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Abstract 

Animal toxins are renowned for their ability to regulate ion channel activity and hence cell function. 

Therefore, they have been investigated as lead compounds for the development of analogues with toxic 

activity or conversely with therapeutic potential. Besides the pharmacological usefulness of animal 

toxins, there is a second emerging field in which toxins may soon reveal all their potential. The advent 

of modern biology witnesses the development of novel biotechnological applications of interest for 

which toxins present tremendous advantages. In this review, we will illustrate how toxins can be derived 

to carry on novel functions that make them become tools of choice for diagnostic, imaging and 

therapeutic applications. Among the examples developed, the case of maurocalcine will be detailed. 

This toxin, discovered for its activity on the ryanodine receptor, a calcium channel, is now entering a 

new phase of development for in vivo drug or imaging agent cell delivery. 

 

Key Words: animal toxin, biotechnology, cell penetrating peptide, ryanodine receptor, drug delivery, in 

vivo imaging 

 

Animal toxins as candidate drugs 

Animal venoms represent an extremely rich source of pharmacological peptides. These 

peptides are generally of a length comprised between 10 and 70 amino acids and come with a variety 

of folds. Proteomic profiling of animal venoms with MALDI-TOF mass spectrometry techniques is 

increasingly used and provides important information regarding peptide mass, disulfide bridging and 

minimum number of toxins within given venom. According to many pioneering studies, venoms should 

contain no less than 100 peptides on average. More precise information on the identity of the peptides 

can be gained when proteomic analyses are combined to transcriptomic studies based on the isolation 

of venom gland mRNA. In one such study, it has been estimated that spider venoms may well contain 

1,000 different peptides [9]. Of course, many of these peptides could differ by simply differences in 

post-translational modifications, but these numbers remain representative of the important biodiversity 

encountered in various species. Considering for instance that there are about 80,000 spider species 

and assuming the idea that one spider venom contains no less than 200 unique peptides, then one may 

estimate the biodiversity in peptides to close to 16 millions. Adding to this diversity, the ones 

encountered in cone snails, scorpions and snakes, to name a few, provide an estimate of the richness 

of these natural bio-libraries. Besides the numbers in venom peptides, these are three advantages to 

consider when deriving a drug from a natural toxin. First, the natural bio-libraries made by animal 

venoms contain exclusively bioactive drugs contrary to libraries of drugs of most pharmaceutical 

industries. Peptide toxins are tailored for efficient bioactivity in vivo by targeting crucial receptors 

(generally cell surface ion channels and G protein coupled receptors). While some toxins are evidently 

toxic in vivo, many others, present in the same venom, may have beneficial effects. Second, venoms 
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are generally injected subcutaneously and reach the blood stream for efficient dissemination in vivo. 

Some deleterious effects can take hours to come into play demonstrating an encouraging half-life of the 

active peptides in vivo. Third, gene duplication, extensive splicing and post-translational modifications 

have ensured that venoms contain toxins with exquisite affinity and selectivity for their pharmacological 

targets. There is therefore no doubt whatsoever that animal venom constitute an infinite source of 

biologically active peptides of pharmaceutical interest and therefore an excellent basis for screening 

programs. While the initial motivation in studying animal venoms was to identify active principles (at 

best) or active HPLC fractions (at worst) involved in toxicity, combined with the production of 

therapeutic sera for treating envenoming, current efforts are also now devoted to identifying 

pharmacological drugs for therapeutics or pesticides for industrial use. While identifying drugs of 

interest from animal venom is technically eased by combined proteomic and transcriptomic 

approaches, once a peptide of interest has been isolated, one also needs to overcome the difficulties 

inherent to its synthetic production. This can be performed by using recombinant techniques or by 

chemical synthesis, but this task is not always straightforward as the peptides need to undergo 

oxidative folding, a complex process in which the peptide acquires the correct disulfide bridge pairing 

pattern and adopts the right fold. Once this task is mastered however, access is gained to the 

possibility to create a large number of peptide analogues, overcoming the tedious task of toxin 

purification from natural sources that always come with limited availability and quantity. Analogues can 

be worked out in order to optimize certain characteristics, including greater affinity for a given target, 

improved selectivity or enhanced potency. In addition, the increasing development of bioinformatics has 

steadily improved the functional classification of the growing list of orphan toxins and their potential use 

in pharmacological applications.  

With these considerations in mind, it is therefore not so surprising that several peptides, 

originating from animal venoms, made their way to the clinics and the drug market. Figure 1 illustrates a 

non exhaustive list of peptides or analogues thereof that are in various clinical phases or already on the 

market. For instance, several Conus peptides, present in predatory cone snails, are now used for 

medication in clinics for pain (Ziconotide, the synthetic form of -conotoxin MVIIA, a Ca2+ channel N-

type blocker, from Elan Pharmaceuticals), epilepsy and other neuropathic disorders [34]. Natural 

peptides are therefore growing the list of peptides (438 in total in 2009) being considered by the 

pharmaceutical industry in their development programs. Seventy two of these 438 peptides reached 

phase III clinical trial and 48 were on the market. Four of them reached global sales over 500 millions $ 

each in 2007: Copaxane ($3.33 billion), Lupron ($1.88 billion), Byetta ($967 million), and Forteo ($709 

million). The majority of these peptides target G protein coupled receptors, although other targets are 

increasingly common such as ion channels. A complete report on the development of peptides as 

therapeutic drugs is available from http://www.peptidetherapeutics.org. While the pharmacological 

potential of animal toxins is progressively unravelled and that exploitation of the natural resources for 

therapeutic aims is only in its infancy, this trend shouldn’t hide the fact that toxins are also increasingly 

used in biotechnological applications.  

http://www.peptidetherapeutics.org/
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Animal toxins in biotechnological applications 

 In 2004, the group of Wonnacott demonstrated that the subcellular distribution of alpha7 

nicotinic acetylcholine receptors can be investigated by coupling alpha bungarotoxin to gold 

nanoparticles [13]. In that respect, toxins appear as perfect tools to target anti-cancer agents directly to 

the site of tumour in vivo as far their targets are over-expressed in tumours. For instance, the G-protein 

coupled receptors (BBR1, BBR2 and BBR3) of bombesin, a 14 amino acid peptide from frog skin, are 

over-expressed in small cell carcinoma of lung, gastric cancer, neuroblastoma [21] and human prostate 

cancer. This property has been used to prepare bombesin derivatives harboring lutetium-1777 for 

prostate cancer targeting, in vivo imaging and therapeutic intervention [24]. Another successful 

example for tumour applications includes chlorotoxin [16, 29], a 36-mer peptide with four disulfide 

bridges initially isolated from the venom of the Israeli scorpion Leiurus quinquestriatus. Although initially 

developed for the diagnosis and treatment of glioma, chlorotoxin was found to specifically label cancer 

cells from other solid tumors as well (melanoma, small cell lung carcinoma, neuroblastoma, 

medulloblastoma, Ewing’s sarcoma and pheochromacytoma). The identity of the biomarker on which it 

binds is still under debate (initially a chloride channel, then matrix metalloprotein 2, and now, which 

seems more likely, annexin 2A). Currently, a 131iodinated version of the toxin from Eisai (TM601) has 

successfully ended clinical phase II for the treatment of recurrent glioma and has obtained FDA 

approval to go to phase III clinical trials. Besides it has also obtained FDA approval to investigate the 

effect of TM601 on newly occurring glioma. TM601 is extremely stable, presents no immunogenicity 

and produces no toxicity in humans. Several derivative molecules (termed TM602, TM604, etc) have 

been produced to facilitate phenotyping and histological staining, and patient treatment. The door is 

now open for the use of other toxins in cancer diagnosis and treatment. Recently, BmKCT, which 

presents 68% amino acid sequence identity with chlorotoxin, was also shown to target glioma in vivo 

and prevent its progression. Similarly, the non-toxic B subunit of the pathogen-produced Shiga toxin, 

known to bind to the glycosphingolipid Gb3 which is over-expressed in some tumors, was found to 

specifically label human colorectal carcinoma in nude mice [33]. Other technological applications are 

possible with toxins. The 12 amino acid peptide Tet1, derived from tetanus toxin, is an efficient vector 

for the delivery of plasmid DNA in complex to polyethylenimine [22]. A similar fragment of tetanus toxin, 

when placed in fusion to the reporter protein GFP, allows mapping of synaptic connections of the 

mammalian central nervous system [17]. 

Most animal toxins hit cell surface receptors. This is by far the most straightforward means to 

interfere with signalling pathways for peptides as these molecular entities are reputed to be unable to 

cross the cell plasma membrane. There is however some noticeable exceptions to this rule as some 

animal toxins have been discovered to target intracellular ion channel receptors. This is the case of 

toxins targeting the ryanodine receptor, an intracellular calcium channel that is located in the membrane 

of the endoplasmic reticulum and that controls cytosolic Ca2+ release. These toxins present intriguing 

peptide sequences that efficiently favour their entry into the cytoplasm. We will see that ion channel 
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recognition and cell permeation can easily be dissociated in order to retain the latter property. Also, cell 

penetration can be derived for the cell entry of other compounds of pharmaceutical or imaging interests. 

We will illustrate this point extensively by reviewing the case of maurocalcine, the first cell penetrating 

peptide of toxin origin to be discovered.  

Maurocalcine, an animal toxin that targets an intracellular receptor 

Maurocalcine is a scorpion toxin from Scorpio maurus palmatus that was discovered in 2000 [19]. 

Based on its sequence homology with imperatoxin A from the scorpion Pandinus imperator, it was 

presumed to be active on the ryanodine receptor. This turned out to be indeed the case as 

maurocalcine i) triggers Ca2+ release from purified sarcoplasmic reticulum [12], ii) induces both an 

increase in channel opening and the appearance of a long-lasting subconductance state [7], and iii) 

stimulates the binding of [3H]-ryanodine on its binding site [11]. All these effects occur with an EC50 of 

10-20 nM. Maurocalcine interaction with the ryanodine receptor is direct as demonstrated by skeletal 

muscle ryanodine receptor pull down by a biotinylated derivative of maurocalcine bound to streptavidin-

coated beads [1]. Maurocalcine obviously belongs to a larger family of toxins with high sequence 

homology comprising opicalcine 1 and 2 from Opistophthalmus carinatus scorpion, hemicalcin from 

Hemiscorpius lepturus scorpion and hadrucalcin from Hadrurus gertschi scorpion (Figure 2). All these 

toxins similarly act on the ryanodine receptor with only minor functional differences. At the structural 

level, maurocalcine is a 33-mer peptide containing three disulfide bridges. The pairing motif has been 

assigned to Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 and the peptide folds according to an inhibitor cystine 

knot (ICK motif). Although ICK motifs have been found on other toxins acting on cell surface receptors, 

maurocalcine and its analogues all present interesting distinguishing features. A close examination of 

the 3D structure of maurocalcine reveals that i) the peptide is heavily charged (1/3 of amino acids are 

basic, net charge of +12) and ii) the charge distribution of the peptide is strongly asymmetric creating 

an important dipole moment. One of the most amazing properties of the peptide is that upon external 

application to skeletal muscle myotubes, the peptide triggers Ca2+ release from internal stores within 

only a few seconds [11]. A similar observation was made in 2010 on cardiac myotubes with imperatoxin 

A. This observation points to the fact that the peptide is able to reach its pharmacological target by 

rapid translocation through the plasma membrane rather than by endocytosis. Also, two evidences 

indicate that maurocalcine should accumulate into the cytoplasm to regulate the ryanodine receptor. 

First, maurocalcine regulates channel activity from ryanodine receptors incorporated into artificial lipid 

bilayers only when applied to the cytoplasmic face of the channel [12]. Second, maurocalcine binding 

site on the ryanodine receptor has been mapped to a domain that is localized within the cytoplasm 

according to the membrane topology of this receptor [1]. 

Altogether, these findings led to the conclusion that maurocalcine possesses the unique feature to 

rapidly cross the plasma membrane and accumulate within the cytoplasm to concentrations above 20 

nM in order to effectively activate the ryanodine receptor. The possibility to indirectly image the cell 

penetration of maurocalcine by the release of internal Ca2+ is unique to the peptide world. As we will 
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see, cell penetration of maurocalcine is not limited to itself but also to cargoes attached to the peptide 

underscoring the huge technological potential of this uncommon toxin. 

 

Maurocalcine is a competitive cell penetrating peptide 

Investigating the cell penetration properties of a peptide without labelling it is a tedious task. Therefore, 

the first evidence that maurocalcine may enter cells came from the use of a biotinylated analogue. This 

analogue coupled to fluorescent streptavidine was shown to enter into a variety of cell types [10]. This 

study demonstrated not only that maurocalcine enters into cells but also that it can be used as a 

peptide vector to facilitate the cell entry of a variety of cargoes, many of them being of a size in 

considerable excess than the vector itself. It was also the first report that a peptide toxin being a 

member of the growing family of cell penetrating peptides (CPP). As expected, imperatoxin A was also 

shown later on to cross the plasma membrane along with a cargo. In parallel, crotamine, a 42 amino 

acid toxin from the rattlesnake Crotalus durissus terrificus, was shown to penetrate into dividing cells 

and to carry on plasmid DNA [20]. Reputed CPP include Tat from the HIV-1 virus, the Drosophila 

transcription factor ANTP (encoded by the antennapedia gene), also called penetratin, and the herpes 

simplex virus type 1 (HSV-1) VP22 transcription vector. These peptides possess a number of common 

functional features in spite of impressive sequence divergences: 

1- CPP are generally small peptides that rarely exceed 20 amino acids. However, this issue is not 

mandatory since many CPP originate from larger proteins. The relationship between CPP size 

and cargo penetration efficacy is not known. 

2- Many CPP are enriched in basic amino acids. This led to the discovery that arginine-rich 

peptides are efficient CPP. 

3- CPPs lack clear cell selectivity although this issue is not well investigated. They can thus enter 

numerous cell types. 

4- CPP do not require specific membrane receptors for cell penetration. Indeed, optical CPP 

stereoisomers, made of D-amino acids instead of the natural L-amino acids, are at least as 

efficient as their L-counterparts in crossing the plasma membrane [23]. Nevertheless, CPP do 

interact with cell surface components such as glycoaminoglycans (GAGs) and negatively 

charged lipids on the basis of electrostatic interactions [8]. 

5- CPPs enter rapidly and efficiently into cells. Commonly, cell penetration occurs within a few 

minutes, although quantitatively saturation may take longer times. An important property hardly 

matched by other vectors is that CPP can penetrate into 100% of a given cell type in vitro. We 

will see that in vivo this might not be the case.  

6- True CPPs do not require metabolic energy for cell entry [31]. CCP cell entry should be 

preserved in cells maintained at 4°C or in the presence of metabolic inhibitors. This is however 
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not always true since for many peptides and depending of the cargo being transported, CPP 

enter via endocytosis which is an energy-consuming process. 

7- CPP trigger much interest for their ability to transport a great variety of cell-impermeable 

cargoes. The type of cargoes that have been coupled to CPPs and shown to enter into cells is 

astounding. So far, cell entry has been reported for DNA plasmids or mimics [18], 

oligonucleotides, siRNA or shRNA [14], peptide nucleic acids (PNA) [35], peptides, proteins [5], 

drugs [28], and nanoparticles [32]. The versatility in cargo that can be coupled to a given CPP 

opens an unprecedented number of applications that can’t be matched by any other cell delivery 

system. 

The discovery of new CPP sequences is steadily increasing and there is enough choice now on the 

market to develop an application without worrying about the nature of the CPP. Why then would it be 

interesting to use maurocalcine as CPP considering the fact that it is more complex (presence of 

disulfide bridges and difficulties for cargo grafting) and expensive (size) to synthesize than other CPP? 

We summarize hereunder the advantage that maurocalcine has over other CPP. 

 

The pharmacological activity of maurocalcine is easy to neutralize 

Maurocalcine is notorious for its effects on the ryanodine receptor. Ca2+ release from the endoplasmic 

reticulum is a major signalling event which precludes the use of the original maurocalcine sequence as 

vector for the cell penetration of compounds of interest. Strategies had to be investigated to circumvent 

the bioactivity of the peptide. Four strategies turned out to be successful in that respect. They are all 

based on the fact that cell penetration of the peptide requires less stringent structural integrity than 

pharmacology. First, the peptide can be mutated in order to lose its ability to bind and stimulate the 

ryanodine receptor. Arg23 and Arg24 turn out to be two positions that are critical for maurocalcine 

activity. Analogues mutated on any one of these positions yield efficient CPP devoid of pharmacological 

activity [15]. Interestingly, the alanine scan of maurocalcine also reveals other interesting amino acid 

positions where mutations can improve the pharmacology and/or the cell penetration. Mutation of Glu12 

is particularly interesting in that respect. Second, maurocalcine can be produced in its D-diastereomer 

conformation with D-amino acids rather than L amino acids. Interestingly, the peptide folds normally 

and produces its normal disulfide bridging pattern. It is also lacking recognition of the ryanodine 

receptor but, as expected, preserves intact its cell penetration efficacy since its affinity for the plasma 

membrane is not based on a receptor / ligand type interaction [23]. Obviously, this peptide is a very 

interesting lead compound since it has all the desired advantages as CPP (protease resistance and 

efficacy). In the future, mutated D-maurocalcine peptides will be designed that further enhance the 

efficacy of cell penetration. Third, maurocalcine can be mutated in such a way that it lacks disulfide 

bridges. Disulfide bridging contributes to the acquisition of the 3D structure of maurocalcine. Therefore, 

a disulfide-less peptide is unable to fold and loses its ability to recognize the ryanodine receptor [27]. 

Nevertheless, this disulfide-less maurocalcine preserves good cell penetration properties albeit with a 
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reduced efficacy. This altered potency can nevertheless be partially overcome by point mutations in the 

amino acid sequence. Needless to say, a similar disulfide-less maurocalcine can be prepared in the 

future by incorporating D-amino acids that may render it protease resistant and increase the half-life in 

vivo. Since in its non-folded version, maurocalcine still acts as a CPP, our group is presently designing 

a number of mini-maurocalcine analogues with reduced peptide length. The preliminary results 

demonstrate that several analogues can be designed with significantly reduced lengths (9 amino acids). 

The completion of these four strategies has led to three benefits: (i) the in depth understanding of the 

structural determinants of maurocalcine that preside to pharmacology and cell penetration, (ii) the 

identification of essential factors that contribute to an efficient cell penetration of maurocalcine, and (iii) 

the production of several new maurocalcine analogues dedicated only to cell penetration. 

 

Maurocalcine produces cell delivery into the cytoplasm 

The list of discovered CPP is getting impressive. However, the definition of a CPP remains too tolerant. 

A peptide is considered as CPP if it enters into cells. The problem is that any kind of peptide that binds 

to the external face of the plasma membrane is susceptible to enter into the cell merely by a process of 

endocytosis. Once this has occurred, organizing the escape of this peptide from the endosome is far 

from an easy endeavour. For most applications however, the delivery of the cargo in the cytoplasm is 

simply mandatory. In this registry, maurocalcine appears as a particularly competitive peptide. The 

native peptide (unmodified and uncoupled to any cargo) presents the following distinguishing features: 

i) the ability to follow its cytoplasmic accumulation on line (by the release of internal Ca2+), ii) a minimal 

cytoplasmic accumulation of 10-20 nM (to observe Ca2+ release), and iii) a cytoplasmic accumulation 

against the concentration gradient (owing to the net positive charge of the peptide). The natural 

tendency of maurocalcine to accumulate into the cytoplasm ensures high cytoplasmic concentrations of 

the peptide. This tendency is greatly helped by its structural characteristics. The predominant 

orientation of basic residues on one face of the peptide, the presence of a dipole moment and the 

existence of a hydrophobic face ensures that maurocalcine can accumulate against its concentration 

gradient by electrochemical attraction in normally polarized cells. This wouldn’t be feasible if the peptide 

first accumulated within endosomes as the cytoplasmic accumulation factor would be kinetically limited 

by the endocytosis process itself and second by the endosomal escape. This being said, it would be 

inexact to state that maurocalcine does not also enter into cells by endocytosis. In fact, this is even the 

preferred route of entry when maurocalcine or one of its analogues is coupled to some cargoes. 

Macropinocytosis is the main route of entry with streptavidine as cargo [10], or when maurocalcine is 

coupled to nanoparticles covered with streptavidine molecules [26]. The nature and/or size of the cargo 

therefore is susceptible to inhibit the normal balance in cell entry modes (translocation versus 

endocytosis) probably by increasing the residency time of the peptide at or within the plasma 

membrane. Obviously, smaller cargoes still allow a normal translocation process to occur as witnessed 

in the case of a fluorescent indicator [23] or a small drug like doxorubicin [4]. This is also the case for a 

maurocalcine-maleimide-cys-nanoparticle complex, suggesting that in nanotechnology, size is not 
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necessarily a limitation for cytoplasmic targeting [27]. In conclusion, while it may seem desirable to get 

rid of the pharmacological activity of maurocalcine, it may in first instance represent an asset when it 

comes to evaluate the correct cytoplasmic targeting of the cargo transported. This is rendered possible 

since it was observed that N-terminal modification of the native maurocalcine (biotinylation and coupling 

to streptavidine for example) does not change dramatically its ability to interact with the ryanodine 

receptor [10]. Upon completion of this evaluation, it is then easy to turn towards maurocalcine 

analogues that structurally resemble maurocalcine itself but are mutated for their interaction with the 

ryanodine receptor. 

 

Maurocalcine has an excellent cell entry / toxicity ratio 

A drawback of many CPP is their relative toxicity. This wouldn’t be a major problem if these CPP 

entered into cells at doses much lower than their toxic concentration. Unfortunately, the concentration 

ratio between cell penetration efficiency and cell toxicity is often not that encouraging. For reasons that 

are unknown, maurocalcine is not toxic upon intravenous injection in spite of its pharmacological 

activity. This is not the case for intracerebroventricular injections in mice. However, this issue is easily 

circumvented with the numerous pharmacologically-inert maurocalcine analogues that are now 

available. These analogues have all been assessed for cell toxicity most often for long periods of time 

in vitro (24 hrs) and on sensitive cells (neurons). It was systematically observed an almost complete 

lack of toxicity at concentrations as high as 10 µM. In contrast, some efficient analogues show 

significant levels of cell penetration at 10 nM, suggesting that reaching a concentration ratio penetration 

/ toxicity of 1,000 for maurocalcine analogues is feasible. Of course, these values are relevant for the 

maurocalcine vectors, but ought to be reconsidered upon grafting a cargo on them. This favorable ratio 

stems from the fact that maurocalcine has been optimized by nature to invade cells with a minimal 

disturbance which is not necessarily the case of other CPP that originate most often as fragments of 

larger non cell-penetrating proteins or are designed de novo. One additional feature that needs to be 

emphasized is the excellent concentration-dependence of maurocalcine’s cell penetration. In its folded 

conformation, the peptide enters at lower concentrations than the popular CPP (penetratin, Tat or poly-

R). Further optimizing these values appears as a reachable objective in spite of the fact that the cell 

membrane factors that contribute to the efficacy of cell penetration of CPP are ill-defined. In an attempt 

to define these factors, it was found that maurocalcine binds with micromolar affinity onto cell surface 

glycoaminoglycans (GAG) [25]. Interaction was evident with heparin, heparin sulphate, and chondroitin 

sulphate. Soluble GAG inhibit close to 80% of maurocalcine cell uptake because they screen 

maurocalcine positive charges required for cell entry and compete for its interaction with cell surface 

GAG. However, maurocalcine’s cell penetration is well conserved (close to 50%) in GAG-deficient cells 

indicating that GAG mainly contribute to cell penetration at the quantitative level by acting as low-affinity 

reservoirs of CPP. More importantly, maurocalcine interacts with several negatively charged lipids at 

suprananomolar affinities [6]. Maurocalcine interacts with gangliosides, such as GD3 

(disialoganglioside NeuAcα2-8NeuAcα2-3Galβ1-4Glcβ1-Cer), phosphatidylinositol (PtdIns)(3)P, 
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PtdIns(4)P, and PtdIns(5)P), phosphatidic acid and sulfatide, and more weakly with lysophosphatidic 

acid, PtdIns(3,5)P2 and phosphatidylserine. It is difficult to envision that lipids are not directly 

concerned by the mechanism of membrane translocation of CPP, while on the contrary GAG could be 

involved in endocytosis. The mutant maurocalcine analogue Ala12 has improved cell penetration and 

lipid interaction. Conversely, the mutant analogue Lys20 that has poor cell penetration has also limited 

lipid interaction. The problem is to identify which lipid is the most important for membrane translocation. 

Solving this question would tremendously help the design of better CPP.  

 

Maurocalcine is a stable CPP vector in vivo 

Venom peptides have been designed by nature to be stable upon injection in vivo. The disulfide 

bridging and the compact fold is most likely also an advantage in that respect. We have investigated 

this question in the case of maurocalcine. A first analogue was synthesized, tyr-maurocalcine, and 

iodinated with 125I on the extra N-terminal tyrosine residue. Next, the peptide was incubated with mice 

blood and its stability followed with time by HPLC. As shown in Figure 3, the folded maurocalcine 

analogue with its disulfide bridges has excellent blood stability since one third of the peptide is still not 

degraded after 24 hrs incubation. A single metabolite is evident suggesting that maurocalcine can 

further be optimized in terms of in vivo stability. The same type of experiment was conducted with a 

similar analogue but in which all cysteine residues were replaced by isosteric 2-aminobutyric acid 

residues. Such a peptide lacks disulfide bridges and also secondary structures. In that case, we found 

that the peptide has a two-fold reduced stability and also that more metabolites are present as well (not 

shown). This study illustrates that disulfide bridges bring in a significant competitive advantage in terms 

of peptide stability in vivo. For instance, Tat, a CPP that lacks disulfide bridges, degrades rapidly even 

in the extracellular culture medium of epithelial cells.  

 

Maurocalcine preferentially targets some cell types and organs in vivo 

While it is true that CPP penetrate into all kinds of cell types, emerging evidence suggest that there are 

cell-specific differences in the efficiency of the penetration. We found for instance that maurocalcine 

penetrates better into glial cells than in neurons. Also, the snake venom CPP crotamine presents 

selective cell penetration into actively dividing cells. A close examination of FAM-D-maurocalcine 

distribution in human blood cells indicates that monocytes and lymphocytes NK are almost all invaded 

by maurocalcine, whereas a small percentage (less than 10%) of lymphocytes T and B take up 

maurocalcine. The reasons behind a selective cell-type cell penetration are unclear. One may assume 

that since CPP have the ability to interact with different glycosaminoglycans species, changes in 

glycoaminoglycan patterns at the cell surface may explain differences in CPP cell selectivity [8]. It 

illustrates that CPP sequences may evolve in such a way to penetrate only into desired cell targets. 

After intravenous injection, 30% of iodinated tyr-maurocalcine is associated to circulating cells, whereas 

40% and 26% are associated to plasma and protein-free plasma, respectively. Combined 
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nanoSPECT/CT imaging gives an indication of where the toxin accumulates in vivo (Figure 4). 

Additional organ quantification of the radioactive peptide demonstrates strong kidney accumulation and 

urine elimination. Other organs that light up quite well are: stomach, spleen, skin, lung, liver, heart and 

duodenum. No brain accumulation is evident even at longer periods of observation suggesting that the 

peptide does not cross the blood brain barrier. These first observations give a hint to what organs 

would be best fitted for a therapy based on the use of maurocalcine sequence. It will be interesting to 

observe if cell and tissue selectivity can be altered by selective point mutations in maurocalcine 

sequence. If this could work, the door would be open for tissue-targeting cell penetrating peptides for 

enhanced therapeutic potential. 

 

Concluding remarks 

The existence of natural structural analogues of maurocalcine opens the route to new research 

programs aimed at discovering novel CPP molecules in the incredible rich sources of peptides that are 

venoms. The added benefit of increasing the number of known toxin-derived CPP is in their potential 

cell- and organ-specific targeting properties and in their usefulness for in vivo applications. Several 

discovery strategies may be pursued: (i) determining novel toxins active on intracellular ion channels by 

affinity column purification, (ii) screening for peptides that can enter into cells, and (iii) purifying peptides 

from venoms based on their basic or aliphatic nature. As for maurocalcine, these peptides will need 

optimization in order to remove any potential toxic or undesirable pharmacological effect. On the 

therapeutic side, what applications are best suited for maurocalcine or toxin-derived CPP? The field of 

CPP is blossoming with interesting and innovative applications at an exponential growth rate. While 

most applications have focused on the cell entry of cargoes that are unable to enter into cells, there is 

also room for applications in which the CPP contributes not to the entry of a drug but to force it to stay 

into cells by limiting its passive diffusion or expulsion by multi-drug resistance proteins for instance. 

Two such applications have been designed for maurocalcine. In one application, it was found that 

coupling maurocalcine to near-infrared emitting nanoparticles charged with MRI-detectable contrast 

agents allows for greater tissue retention time of the MRI signal in brain at the injection point, at least in 

much better proportions than the clinically-used DOTAREM [30]. This kind of approach holds promises 

for theragnostic applications in which the therapeutic drug is combined to the imaging agent. In a 

second application, it was found that coupling maurocalcine to an anti-tumor agent, such as 

doxorubicin, a drug used for the treatment of solid tumors in clinics, finds useful applications for fighting 

chemoresistance [2-4]. Chemoresistance often occurs as the result of cancer cells that start over-

expressing multidrug resistance proteins. Freely entering doxorubicin is readily expulsed by these cells 

and tumors can then continue propagating. Increasing the therapeutic doses is not an option because 

of the secondary effects on healthy tissues, including neuropathies and cardiotoxicity. The coupling to 

maurocalcine turns a viable option, at least in vitro for the moment, as multidrug resistance proteins are 

no longer able to take into charge the complex molecule that keeps its anti-tumor activity. Coupled to 

cell penetrating peptides that would be able to target cancer cells in vivo, such an application would 



  TOXINS IN BIOTECHNOLOGY    /    12 

hold great promises in the future. Now that maurocalcine is a proven and efficient CPP, it is on the track 

for biological, diagnostic and technological applications. 
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Figures  

 

FIGURE 1. Examples of toxins or analogues thereof which are in various clinical phases. Notice the 

diversity of indications.  
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FIGURE 2. Sequence alignment of calcin toxins according to ClustalW2. Negatively charged residues 

are in blue, while positively charged amino acids are in purple. Sequence identities are given with 

maurocalcine as reference entry.  

 

 

 

 

 

FIGURE 3: HPLC elution profile of iodinated tyr-maurocalcine analogue as a function of time of 

incubation in mice blood. The peptide was added at a concentration of 1 mCi per ml of blood and 

incubated at 37°C. HPLC profile are from the protein-free plasma fraction. The half-life of maurocalcine 

exceeds 9 hours in these conditions. 

 

Imperatoxin A  --GDCLPHLKRCKADNDCCGKKCKRRGTNAEKRCR 33

Hemicalcin --GDCLPHLKLCKADKDCCSKKCKRRGTNPEKRCR 33

Maurocalcine --GDCLPHLKLCKENKDCCSKKCKRRGTNIEKRCR 33

Opicalcine 1   --GDCLPHLKRCKENNDCCSKKCKRRGTNPEKRCR 33

Opicalcine 2   --GDCLPHLKRCKENNDCCSKKCKRRGANPEKRCR 33

Hadrucalcine SEKDCIKHLQRCRENKDCCSKKCSRRGTNPEKRCR 35 

**: **: *: ::***.***.***:* ***** 

Score (%)

90.0

87.0

81.0

90.0

-

75.0



  TOXINS IN BIOTECHNOLOGY    /    16 

 

 

FIGURE 4: In vivo tomographic whole-body imaging of [125I]-Tyr-maurocalcine biodistribution in CD-1 

mice 15 min tail i.v. post-injection of 37 MBq. From left to right, 3D rendering, sagital, coronal, and 

transverse views of tracer activity.  


