)). In contrast, when R485 or R489 

residue of SK3 channel is mutated towards an acidic (E) or alcoholic (S) amino acid residue, 

the channel loses its sensitivity to BmP05 and becomes susceptible to a „new‟ blocking 

activity by ChTX. Besides these basic SK3 channel residues important for sensitivity, two 

acidic D492 and D518 residues, also located in the SK3 channel outer vestibule, were identified 

as being critical for toxin affinity. Further, molecular modeling data indicate the existence of a 

compact SK3 channel turret conformation where the basic rings of R485 and R489 residues are 

stabilized by strong ionic interactions with the acidic D492 and D518 residues. In conclusion, 

the unique properties of R485 and R489 residues (spatial orientations and molecular 

interactions) of SK3 channel account for its toxin-sensitivity profile. 
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INTRODUCTION 

With about one hundred members, the potassium channel family serves a variety of 

physiological functions and is involved in various channelopathies (Ashcroft, 2006). Based on 

their activation mode and number of transmembrane segments, these channels can be 

classified according to four main structural types: (i) inwardly rectifying two-transmembrane 

K+ channels (Kir), (ii) two-pore K+ channels with four transmembrane segments (K2P), (iii) 

Ca2+-activated K+ channels with six or seven transmembrane segments (KCa), and (iv) 

voltage-gated Kv
 channels with six transmembrane segments. Scorpion toxins are widely used 

to distinguish between these potassium channel types (Gross and MacKinnon, 1996; Lu et al., 

2001; MacKinnon et al., 1998). Crystal structures of various potassium channels have 

recently been published markedly increasing our knowledge of ion channel pores, selectivity 

filters, and gates (Doyle et al., 1998; Long et al., 2005; Tao et al., 2009). In two crystal 

structures of eukaryotic Kv1.2 and Kir2.2 channels, significant structural differences can be 

observed in the extracellular pore entryway, including turrets and filter regions, which are 

responsible for channel inactivation, toxin recognition, and interactions between channel 

subunits (Fig. S1). In contrast to the Kv1.2 extracellular pore entryway structure, the large 

turret and unusual TIGYGLR sequence in the filter region of Kir2.2 are responsible for its 

relative insensitivity to K+ channel toxins (Long et al., 2005; Tao et al., 2009). In addition to 

these structural differences in the extracellular pore entryways between eukaryotic Kv1.2 and 

Kir2.2 channels, other specific structural differences have been identified by using scorpion 

toxins as molecular probes. In human ether-à-go-go-related gene (hERG) channel (Fig. S1), 

also referred to as Kv11.1, unusually long turrets likely form a decentralized „petunia‟ shape 

which could be probed by scorpion toxin BeKm-1 (Yi et al., 2007). Alternative models 

without a petunia shape are also proposed for the hERG channel turret (Subbotina et al., 2010; 

Tseng et al., 2007). The conformation of the large conductance calcium-activated potassium 

(BK) channel turret varies from an open-state one, for ChTX recognition, to an “helmet” one, 
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for ChTX insensitivity, when the channel turret associates to the auxiliary 4 subunit (Gan et 

al., 2008) (Fig. S1). Overall, progress in characterizing extracellular pore entryways has 

demonstrated their significant structural and functional diversities. However, because of the 

present difficulty to solve crystal structures of additional eukaryotic potassium channels, 

further characterization of extracellular pore entryways of other potassium channels with 

unique functions remains a challenge. 

Small conductance calcium-activated (SK) channels are predominantly present in the 

nervous system (Berkefeld et al., 2010; Stocker, 2004). They are involved in synaptic 

plasticity, fast glutamatergic synaptic potentials, and hippocampal learning (Faber et al., 2005; 

Hammond et al., 2006; Stackman et al., 2002). SK channels are efficiently blocked by several 

scorpion toxins such as BmP05, scyllatoxin (ScyTx), and P05, but are insensitive towards 

many others (Han et al., 2010; Rodriguez de la Vega and Possani, 2004). Very few reports 

investigate the structural features that underlie the specific recognition of SK channels by a 

restricted set of scorpion toxins. According to these studies, SK channel blockade would 

occur according to an „intermediate‟ mode of interaction (Rodriguez de la Vega et al., 2003) 

involving mainly the toxin alpha helical structure rather than its -sheet structure (Cui et al., 

2002; Regaya et al., 2004; Andreotti et al., 2005). Two arginyl residues, found in a RRCQ 

motif present in both P05 and apamin, were critical for P05 interaction with its target, as 

described for apamin (Sabatier et al., 1993). In contrast, the -sheet structure appears rather 

important for a „pore-blocking‟ mode as far as Kv channel block is concerned (Rodriguez de 

la Vega et al., 2003; Yu et al., 2005; Lange et al., 2006). This distinctive mode of operation 

between SK channel-blocking and Kv channel-blocking toxins may be reconsidered taking 

into account the current state of knowledge on toxin interaction and computer-based 

simulation of toxin docking. Indeed, earlier studies were conducted based on less efficient 

docking simulations and evidence is now rising that the mode of toxin interaction with 

potassium channels may be switchable. In addition, channel turrets seem to play an important 
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role in toxin docking. SK channel turret acidic residues were found to be involved in toxin 

binding in the „intermediate‟ mode (Wittekindt et al., 2004; Andreotti et al., 2005). Evidence 

has been provided that SK channel block by an MTX-HsTx1 chimera is dependent on ionic 

strength, suggesting that SK channel recognition by scorpion toxins involves some 

electrostatic charges (Shakkotai et al., 2001; Castle et al., 2003). Acidic amino acid residues 

of toxins were found to affect the interaction modes further strengthening the importance of 

electrostatic interactions between toxins and channels (Han et al., 2010). Herein, we explored 

the importance of electrostatic repulsion for the interaction of the alpha helical structure of 

BmP05 with SK3 channel. Introducing positively charged residues within the alpha helical 

structure of BmP05 decreases toxin affinity. After identification of key positively-charged 

residues of SK3 channel turret (two conserved arginine residues at turret positions 485 and 

489) and relevant mutations, we were able to render the SK3 channel sensitive to ChTx block 

by its -sheet surface owing to its strong content in basic amino acid residues in spite of the 

fact that ChTx is pharmacologically unrelated to BmP05. Our data demonstrate that the mode 

of toxin / channel interaction can be altered by selective point mutations of the channel with 

the aid of appropriate computer-aided molecular simulations. We also evidenced that the 

toxin-sensitivity profile of SK3 channels is controlled by two conserved turret arginine 

residues that produce differential repulsive electrostatic forces with basic residues of scorpion 

toxins. These results further boost our understanding of the structural and functional diversity 

of potassium channel extracellular pore entryways and unlocks the pharmacological potential 

of toxins. 
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MATERIALS AND METHODS 

 

Materials. Non specified chemicals were obtained from Sigma. 

Toxins, toxin analogs and potassium channels. BmP05 and its mutants, ChTX, and 

ADWX-1 were prepared according to a procedure described previously (Han et al., 2008). 

pEGFP-N1 plasmid containing the full-length human SK3 cDNA sequence was kindly 

provided by Prof. Stephan Grissmer (University of Ulm, Ulm, Germany). Point mutations in 

SK3 channel were generated using the Quikchange mutagenesis kit (Stratagene). All cDNA 

mutants were confirmed by DNA sequencing (Invitrogen). 

Cell culture. Human embryonic kidney (HEK293) cells were cultured in Dulbecco‟s 

modified Eagle‟s medium (Invitrogen) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin in a humidified 5% CO2 incubator at 37°C. Cells were transfected 

using FuGene Transfection Reagent (Roche Diagnostics, Switzerland) following the 

manufacturer‟s instructions and used for electrophysiology 24–48 h after transfection. 

Electrophysiology and data analyses. Electrophysiological experiments were performed at a 

temperature of 22–25°C using the patch-clamp whole-cell recording mode. For channel 

recording, ionic compositions are as follows. The bath medium contained (in mM): sodium 

aspartate 130, potassium aspartate 30, CaCl2 2, MgCl2 1, and HEPES 10 (pH 7.4 with NaOH). 

The pipette solution contained (in mM): potassium aspartate 145, CaCl2 8.7, MgCl2 2, EGTA 

10, and HEPES 10 (pH 7.2 with KOH). Intra-pipette free Ca2+ concentration is estimated to 

be 1 μM. Membrane potentials were clamped to -120 mV for 50 ms followed by a 400 ms 

voltage ramp from -120 to +60 mV and were kept for 5 s between ramps at -40 mV using a 

HEKA EPC10 amplifier with Patchmaster (HEKA Elektronik, Germany) as data acquisition 

software. Data analyses were performed with IGOR software (WaveMetrics, Lake Oswego, 

OR, USA). The IC50 values were obtained by fitting a modified Hill equation to the data as 

shown in Equation 1: Itoxin/Icontrol=1/ (1+ ([toxin peptide]/IC50)) where I is the normalized 
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current at -120 mV without (Icontrol) or with at least five different toxin peptide concentrations 

(Itoxin). Results are shown as mean ± s.e.m. of at least three experiments. 

Atomic coordinates and molecular docking. With the exception of the turret, the spatial 

structure of the SK3 pore region was modeled using the crystallographic structure of the 

KcsA channel (PDB code: 1BL8) as a template using the SWISS-MODEL server (Guex and 

Peitsch, 1997). The SK3 turret was built using the segment-assembly homology modeling 

method, as described previously (Gan et al., 2008; Yi et al., 2007). An additional unrestrained 

molecular dynamics (MD) simulation was performed on the model to get an equilibrated SK3 

channel structure. The 3D structure of BmP05 was modeled using the atomic coordinates of 

the 90% identical ScyTx (PDB code: 1SCY). BmP05 was docked onto the equilibrated SK3 

channel structure using the ZDOCK program (Chen et al., 2003). Clustering analysis and 

experimental data-based screening were used to identify possible hits from the resulting 

complexes. These hits were then subjected to further MD simulation to evaluate their 

structural stability.  

Molecular dynamics simulations. MD simulations were performed using the AMBER 11 

program on a 128-CPU Dawning TC5000 cluster (Beijing, P.R. China). The ff99 force-field 

(Parm 99) (Wang, 1999) was applied throughout all the simulation steps. Both the SK3 

channel and BmP05-SK3 complex structures were subjected to unrestrained simulations in 

explicit solvent systems. The SK3 channel and BmP05-SK3 complexes were first embedded 

in periodic boxes of 71.755 × 79.440 × 79.589 Å and 74.141 × 80.972 × 81.867 Å, 

respectively. A 5 ns pre-equilibration, followed by a 10 ns unrestrained simulation, were 

performed on SK3 channel and channel-toxin complex using the SANDER module in the 

AMBER11 program to get enough stable conformations. The pre-equilibration steps were 

performed by gradually reducing the force constant from 5.0 (kcal/mol)/Å2 for restraining all 

the heavy atoms to 0.02 (kcal/mol)/Å2 for backbone heavy atoms only. The temperature was 

set at 300K with a cut-off distance of 10 Å.
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RESULTS 

 

The SK3 channel is selectively inhibited by scorpion toxins exhibiting no more than 

three basic amino acid residues in their channel binding interfaces. As shown, SK3 

channels are almost insensitive to 100 nM of the Kv channel- and BK channel-acting ChTX 

(Figs. 1a and S2a) or Kv-channel-acting ADWX-1 (Han et al., 2008) (Fig. 1b). In contrast, 

100 nM BmP05 inhibits ca. 80% of the SK3 channel current (Fig. 1c). The corresponding IC50 

value of BmP05-induced current block is 3.8 nM (Fig. 3d). Structurally, there are four basic 

amino acid residues at close vicinity of the pore-blocking basic K27 residue of ChTX or K26 

residue of ADWX-1 (Figs. 1e, f). In contrast, the channel binding interface of BmP05 or 

ScyTx presents only three (Fig. 1g) or two basic residues (Fig. 1h) (Pease and Wemmer, 

1988; Wu et al., 2002). These structural differences in channel binding interfaces suggest that 

the SK3 channel may be selectively recognized by scorpion toxins possessing three (or less) 

basic residues in these critical positions. 

To further characterize the BmP05 binding interface, we tested the effect of adding extra 

basic residue(s) on its ability to recognize the SK3 channel (Fig. 2a). Increasing the number of 

basic residues by one (at BmP05 position 14 or 15) or two arginyl residues (at BmP05 

positions 4 and 14, or 4 and 15), strongly reduced its inhibitory potency at 100 nM 

concentration on SK3 currents (Figs. 2b-e). This decreased potency was stronger when two 

extra arginyl residues were incorporated in BmP05 binding interface (BmP05-N4R/S14R and 

BmP05-N4R/L15R) instead of a single one (BmP05-S14R and BmP05-L15R) (see Figs. 2d, e 

versus 2b, c). From the data, it appears that an efficient block of the SK3 channel by BmP05 

occurs when three basic residues are located in the channel binding interface of the toxin.  

 

Substitution of SK3 channel R485 or R489 basic residue by other basic residues impairs 

BmP05 affinity but maintains the differential BmP05/ChTX sensitivity for the SK3 
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channel. The sensitivity of BmP05 to the presence of extra basic amino acid residues in the 

toxin binding interface strongly suggests the important role of electrostatic repulsion forces 

between BmP05 binding interface and SK3 channel binding site. These electrostatic repulsion 

forces might occur with R485 and R489 residues, two highly conserved basic residues that are 

located in the outer vestibules of all SK channel subtypes (Fig. S1). These electrostatic 

repulsion forces, if actually existing, can be diminished by replacing the wild-type R485 or 

R489 residue of the SK3 channel by less basic lysyl (SK3-R485K and SK3-R489K) or histidyl 

(SK3-R485H and SK3-R489H) residues. The resulting mutated channels were still insensitive 

to 100 nM ChTX application (Figs. 3a, b, e, f), but maintained their sensitivity to 100 nM 

BmP05 (Figs. 3c, d, g, h), albeit at reduced levels. The degree of reduction in BmP05 effect 

was assessed by dose-response analyses indicating affinity reductions of the mutated channels 

for BmP05 by 88- (SK3-R485H), 101- (SK3-R489H), 38- (SK3-R485K), 51-fold 

(SK3-R489K) (Figs. 3i, j). The reduction in affinity is higher for the R to H mutations, as 

expected from the least basic nature of histidyl residue. The basic nature of the amino acid 

residues at SK3 positions 485 and 489 (e.g. R, K or H) is key to maintain the BmP05/ChTX 

selectivity towards the SK3 channel, while the presence of arginyl residues at these positions 

is mandatory to maintain high BmP05 affinity.  

 

Replacement of R485 and R489 residues of SK3 channel by acidic or polar residues alters 

its relative sensitivity to BmP05/ChTX. An additional step in weakening the electrostatic 

repulsion forces at the toxin/channel binding interface is to substitute the SK3 channel dyad of 

arginyl by acidic or polar amino acid residues. This was achieved by replacing R485 or R489 by 

a glutamic acid (acidic) or serine (polar) residue in SK3 channel. In agreement with the 

importance of R485 and R489 in the high affinity of BmP05 for SK3 channel, 100 nM BmP05 

produced much less inhibition of SK3-R485E (Fig. 4a), SK3-R489E (Fig. 4b), SK3-R485S 

(Fig. 4e), and SK3-R489S (Fig. 4f) mutant channels, compared to the inhibition observed for 
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wild-type SK3 channel (Fig. 1c, d). The electrically neutral serine residue is less prone to alter 

the electrostatic balance at toxin/channel binding interface than the glutamic acid residue. 

This is coherent with the better current blocks of BmP05 on SK3-R485S and SK3-R489S 

mutant channels, as compared to the current blocks observed on SK3-R485E and SK3-R489E 

mutants. These data indicate that substitutions at positions 485 and 489 of SK3 channel are 

sufficient to make the channel almost insensitive to BmP05, further strengthening the idea 

that these SK3 channel positions are key to toxin recognition. Interestingly, the potassium 

currents carried by all tested mutant channels were significantly blocked by 100 nM ChTX 

(Figs. 4c, d, g, h). Dose-response analyses provide IC50 values of ChTX-induced current 

blocks of 381 nM (SK3-R485E), 110 nM (SK3-R489E), 84 nM (SK3-R485S), and 30 nM 

(SK3-R489S) (Figs. 4i, j). These data are remarkable in the sense that a toxin, ChTX, known 

to block only Kv and BK channel types, can gain a novel activity towards the SK3 channel if 

the later is appropriately mutated at position 485 or 489. Furthermore, it is worth mentioning 

that, in this case, the appropriate mutations of the SK3 channel allow the channel to invert its 

pharmacological toxin sensitivity recognition profile, from a BmP05-sensitive and 

ChTX-insensitive profile for wild-type SK3 channel to a BmP05-insensitive and 

ChTX-sensitive one for the appropriately mutated SK3 channel. Interestingly, these mutated 

SK3 channels acquire a pharmacological toxin sensitivity profile that resembles that of Kv 

channels, which are also BmP05-insensitive (Han et al., 2010) and ChTX-sensitive (Fig. S2a). 

 

Influence of other amino acid residues from the outer vestibule on the relative SK3 

channel sensitivity to BmP05/ChTX. Besides the dyad of arginyl residues (R485 and R489), 

we also investigated the effects of mutating other residues from the outer vestibule of the SK3 

channel on its toxin-sensitivity profile. Many mutated SK3 channels were found to be inactive 

(SK3-E488A, SK3-E488N, SK3-Y490A, SK3-H491A, SK3-D492A, SK3-D495A and 

SK3-D518A) and could not be investigated on this issue. However, five additional mutations 



12 

(SK3-D492N, SK3-Q493A, SK3-D495N, SK3-D518N and SK3-H522A) provided functional 

channels that could be characterized for their BmP05 and ChTX current blocks (Figs. 5a-e). 

Two channels (SK3-D492N and SK3-D518N) affected current block by 100 nM BmP05 

(Figs. 5a, d, k), while three others (SK3-Q493A, SK3-D495N and SK3-H522A) maintained 

an efficient BmP05 block (Figs. 5b, c, e, k). Experimental IC50 values for the later channel 

mutants were 16 nM (SK3-Q493A), 17 nM (SK3-D495N), and 82 nM (SK3-H522A) (Fig. 

S2b). All SK3 channel mutants kept the toxin-sensitivity profile since none of the currents 

carried by these channels could be efficiently blocked by 100 nM ChTX (Figs. 5f-j, l). These 

data clearly highlight the particular contribution of the arginyl dyad of the SK3 channel outer 

vestibule in defining its selective recognition by toxins.  
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DISCUSSION 

Extracellular pore entryways are structurally important elements of potassium channels. 

They are involved in several functions including channel inactivation, subunit interactions, 

and channel pharmacology. Due to the difficulties in solving potassium channel crystal 

structures (Long et al., 2005; Tao et al., 2009), potent scorpion toxins can be used to unravel 

potassium channel structure and function. Also, significant conformational rearrangements in 

the toxin / channel recognition surfaces have been investigated and/or evidenced by 

computational simulation techniques (Gan et al., 2008; Yi et al., 2007; Yin et al., 2008) and 

by solid-state NMR spectroscopy (Ader et al., 2009; Ader et al., 2008; Lange et al., 2006). 

Herein, we have investigated the SK3 channel structural determinants that are involved in the 

selective recognition by scorpion toxins by using BmP05 and ChTX as molecular probes. Our 

results point to the importance of a basic dyad, comprising the SK-conserved R485 and R489 

residues of the channel turret, as a critical structural determinant in defining the efficacy 

whereby SK3 channel preferentially recognizes BmP05 over ChTX. Two questions deserve 

further attention. First, how does this dyad of SK3 residues impair the recognition of scorpion 

toxins such as ChTX? Second, how does the dyad influence the affinity/potency of SK3 

channel-active toxins, such as BmP05, for SK3 channels? 

In an attempt to solve these questions, we modeled the structures of both SK3 channel 

alone and SK3-BmP05 complex using molecular modeling techniques (Gan et al., 2008; Yi et 

al., 2007). As shown in Figs. 6a and 6b, the SK3 channel turret adopts a unique conformation, 

in which both R485 and R489 residues form salt bridges with aspartic acid residues from 

adjacent SK3 subunits (R485 with D492 residue, and R489 with both D492 and D518 residues). 

These internal electrostatic interactions between the four channel turrets contribute to the 

formation of a narrow gateway together with the large ring (four R485 residues) and small ring 

(four R489 residues) of basic residues, which is indicated by the structural superimposition of 

SK3 with Kv1.2 and Kir2.2 structures (Fig. S3). These two rings of basic amino acid residues 
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are conserved in the SK3-BmP05 complex structure (Fig. 6c). The unique structural 

properties (positions and interactions) of R485 and R489 residues may well account for the 

efficacy in governing scorpion toxin sensitivity for SK3 channel. As shown by the 

mutagenesis studies, SK3 channel dyad made of R485 and R489 residues is responsible for the 

toxin sensitivity of SK3 channels through differential electrostatic repulsion forces (Figs. 1 & 

2). To minimize such forces, K6 residue of BmP05 blocks the channel pore (Figs. 6c & d), 

similarly to K27 of ChTX or K26 of ADWX-1 (Gan et al., 2008; Han et al., 2008). The R7 

residue of BmP05 locates in between two R489 residues that form the small ring of basic 

residues, while toxin R13 hangs just above the two rings of R485 and R489 residues (Fig. 6c). 

Obviously, toxins with a greater number of basic amino acid residues in the 

channel-interacting surface are unable to recognize the SK3 channel owing to stronger 

electrostatic repulsion forces between toxin and basic rings of arginine residues (as evidenced 

in Figs. 1 and 2). The toxin recognition profile of SK3 channels (sensitive to BmP05 and 

insensitive to ChTX) is maintained by basic amino acid substitutions of the arginyl dyad (Fig. 

3), but inverted by acidic or polar amino acid residue replacements (Fig. 4). At the structural 

level, these results can be interpreted by the maintenance or disappearance of basic rings 

depending on the nature of residue substitutions, i.e. preserved if the dyad is mutated towards 

basic amino acid residues, and lost if acidic or polar residues are selected instead. In that 

respect, it is interesting to note that the loss of one of the two basic rings „derives‟ an SK3 

channel towards a Kv-type channel by rendering the modified SK3 channel insensitive to 

BmP05 (Han et al., 2010) and sensitive to ChTX (Fig. S2a). Altogether, functional and 

modeling data point to an exquisite role of the two conserved R485 and R489 residues as being 

essential determinants of SK3 channel with regard to its recognition profile of toxins.  

It is worth emphasizing that the two conserved R485 and R489 residues of the SK3 channel 

are also essential for the potency of SK3-blocking toxins by maintaining the unique narrow 

gateway conformation of the channel turrets (Figs. 6a & b), which are critical domains for 
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scorpion toxin interactions (Figs. 6e, f). The BmP05 affinity for the SK3 channel dropped 

significantly when those arginyl residues are replaced by less basic ones (Fig. 3). This may 

result in a looser conformation of the channel turrets as a consequence of weaker electrostatic 

interactions between the four SK3 channel subunits (Figs. 6a & b). The looser turret structure 

presumably impairs the interactions between BmP05 R7 and R13 residues with the critical 

residues from SK3 channel turrets (Figs. 6e, f). The D492N or D518N mutation, conferring 

BmP05 insensitivity to modified SK3 channels (Fig. 5), also disrupts some key electrostatic 

interactions between channel subunits, thereby conferring looser turret structures (Figs. 6a & 

b). These data strongly suggest that the potency of SK3-blocking scorpion toxins is dependent 

on the narrow gateway structure of SK3 outer vestibule, itself constrained by the electrostatic 

interactions of R485 and R489 with acidic residues. 

In conclusion, this work describes the unique properties of two conserved SK3 channel 

R485 and R489 residues in controlling selective scorpion toxin recognition. Our findings likely 

contribute to a better understanding of the molecular mechanisms involved in the selective 

recognition of SK channels by scorpion toxins. Undoubtedly, it provides structural and 

mechanistic insights for the design of selective peptide inhibitors specific to each subtype of 

SK channel. Indeed, subtype-specific SK channel blockers would be useful to more 

effectively treat neurological disorders (Wulff and Zhorov, 2008). 
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FIGURE LEGENDS 

 

Fig. 1. Selective recognition of SK3 channel by toxins with different channel-interacting surfaces. (a-c) 

Inhibition of SK3 channel currents by 100 nM ChTX, ADWX-1 or BmP05. BmP05 at 100 nM blocks 

approximately 80% of SK3 currents (c), whereas ChTX and ADWX-1 are almost inactive (a, b). (d) 

Dose-dependence of BmP05 block of SK3 currents. Fit of the curve provides an IC50 value of 3.76 ± 1.24 nM. 

(e-h) Different channel-interacting surfaces: ChTX (PDB code: 2CRD), ADWX-1 (PDB code: 2K4U), BmP05, 

and ScyTx (PDB code: 1SCY). All toxin basic residues are labeled in their channel binding surfaces. 

 

Fig. 2. Decreased BmP05 potency for SK3 channel resulting from an increased content in basic residues in the 

BmP05 binding surface. (a) One or two arginine residue(s) (in red) was (were) introduced at the 

channel-interacting surface. (b-e) Representative current traces of the SK3 channel showing reduced inhibition 

by 100 nM BmP05 mutants. (b) 20.5% block by BmP05-S14R. (c) 30.5% block by BmP05-L15R. (d) 8.5% 

block by BmP05-N4R/S14R. (e) 10.7% block by BmP05-N4R/L15R. *p < 0.05 vs. control. 

 

Fig. 3. Effects of substituting R485 and R489 by other basic residues on the SK3 blocking potency of BmP05. (a-h) 

Representative current traces of SK3 channel mutants showing current blocks by BmP05 and ChTX. (a-b) 

Absence of inhibition of SK3-R485H and SK3-R489H currents by 100 nM ChTX. (c-d) Significant inhibition of 

SK3-R485H and SK3-R489H currents by 100 nM BmP05. (e-f) Lack of inhibition of SK3-R485K and 

SK3-R489K channels by 100 nM ChTX. (g-h) Significant inhibition of SK3-R485K and SK3-R489K channels 

by 100 nM BmP05. (i) Concentration-dependence of SK3-R485H and SK3-R489H current blocks by BmP05. 

The data were fitted and yield IC50 values of 332.2 ± 84.9 nM (SK3-R485H) and 382.2 ± 141.1 nM 

(SK3-R489H). (j) Concentration-dependence of SK3-R485K and SK3-R489K current blocks by 100 nM 

BmP05. After fit, IC50 values are 145.0 ± 55.1 nM (SK3-R485K) and 191.8 ± 60.5 nM (SK3-R489K). Data 

represent the mean ± S.E. of at least three experiments, *p < 0.05. 

 

Fig. 4. Effects of substituting R485 and R489 by acidic or polar residues on the SK3 blocking potency of BmP05. 

(a-h) Representative current traces of SK3 mutants showing current blocks by BmP05 and ChTX. (a-b) Reduced 
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inhibition of SK3-R485E and SK3-R489E channels by 100 nM BmP05. (c-d) Significant inhibition of 

SK3-R485E and SK3-R489E currents by 100 nM ChTX. (e-f) Reduced inhibition of SK3-R485S and 

SK3-R489S channels by 100 nM BmP05. (g-h) Significant inhibition of SK3-R485S and SK3-R489S currents 

by 100 nM ChTX. (i) Concentration-dependence of SK3-R485E and SK3-R489E current blocks by ChTX. Fits 

of the data yield IC50 values of 381.7 ± 84.1 nM (SK3-R485E) and 110.7 ± 28.1 nM (SK3-R489E). (j) 

Concentration-dependence of SK3-R485S and SK3-R489S current blocks by 100 nM ChTX. Fits yield IC50 

values of 84.8 ± 21.6 nM (SK3-R485S) and 30.2 ± 4.5 nM (SK3-R489S). Data represent the mean ± S.E. of at 

least three experiments, *p < 0.05. 

 

Fig. 5. Importance of other amino acid residues of the SK3 channel outer vestibule on the potency of BmP05 and 

ChTX. (a-j) Representative current traces of SK3 channel mutants showing current blocks by BmP05 and ChTX. 

(a, d) Reduced inhibition of SK3-D492N and SK3-D518N currents by 100 nM BmP05. (b, c and e) Significant 

inhibition of SK3-Q493A, SK3-D495N, and SK3-H522A currents by 100 nM BmP05. (f-j) Decreased inhibition 

of SK3-D492N, SK3-Q493A, SK3-D495N, SK3-D518N, and SK3-H522A currents by 100 nM ChTX. (k) 

Average inhibition of wild-type and mutant SK3 channel currents by 100 nM BmP05. (l) Average inhibition of 

wild-type and mutant SK3 channel currents by 100 nM ChTX. *p < 0.05 vs. control. 

 

Fig. 6. Mechanism of selective SK3 channel recognition by scorpion toxins, as addressed by molecular modeling 

and docking simulation approaches. (a) Top view of the narrow gateway in the SK3 channel turrets. The large 

and small rings of basic residues are designated by dashed lines, colored yellow and purple, respectively. (b). 

Molecular surface representation of the SK3 channel vestibule. Basic residues are in blue and acidic residues are 

in red, as viewed from the extracellular side. (c) Interaction details of BmP05-SK3 complex viewed from the 

extracellular side. To better distinguish between BmP05 and SK3 channel, the toxin is colored in green and SK3 

channel in grey. (d) K6 residue of BmP05 plugged into SK3 channel pore. The A and C chains were colored in 

yellow and in cyan, respectively. (e-f) The functional residues within one SK3 channel turret that associate with 

R7 and R13 residues of BmP05 within a distance of 4 Å. The B and C chains were colored in green and in cyan, 

respectively.  
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