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Abstract

Background: Autosomal Emery-Dreifuss muscular dystrophy is caused by mutations in the lamin A/C gene (LMNA)

encoding A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. Classically, the disease manifests as

scapulo-humeroperoneal muscle wasting and weakness, early joint contractures and dilated cardiomyopathy with

conduction block; however, move variable skeletal muscle involvement can be present. Previously, we demonstrated

increased activity of extracellular signal-regulated kinase (ERK) 1/2 in hearts of LmnaH222P/H222P mice, a model of autosomal

Emery-Dreifuss muscular dystrophy, and that blocking its activation improved cardiac function. We therefore examined the

role of ERK1/2 activity in skeletal muscle pathology.

Methods: Sections of skeletal muscle from LmnaH222P/H222P mice were stained with hematoxylin and eosin and histological

analysis performed using light microscopy. ERK1/2 activity was assessed in mouse tissue and cultured cells by

immunoblotting and real-time polymerase chain reaction to measure expression of downstream target genes.

LmnaH222P/H222P mice were treated with selumetinib, which blocks mitogen-activated protein kinase/extracellular

signal-regulated kinase kinase 1/2 that activates ERK1/2, from 16 to 20 weeks of age to assess the effects of treatment

on muscle histology, ERK1/2 activity and limb grip strength.

Results: We detected enhanced activation of ERK1/2 in skeletal muscle of LmnaH222P/H222P mice. Treatment with

selumetinib ameliorated skeletal muscle histopathology and reduced serum creatine phosphokinase and aspartate

aminotransferase activities. Selumetinib treatment also improved muscle function as assessed by in vivo grip

strength testing.

Conclusions: Our results show that ERK1/2 plays a role in the development of skeletal muscle pathology in

LmnaH222/H222P mice. They further provide the first evidence that a small molecule drug may be beneficial for

skeletal muscle in autosomal Emery-Dreifuss muscular dystrophy.

Keywords: Muscular dystrophy, Nuclear envelope, Lamin, Selumetinib, Mitogen-activated protein kinase

* Correspondence: a.muchir@institut-myologie.org; hjw14@columbia.edu
1Department of Medicine, College of Physicians and Surgeons, Columbia

University, 630 West 168th Street, New York, NY 10032, USA
2Department of Pathology and Cell Biology, College of Physicians and

Surgeons, Columbia University, New York, NY, USA

Full list of author information is available at the end of the article

© 2013 Muchir et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Muchir et al. Skeletal Muscle 2013, 3:17

http://www.skeletalmusclejournal.com/content/3/1/17

mailto:a.muchir@institut-myologie.org
mailto:hjw14@columbia.edu
http://creativecommons.org/licenses/by/2.0


Background

Emery-Dreifuss muscular dystrophy (EDMD) is classically

characterized clinically by a triad of: (1) slowly progressive

muscle weakness and wasting in a scapulo-humeroperoneal

distribution; (2) early contractures of the elbows, ankles,

and posterior neck; and (3) dilated cardiomyopathy with

conduction defects [1,2]. Contractures are usually the first

clinical sign of the disease occurring in the first decade of

life. During the second decade of life, the slowly progressive

muscle weakness and wasting typically begin. At the end of

the second decade, most patients develop evidence of car-

diomyopathy [3-5].

EDMD can be inherited in a X-linked or autosomal fash-

ion. X-linked EDMD is caused by mutations in EMD en-

coding emerin [6]. Emerin is an integral protein of the

inner nuclear membrane [7,8]. The majority of autosomal

dominant and less frequent recessive cases are caused by

mutations in LMNA [9,10]. LMNA encodes two major

somatic cell polypeptides, lamin A and lamin C, which are

components of the nuclear lamina, a meshwork of inter-

mediate filaments on the inner aspect of the inner nuclear

membrane [11-14]. While the classical EDMD phenotype

was first attributed to EMD and LMNA mutations, it is

now apparent that the same mutations in these genes can

cause dilated cardiomyopathy with more variable skeletal

muscle involvement [6,9,15-21]. Intriguingly, LMNA muta-

tions (different than those leading to myopathy) can also

cause partial lipodystrophy, peripheral neuropathy, or accel-

erated aging disorders such as Hutchinson-Gilford progeria

syndrome [22].

Despite the relatively recent advances in understanding

the genetics of EDMD and related myopathies, the patho-

genic mechanisms leading to striated muscle damage are

only poorly understood. One useful small animal model to

study pathogenesis and evaluate potential therapeutic inter-

ventions in autosomal EDMD is the LmnaH222P/H222P

mouse [23]. Starting at approximately 16 weeks, male

LmnaH222P/H222P develop progressive dystrophic pathology

in several skeletal muscle groups. Later, they have progres-

sive accumulation of connective tissue in skeletal muscle.

LmnaH222P/H222P mice also develop dilated cardiomyopathy

with conduction system abnormalities and significant car-

diac fibrosis.

We have previously shown that LmnaH222P/H222P mice

have increased activity of the mitogen-activated protein

kinase extracellular signal-regulated kinase (ERK) 1/2 in

cardiac muscle [24]. This increased ERK1/2 activity occurs

prior to the onset of overt tissue pathology, suggesting that

it plays a primary pathogenic role. Treatment of

LmnaH222P/H222P mice with drugs that inhibit mitogen-

activated protein kinase/extracellular signal-regulated kin-

ase kinase (MEK) 1/2, the kinase that activates ERK1/2,

leads to improved left ventricular ejection fraction [25,26],

decreased cardiac fibrosis [26,27] and prolonged survival

[27]. While these results strongly suggest that abnormal

ERK1/2 activation contributes to the development of car-

diomyopathy in LmnaH222P/H222P mice, its pathogenic role

in affected skeletal muscles is unknown.

Based on our findings in heart, we hypothesize that abnor-

mal activation of ERK1/2 is similarly involved in the patho-

genesis of skeletal muscular dystrophy in the LmnaH222P/H222P

mouse model of EDMD. In the present study, we demon-

strate increased activation of ERK1/2 in affected skeletal

muscle these mice. We further show that treatment with

the MEK1/2 inhibitor selumetinib ameliorates pathological

changes and improves function. These results suggest that

MEK1/2 inhibitors may be beneficial in treating both car-

diac and skeletal muscle disease in patients with EDMD.

Methods

Mice

LmnaH222P/H222P mice were bred and genotyped as pre-

viously described [23]. Mice were fed chow and housed

in a disease-free barrier facility with 12 h/12 h light/dark

cycles. The Institutional Animal Care and Use Commit-

tee at Columbia University Medical Center approved the

use of animals and the study protocols.

Drug treatment protocol and harvesting of muscle

samples

Selumetinib (Selleck Chemicals) was dissolved in dimethyl

sulfoxide (DMSO) (Sigma) at a concentration of 0.5 mg/

mL to allow for intraperitoneal injections in mice. The pla-

cebo control consisted of the same volume of DMSO.

Selumetinib was delivered at a dose of 1 mg/kg daily by in-

traperitoneal injection using a 27 5/8-gauge syringe starting

when mice were 16 weeks of age and continuing until 20

weeks of age. At the end of the study, mice were sacrificed

and hindlimb and diaphragm muscles dissected. Part of

each dissected muscle was frozen in liquid nitrogen and

stored at -80°C for biochemical analysis. The remaining

muscle was rapidly frozen in isopentane pre-chilled by li-

quid nitrogen for cryostat sectioning.

Histology

Frozen pieces of quadriceps femoris, diaphragm, and tibialis

anterior were mounted in Tissue-Tek (Fisher Scientific) and

10 μm sections cut on a cryostat. Sections were stained with

hematoxylin and eosin for histological analysis. Representa-

tive sections were photographed using a Microphot SA

(Nikon) light microscope attached to a Spot RT Slide cam-

era (Diagnostic Instruments). Images were processed using

Adobe Photoshop CS (Adobe Systems).

Osmotic shock of C2C12 cells stably expression wild-type

and H222P lamin A

Generation of stable C2C12 cells expressing wild-type

and H222P lamin A has been described previously [28].
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These cells were maintained at 37°C with 5% CO2 and

subcultured at approximately 60% to 70% confluence in

Dulbecco’s modified Eagle’s medium supplemented with

10% fetal bovine serum (Invitrogen). To assess the im-

pact of osmotic shock on the activation of ERK1/2, cells

were treated with D-sorbitol (600 mM) for 1 h and pro-

teins were harvested in RIPA extraction buffer (Cell Sig-

naling Technology) as previously described [24].

Quantitative real-time reverse transcription-polymerase

chain reaction (RT-PCR)

Total RNA was extracted using the RNeasy isolation

kit (Qiagen). Total RNA was used to synthesize cDNA

using SuperScript First-strand Synthesis System

(Invitrogen) according to the manufacturer’s instruc-

tions. For each replicate in each experiment, RNA from

tissue samples of different animals was used. Primers

were designed corresponding to mouse RNA se-

quences using Primer3 [29]. Real-time quantitative RT-

PCR reactions contained HotStart-IT SYBR green

qPCR Master Mix (Affymetrix), 200 nM of each primer

and 0.2 μL of template in a reaction volume of 25 μL.

Amplification was carried out using the ABI 7300

Real-time PCR System (Applied Biosystems). Relative

levels of mRNA expression were calculated using the ΔΔCT

method [30] and individual expression values were normal-

ized by comparison to GapdhmRNA.

Protein extraction and immunoblotting

Skeletal muscle was homogenized in RIPA extraction

buffer (Cell Signaling Technology) as previously de-

scribed [24]. Extracted proteins were separated by SDS-

polyacrylamide gel electrophoresis, transferred to nitro-

cellulose membranes, and blotted with primary anti-

bodies against ERK1/2 and phosphorylated ERK1/2 (Cell

Signaling Technology). Secondary antibodies were horse-

radish peroxidate-conjugated (GE Healthcare). Recognized

proteins were visualized by enhanced chemiluminescence

(GE Healthcare). To quantify results, the immunoblots

were scanned and band densities calculated using ImageJ64

(Applied Imaging). Signals obtained for phosphorylated

ERK1/2 were normalized to those for total ERK1/2.

Figure 1 Skeletal muscle pathology in Lmna
H222P/H222P mice. (A) Representative micrographs of hematoxylin and eosin-stained sections of

quadriceps, diaphragm, and tibialis anterior muscles from 20-week-old male LmnaH222P/H222P mice (Lmna H222P). Similar sections from wild-type mice

(Lmna WT) are shown for comparison. Scale bar = 50 mm. Arrows indicate internalized nuclei. To the right of each pair of micrographs, quantitative

analyses of muscle fiber diameter (Feret’s diameter) are shown for wild-type (circles, sold line) and LmnaH222P/H222P mice (squares, dashed line). Values are

means ± SEM for n = 3 mice per group; **P <0.005, ***P <0.0005. (B) Bar graphs showing percentages of fibers in specified muscle groups with internalized

nuclei. Values shown are means ± SEM for between 500 and 1,000 nuclei analyzed in tissue samples 3 per group; *P <0.05, **P <0.005, n.s. not significant.
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Serum biochemistry

Serum was separated from mouse blood and stored at -80°C

for 3 to 9 months until analyzed. Creatine phosphokinase

(CPK) and aspartate aminotransferase (AST) activities were

measured using an Analyst III Analyzer (Hemagen Diagnos-

tics) in the Comparative Pathology Laboratory at Columbia

University Medical Center. CPK and AST activities have

been shown to be stable in rodent serum stored for up to

360 days at -70°C [31].

Limb grip strength measurements

LmnaH222P/H222P mice treated with DMSO or selumetinib

were subjected to limb grip strength testing using a hori-

zontally positioned grip strength meter (Bioseb). Mice

were lowered by the tail towards the grid on the apparatus.

Upon grasping the grid with their limbs, mice were pulled

backward in the horizontal plane. The procedure was re-

peated consecutively three times and the peak tension of

the three pulls was recorded as the grip strength value.

Each animal was subjected to a total of two serial trials of

three pulls each with 20 s of rest in between.

Statistics

Values for real-time quantitative RT-PCR, scanned im-

munoblots, internalized nuclei, serum CPK and AST ac-

tivities, and grip strength were compared using an

unpaired Student t-tests. Values for Feret’s diameter

were compared using two-way ANOVA. Statistical

Figure 2 Increased ERK1/2 activity in skeletal muscle of Lmna
H222P/H222P mice. (A) Immunoblots showing phosphorylated ERK1/2 (p-ERK1/2)

and total ERK1/2 in protein extracts from quadriceps, diaphragm, and tibialis anterior muscles of 20-week-old male wild-type (Lmna WT) and

LmnaH222P/H222P (Lmna H222P) mice. Each lane contains protein extracts from a different mouse. The bar graph shows means ± SEM values of

pERK1/2 normalized to total ERK1/2 from scanned band densities of five immunoblots from n = 5 different mice per group. **P <0.005, ***P

<0.0005. (B) Differential expression of 11 selected genes in the ERK1/2 signaling pathway analyzed using real-time quantitative RT-PCR in

quadriceps, diaphragm, and tibialis anterior muscles of 20-week-old male wild-type and LmnaH222P/H222P mice. White bars show relative RNA

expression levels in skeletal muscles from wild-type mice Lmna+/+ mice and black bars in skeletal muscles from LmnaH222P/H222P mice. Values are

means ± SEM for n = 5 mice per group; the real-time quantitative RT-PCR was performed in triplicate on each different RNA sample. *P <0.05, **P

<0.005, ***P <0.0005, n.s. not significant.
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analyses were performed using Prism (GraphPad

Software).

Results and discussion

Dystrophic skeletal muscle pathology in Lmna
H222P/H222P

mice

Arimura et al. [23] previously reported progressive dys-

trophic changes in skeletal muscle starting at 16 weeks male

LmnaH222P/H222P mice. Their non-quantitative histopatho-

logical analysis included descriptions of a wide variation in

fiber size, an increased number of atrophic, hypertrophic,

and lobulated fibers, some regenerative fibers and a men-

tion that some fibers had internalized nuclei. We therefore

carefully quantified myofiber diameters and internalized

nuclei in histological sections of quadriceps, diaphragm,

and tibialis anterior muscle of male wild-type and

LmnaH222P/H222P mice at 20 weeks of age. Compared to

wild-type mice, quadriceps and tibialis anterior from the

LmnaH222P/H222P mice exhibited a wider variation in fiber

size (Figure 1A). In quadriceps, there was a clear shift to-

wards smaller fiber diameters, consistent with the pres-

ence of greater numbers of atrophic and regenerative

fibers. Both of these muscle groups also had an increased

percentage of fibers with internal nuclei, which is observed

during regeneration (Figure 1A,B). At this age, however,

diaphragm did not show significant differences between

LmnaH222P/H222P and wild-type mice (Figure 1A,B).

Abnormal ERK1/2 signaling in skeletal muscle of

Lmna
H222P/H222P mice

Hearts of LmnaH222P/H222P mice and human subjects

with autosomal EDMD have increased activity of ERK1/

2, which likely plays a role in pathogenesis of cardiomy-

opathy [24-27]. We hypothesized that a similar increased

activation of this signaling pathway occurs in skeletal

muscle. We therefore examined ERK1/2 activity in skel-

etal muscle from 20-week-old male LmnaH222P/H222P

mice. Immunoblotting with antibody against phosphory-

lated (activated) ERK1/2 demonstrated a two-fold in-

crease in activity in quadriceps, diaphragm, and tibialis

anterior of LmnaH222P/H222P mice compared to wild type

mice (Figure 2A). We then used quantitative real-time

PCR to measure expression of downstream ERK1/2 tar-

get genes, several of which are members of the ETS fam-

ily of transcription factors that are phosphorylated by

ERK1/2 and positively autoregulate their transcriptional

activity [24,32,33]. Of 11 targets genes assessed, we

detected significantly increased expression of mRNAs

Figure 3 Cultured myoblasts expressing H222P lamin A have

greater ERK1/2 activity after osmotic shock than those

expressing wild-type lamin A. One hour after osmotic shock with

D-sorbitol, protein extracts from C2C12 cells stably expressing flag-

tagged wild-type lamin A (Lmna WT) and flag-tagged H222P lamin

A (Lmna H222P) were analyzed by immunoblotting. Blots were

probed with antibodies against phosphorylated ERK1/2 (pERK1/2),

total ERK1/2 (ERK1/2) and Flag. The immunoblot shown is

representative of three separately performed experiments.
Figure 4 Increased ERK1/2 activity in skeletal muscle of

Lmna
H222P/H222P mice at 16 weeks of age. Immunoblot showing

phosphorylated ERK1/2 (p-ERK1/2) and total ERK1/2 in protein

extracts from quadriceps of 16-week-old male wild-type (Lmna WT)

and LmnaH222P/H222P (Lmna H222P) mice. Each lane contains protein

extracts from a different mouse. The bar graph shows means ± SEM

values of pERK1/2 normalized to total ERK1/2 from scanned band

densities of three immunoblots from n = 3 different mice per group.

*P <0.05.
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for nine in quadriceps, six in diaphragm, and seven in tibi-

alis anterior of LmnaH222P/H222P mice compared to wild-

type controls (Figure 2B). Among these, Mef-2, Elk1, Atf2,

Atf4, and Nfatc-4 showed significantly increased expres-

sion in the three skeletal muscles examined. These data

demonstrate that ERK1/2 is hyperactivated in the skeletal

muscles of LmnaH222P/H222P mice. Increased ERK1/2 acti-

vation in diaphragm at an age before there is any detect-

able histological abnormalities is consistent with its

increased activity in heart prior to the onset of detectable

pathological signs of cardiomyopathy [24]. This suggests

that increased ERK1/2 signaling is involved in the patho-

genesis of dystrophic skeletal muscle pathology.

Stress-induced activation of ERK1/2 in cultured myoblasts

stably expressing H222P lamin A

We have previously shown that transient transfection of

C2C12 mouse myoblasts with cDNA encoding H222P

prelamin A or other variants associated with striated

muscle disease have increased ERK1/2 activity compared

to those transfected with a cDNA encoding wild-type

prelamin A [24]. However, stably transfected C2C12 cells

expressing H222P lamin A do not have increased ERK1/

2 activity at baseline but do after glucose depravation or

treatment with 5-aminoimidazole-4-carboxyamide ribo-

nucleoside [28]. This led us to hypothesize that physio-

logical stress, such as that associated with manipulations

necessary for transient transfection or induced by altered

energy metabolism, is necessary to increase ERK1/2 ac-

tivity in myoblasts expressing lamin A variants. We fur-

ther tested this hypothesis by subjecting the same cells

stably expressing lamin A H222P that do not have base-

line elevation in ERK1/2 [28] to osmotic shock. One

hour after an osmotic shock with 600 mM D-sorbitol,

cells expressing flag-tagged H222P lamin A had a greater

activity of ERK1/2 compared to those expressing flag-

tagged wild-type lamin A (Figure 3). This result provided

additional support for a model in which alterations in

the nuclear lamina associated with striated muscle dis-

ease lead to abnormalities in the activities of cellular

stress-responsive signaling pathways [24,34,35]. The re-

quirement of a stress to hyperactivate ERK1/2 in cells

expressing the H222P lamin A may also at least in part

explain why striated muscle, a tissue repeatedly under

mechanical strain, is preferentially affected by LMNA

mutations generating certain A-type lamin variants.

Blocking ERK1/2 activity with selumetinib has beneficial

effects on skeletal muscle in Lmna
H222P/H222P mice

Given the enhanced ERK1/2 activity in skeletal muscle

of LmnaH222P/H222P mice that develop muscular dys-

trophy, we hypothesized that it may contribute to path-

ology. To test this hypothesis, we set up experiments to

determine if inhibiting ERK1/2 signaling would prevent

the progression of muscular dystrophy. At 16 weeks of

age, ERK1/2 activity was elevated in quadriceps muscle

of LmnaH222P/H222P mice compared to wild-type mice, as

assessed by immunoblotting with antibody against phos-

phorylated kinase (Figure 4).

We administered the MEK1/2 inhibitor selumetinib

to male LmnaH222P/H222P mice by giving daily intraper-

itoneal injections (1 mg/kg) starting at 16 weeks of age.

After 4 weeks of treatment, the mice had reduced

phosphorylated ERK1/2 in quadriceps, tibialis anterior,

and diaphragm compared to placebo-treated mice.

This demonstrated that systemically administered

selumetinib inhibited ERK1/2 signaling in skeletal

muscle (Figure 5).

Figure 5 Selumetinib inhibits ERK1/2 phosphorylation in

skeletal muscles from Lmna
H222P/H222P mice. Representative

immunoblots using antibodies against phosphorylated ERK1/2

(pERK1/2) and total ERK1/2 (ERK1/2) to probe proteins extracts from

quadriceps, diaphragm, and tibialis anterior from 20-week-old male

LmnaH222P/H222P mice treated with selumetinib or DMSO for 4 weeks.

The immunoblot shown is representative of three separately

performed experiments.
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Figure 6 (See legend on next page.)
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Following 4 weeks of treatment with selumetinib, there

was significantly reduced expression of embryonic my-

osin heavy chain (Myh3) mRNA in quadriceps, dia-

phragm, and tibialis anterior of LmnaH222P/H222P mice

(Figure 6A). This represented a partial reversal of embry-

onic myosin expression that typically occurs in dystrophic

muscle [36,37]. While quadriceps from DMSO-treated

mice had 0.52% fibers (4/772 from three mice) with inter-

nalized nuclei (Figure 6A, arrows), there were none

detected in 571 fibers from three mice in the selumetinib-

treated mice (and 1/604 fibers from three wild-type mice as

shown in Figure 1B). DMSO treatment did not impact

myofiber diameter compared to untreated LmnaH222P/H222P

mice; however, mice treated with selumetinib had a greater

myofiber diameter in quadriceps compared to those treated

with DMSO (Figure 6B). Between 16 and 20 weeks of age,

there was a significant increase in serum CPK activity in

LmnaH222P/H222P mice treated with DMSO; however, CPK

activity did not significantly increase in the mice that re-

ceived selumetinib and at 20 weeks it was significantly

lower than in those that received DMSO (Figure 6C).

Mean serum AST activity was also significantly lower in

the selumetinib-treated mice compared to the placebo-

treated mice at 20 weeks of age (data not shown). To de-

termine if selumetinib improved skeletal muscle function

in LmnaH222P/H222P mice, we evaluated limb grip strength.

At 20 weeks of age, mean grip strength was significantly

greater in selumetinib-treated LmnaH222P/H222P mice than

in DMSO-treated mice (Figure 6D). Hence, selumetinib

improved skeletal muscle dystrophic pathology and im-

proved function in LmnaH222P/H222P mice.

Conclusions

We have shown increased activity of ERK1/2 in skeletal

muscle of the LmnaH222P/H222P mouse model of auto-

somal EDMD and that blocking its activity ameliorates

pathology. These results are in accordance with a grow-

ing body of research providing evidence that alterations

in various cellular signaling pathways, including ERK1/2,

are involved in the pathogenesis of muscular dystrophy

[38]. In addition to autosomal EDMD, ERK1/2 has been

implicated as contributing to skeletal or cardiac muscle

pathology in mdx [39-41], γ-sarcoglycan-deficient [42,43],

and Lama2Dy-w [44] mice, respective small animal models

of Duchenne, limb girdle type 2C, and a form of congenital

muscular dystrophy. ERK1/2 activity is also abnormally in-

creased in hearts of mice with emerin deficiency, which is

the genetic alteration in X-linked EDMD [45].

Blocking increased ERK1/2 signaling activity with

selumetinib had beneficial effects on skeletal muscle func-

tion in LmnaH222P/H222P mice. Previously, we obtained

similar results with respect to the cardiomyopathy that oc-

curs in these mice [24-27]. In a human clinical trial,

selumetinib has been reported to promote muscle gain in

patients with cholangiocarcinoma [46]. As oral selumetinib

and other orally bioavailable MEK1/2 inhibitors with en-

couraging safety profiles are currently in clinical develop-

ment for other indications [47,48], pilot trials in patients

with EDMD and possibly other muscular dystrophies

should be considered.
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Figure 6 Selumetinib from 16 to 20 weeks of age improves skeletal muscle pathology and function in Lmna
H222P/H222P mice.

(A) Expression of Myh3 in LmnaH222P/H222P mice measured using real-time quantitative RT-PCR. White bars show relative RNA expression levels in

skeletal muscles of DMSO-treated (white bars) and selumetinib-treated (black bars) mice. Values are means ± SEM for n = 5 mice per group; the

real time RT-PCR was performed in triplicate with the different RNA sample; *P <0.05. (B) Representative micrographs of hematoxylin and eosin-

stained sections of quadriceps from 20-week-old male LmnaH222P/H222P mice (Lmna H222P) treated for 4 weeks with DMSO or selumetinib. Scale

bar = 50 mm. Arrows indicate internalized nuclei. To the right of the micrographs, quantitative analyses of muscle fiber diameter (Feret’s

diameter) are shown for mice treated with DMSO (circles, solid line) and selumetinib (squares, sold line). Values are means ± SEM for n = 3 mice

per group; **P <0.005, ***P <0.0005. (C) Serum CPK activities in LmnaH222P/H222P mice at 16 weeks (16 W) and 20 weeks (20 W) of age that were

treated with DMSO (white bars) or selumetinib (black bars). Values are means ± SEM for n = 7 DMSO-treated mice and n = 15 selumetinib-

treated mice; **P <0.005, n.s. not significant, #P <0.05. (D) Grip strength (force) in Newtons (N) in LmnaH222P/H222P mice at 20 weeks of age that

were treated with DMSO (circles) (n=6) or selumetinib (squares) (n=8). Each circle and square represents a measurement from an individual

mouse; the longer horizontal bar are means and the shorter horizontal bars ± SEM; **P <0.05.
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