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Abstract

Diffuse gliomas are incurable brain tumors divided in 3 WHO grades (II; III; IV) based on histological criteria. Grade II/III
gliomas are clinically very heterogeneous and their prognosis somewhat unpredictable, preventing definition of
appropriate treatment. On a cohort of 65 grade II/III glioma patients, a QPCR-based approach allowed selection of a
biologically relevant gene list from which a gene signature significantly correlated to overall survival was extracted. This
signature clustered the training cohort into two classes of low and high risk of progression and death, and similarly
clustered two external independent test cohorts of 104 and 73 grade II/III patients. A 22-gene class predictor of the training
clusters optimally distinguished poor from good prognosis patients (median survival of 13–20 months versus over 6 years)
in the validation cohorts. This classification was stronger at predicting outcome than the WHO grade II/III classification
(P#2.8E-10 versus 0.018). When compared to other prognosis factors (histological subtype and genetic abnormalities) in a
multivariate analysis, the 22-gene predictor remained significantly associated with overall survival. Early prediction of high
risk patients (3% of WHO grade II), and low risk patients (29% of WHO grade III) in clinical routine will allow the development
of more appropriate follow-up and treatments.
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Introduction

Gliomas are the most frequent primary tumors of the CNS

(central nervous system) [1,2]. Half of gliomas are represented by

glioblastoma multiforme (GBM, WHO grade IV), which are

associated with a poor prognosis (median survival less than one

year [3,4]). In contrast low grade diffuse gliomas (grade II) which

represent approximately 15% of gliomas are slow-growing tumors

(3–4 mm of mean diameter per year) [5]. However WHO grade II

tumors will ineluctably evolve to anaplasia within 5–10 years

(grade III and/or IV) which then rapidly compromise patient

survival. The median overall survival (OS) for grade II glioma

patients is approximately of 6–12 years [6] whereas this is reduced

to 3 years (30–40 months) for grade III patients [7]. However

important discrepancies exist between studies and no significant

differences for the survival of grade II and III gliomas was recently

reported in one study [8]. Heterogeneity of the tumor tissue and

the lack of consistency in grading among neuropathologists [9]

likely contribute to the difficulty to establish a reliable diagnosis.

One important feature of grade II and III gliomas is their clinical

heterogeneity and unpredictable behavior at the individual level.

Some tumors will expand quickly within months whereas others

will expand at a low rate for years [10]. Identification of markers

predicting the evolution of grade II and III gliomas is required for

appropriate follow-up and treatment. Accordingly, oligodendro-

gliomas which show frequent 1p19q co-deletions and mutations of

the IDH1 gene are associated with a longer survival than

astrocytomas [6]. In addition, various parameters derived from

tumor imaging have been used to stratify grade II/III patients

[11]. Finally, molecular markers [12–14] are another important

source for the detection of patients with a high risk of rapid

deterioration.

Over the past ten years, transcriptome profiling has largely been

used in cancer to explore patient heterogeneity, define tumor

subclasses and predict prognosis. Gene expression profiling of

gliomas has been recognized to produce a more robust classifica-

tion than the conventional histological diagnosis [15–18] and also

to directly predict for survival [19–23]. Most of these studies have

focused on high grade glioma, whereas to our knowledge no study

has specifically addressed the prognosis stratification of grade II/
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III patients. While developing complex technics will reveal more

markers, like the ATRX gene detected by high-throughput

sequencing in intermediate grade gliomas [24], widely-spread

and inexpensive methods still allow a rapid and accurate

prognostic evaluation. We thus set out to define a gene expression

and outcome signature best describing a cohort of 65 grade II/III

glioma patients. A QPCR-based approach was used to identify an

outcome-significant signature able to distinguish, much better than

the WHO classification, two classes of patients with low and high

risk of rapid progression and death among grade II/II gliomas.

The relevance of this signature was propagated to two indepen-

dent grade II/III cohorts in building a 22-gene class predictor

which remained robust when confronted to other prognosis

factors. This predictor will allow an improved classification for any

new grade II/III glioma patient.

Results

Selection of a Gene Signature for Overall Survival of
Grade II/III Patients

The present study was initiated with a limited set of 365 genes

susceptible to be implicated in tumorigenesis and prognosis

relevance in various cancers (supplementary Table S1). This list

includes genes expressed by stem cells, or coding for proteins

involved in angiogenesis, adhesion, asymmetric division, chroma-

tin remodeling, DNA methylation, epithelial-mesenchymal tran-

sition, migration, proliferation and canonical pathways. Gene

expression was measured using QPCR on a limited number of

samples, allowing the selection of 38 representative genes

(supplementary Table S2) reduced to 27 OS-significant genes on

our cohort. Using these genes, the expression clustering map

revealed two groups comprising 1/3 and 2/3 of patients

respectively (Figure 1). The median survival of patients of the

smallest group was 17.3 months, which included 75% of the

deceased patients in the cohort. The larger group contained only

9% of deceased patients in the cohort (Table 1). The log-rank test

comparing the overall survival of the two groups was highly

significant (P#2.8E-10, Figure 2A). Using this signature, 3% of

patients who were histologically classified as grade II fell into the

poor prognosis category and inversely, 29% of grade III diagnosed

patients were redefined as good prognosis patients in the MPL

training cohort (Table 2). Patient stratification according to the

WHO classification (43% grade II, 57% grade III) led to an

inverse distribution compared to ours (69% good, 31% poor

prognosis) and although this histological classification was

significant in a log-rank test (P = 0.018), it was less efficient at

distinguishing the short-surviving population revealed by our

signature (Figure 2A). In a univariate proportional hazard Cox

model analysis, the hazard ratio was six times higher for our

classification compared to the WHO one (26.2 and 4.1 respec-

tively, Table 3). When compared in a multivariate analysis, the

WHO classification was no longer independent of our signature

classification.

Building a Prediction Analysis for Microarrays (PAM)
Predictor

A PAM predictor was readily built on the clusters delineated by

the 27-gene signature in the training cohort and 10X cross-

validation allowed selecting 22 genes of good (BMP2, DLL3,

NRG3) and poor prognostic values (AURKA, BIRC5, BUB1,

BUB1B, CHI3L1, COL1A1, DLG7, EZH2, FOXM1, HSPG2,

IGFBP2, JAG1, KI67, NEK2, NKX6.1, PLK1, POSTN, TNC, VIM,

Table 4, supplementary Figure S1D). This list contributed to

differentiate samples in the training cohort (supplementary Figure

S1A, B) with a misclassification error rate lower than 5%

(supplementary Figure S1C).

To validate our predictor, the NL and NIH datasets were used

after normalizing and scaling to fit with QPCR expression level.

Grade II gliomas represented a quarter of the NL cohort and half

of the NIH cohort according to the WHO classification. This

grouping almost superimposed the survival curves of patients with

grade II/III for the NL cohort (Figure 2B) and separated the NIH

patients comparably to the MPL cohort (P#.016).

Applying the predictor built on the training cohort to the

independent NL and NIH cohorts separated two groups of

patients in a proportion very similar to that obtained in clustering

the training cohort (two thirds of good versus one third of poor

prognosis). Seventeen out of the 22 predictive genes were

individually significant for survival in the NL validation cohort.

This model led to a staging with highly significant differential

survival (P#5.4E-14, Table 1) as illustrated by Kaplan-Meier

curves (Figure 2B). The poor prognosis group appeared very

similar to the one delineated in the training cohort both for

survival at 24 months (21%) and median survival (13.2 versus 17.3

months). The PAM prediction was able to separate very-short

surviving patients from patients surviving more than 6 years

(Table 1) despite a high number of deaths in the good prognosis

group (80%) due to a long follow-up. Our predictor again

separated the NIH validation cohort in similar 2/3 good versus 1/

3 poor prognosis groups with a very significant differential survival

(P#7.7E-05, Table 1) as illustrated by Kaplan-Meier curves

(Figure 2C) and again a median survival of less than 2 years. The

outcome relevance of the current WHO classification was not

significant when assessed using a univariate Cox model for survival

on the NL validation cohort, while the PAM classification was

highly significant with a hazard ratio of almost 6 and 4 respectively

for NL and NIH (Table 3). Finally, a large proportion (46%) of

WHO grade III patients was found of better prognosis in the NL

cohort (Table 2).

The ability of the prognosis signature to predict outcome of

histopathological subtypes was estimated by the survival analysis of

either pure astrocytomas (supplementary Figure S2B, F, J), mixed

oligoastrocytomas (D, G, K) or pure oligodendrogliomas (C, H, L)

separately grouped by the WHO grade II/III classification

compared to the PAM one. Kaplan-Meier curves and log-rank

tests clearly demonstrated that, except for the too low number of

pure astrocytomas in the training cohort, the PAM classification

significantly separated good from poor prognosis patients whatever

the histology and the cohort, while the WHO classification was

unable to distinguish a differential survival.

Fitting a regression model on the survival of training and

validation cohorts and their combination for both classifications

allowed to approximate the life expectancy of patients in high to

low risk groups: 3.5 and less than 8 years for the WHO

classification and 1.5 and more than 7 years for the PAM

classification (Figure 2D, E).

PAM Prediction and Conventional Prognosis Factors for
Grade II and III Gliomas

The dependency of our predictor classification to commonly

used grade II/III glioma prognostic factors (1p19q loss of

heterozygosity, IDH1 gene mutation and EGFR gene amplifica-

tion) was analyzed using the NL validation cohort for which these

molecular data were available. As expected, the absence of 1p19q

codeletion or the amplification of EGFR presented a significant

higher risk of poor survival in univariate analysis. In this cohort,

the absence of IDH1 mutation was surprisingly not associated with

a poor outcome. In multivariate analysis of each factor and the

Revised Classification of WHO Grade II/III Gliomas
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PAM prediction, only EGFR amplification remained an indepen-

dent prognostic factor (Table 3). Finally, when testing all

prognostic factors together, only PAM classification remained

significant.

Discussion

In this study, we used a QPCR-based gene expression approach

to identify a 27 gene signature able to stratify grade II/III glioma

patients into two classes with very different outcome. Patients of

the higher risk class which represent approximately one third of

grade II/III patients, have a median survival time of about 1.5

years in three independent patients’ cohorts whereas patients of

the lower risk class present a median survival over 7 years. This

mean life expectancy enforces the need for a clear identification

method. The present risk classification based on gene expression

profile predicts the overall patient survival much better than the

WHO histological classification (P#2.8E-10 versus 0.018 respec-

tively). Using the latter, grade III gliomas represented more than

half of the patients in our training cohort, while our classification

showed that only one third was at risk of shorter survival. Thus the

grade II/III WHO classification appears to overestimate the

number of bad prognosis gliomas. This conclusion is substantiated

in the larger validation cohorts, in which half to three-quarter of

patients are classified by WHO as grade III while predicted

classification only delineates one third of high risk patients. With

the longer follow-up in the test populations, all uncensored

patients have died by twenty years, but contrary to the WHO

classification, PAM prediction was able to delineate a poor and a

better prognosis group of gliomas (Figure 2). Besides predicting a

better prognosis for many grade III gliomas, the signature was able

to identify a few patients with grade II gliomas showing a rapid

evolution. Additionally, individual outcome of astrocytomas or

oligodendrogliomas was readily and equally well predicted by our

method (supplementary Figure S2).

To easily propagate our classification to other cohorts or new

patients, we built a class predictor for the 27-gene signature

clusters. The 22-gene predictor obtained comprised 3 good and

19 poor prognosis genes. The functions of the proteins encoded by

Figure 1. Gene expression heatmap and overall survival of WHO grade II/III glioma patients. Map of the gene expression levels from the
27-gene list used to generate a classification clearly identifying a high risk cluster containing most of the deceased patients of the training cohort.
doi:10.1371/journal.pone.0066574.g001
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Table 1. Differential overall survival analysis of grade II and III gliomas in training and validation cohorts according to
classifications.

Cohort
Prognosis
group

Number
of patients

%
patients

%
deaths

Log-rank
p-value1

% Survival
at 24 mo

Median
survival (mo)

Training WHO grade II 28 43 11 0.018 95 NR2

MPL cohort WHO grade III 37 57 43 57 NR

Cluster low risk 45 69 9 2.80E-10 94 NR

Cluster high risk 20 31 75 21 17.3

Validation WHO grade II 24 23 67 NS3 (0.48) 65 45.2

NL cohort WHO grade III 80 77 90 60 37.9

PAM low risk 69 66 80 5.40E-14 81 72.5

PAM high risk 35 34 94 21 13.2

Validation WHO grade II 35 48 40 0.016 83 NR

NIH cohort WHO grade III 38 52 66 58 34.9

PAM low risk 48 66 40 7.70E-05 85 NR

PAM high risk 25 34 80 40 21.2

1For one degree of freedom.
2Not reached.
3Not significant at a 5% risk.
doi:10.1371/journal.pone.0066574.t001

Figure 2. Incidence on overall survival and comparison of WHO grade II/III versus gene expression-based PAM predictor
classification methods. The WHO classification (dotted lines) and the gene expression-based clusters or predicted classes (solid lines) were
compared in a Kaplan-Meier analysis of training (A) and validation (B, C) cohorts. For life expectancy comparison, the Kaplan-Meier curves for overall
survival were superimposed for training, validation and mixed cohorts (D, E). A parametric regression model of the overall survival of mixed cohorts
was superimposed assuming a Weibull-distributed fit.
doi:10.1371/journal.pone.0066574.g002
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these genes have been documented in several types of cancer,

including gliomas, and fit adequately with their contribution to

glioma prognosis. BMP2 is typically expressed by glioma with a

1p19q codeletion [25]. In glioma, BMPs have been shown to

reduce cell growth and to induce apoptosis [26], which may

account for the long survival of patients highly expressing these

proteins. The Notch pathway [27] is associated with tumor

progression in glioma [28,29]. The high expression of DLL3, an

inhibitor of this pathway, may restrict its activation in good

prognosis patients. NRG3 (neuregulin-3), is a member of a large

subclass of ligands of the EGF family. Compared to control brain,

NRG3 is underexpressed in high grade gliomas [30] and its

sustained expression in good prognosis gliomas may reflect

preservation of normal features by the tumor tissue. Among the

poor prognosis genes, CHI3L1, IGFBP2 and POSTN were the most

informative markers (Table 4). These genes are also highly

expressed in GBM in which their expression is associated with

tumor progression and poor patient survival [31–33]. IGFBP2 is a

central modulator of the IGF pathway and is implicated in the

control of many cellular processes, notably proliferation, metab-

olism and migration. CHI3L1 is a secreted glycoprotein belonging

to the family of mammalian chitinase-like proteins, which has a

proliferative effect on many cell types and can confer radioresis-

tance and increased invasion in normal astrocytes [34]. CHI3L1

expression is associated with the mesenchymal subtype of gliomas

which has a poorer survival [34,35]. POSTN (periostin) is a

secreted cell adhesion protein which plays an important role in

tumor development and is upregulated in several types of cancers

[36]. In glioma, its expression correlates with high FLAIR volumes

and the mesenchymal subtypes of GBM. Further accuracy in the

overall survival is provided by the overexpression of genes

associated with proliferation (AURKA [37], BUB1 [38], BUB1B

[38], DLG7/DLGAP5 [39], FOXM1 [40], KI67 [13], NEK2 [41],

PLK1 [42]), apoptosis (BIRC5/SURVIVIN [12]) and vasculature

(COL1A1 [43], HSPG2 [44], JAG1 [45], NKX6.1 [46], TNC [47]).

Their overexpression in poor-prognosis patients is consistent with

the fact that enhanced proliferation, apoptosis inhibition and

Table 2. Cross-tabulation of WHO grades and predicted
prognosis groups of grade II and III gliomas.

WHO Cluster/PAM

Cohort Classification Low risk High risk Total

GII 26 (40)1 2 (3) 28 (43)

Training MPL GIII 19 (29) 18 (28) 37 (57)

GII+GIII 45 (69) 20 (31) 65 (100)

GII 21 (20) 3 (3) 24 (23)

Validation NL GIII 48 (46) 32 (31) 80 (77)

GII+GIII 69 (66) 35 (34) 104 (100)

GII 28 (20) 7 (5) 35 (25)

Validation NIH GIII 20 (14) 18 (13) 38 (27)

GII+GIII 48 (66) 25 (34) 73 (100)

1Number (Percentage).
doi:10.1371/journal.pone.0066574.t002

Table 3. Uni- and multivariate Cox model analysis applied to prognosis groups for overall survival of grade II and III gliomas.

Cohort: Training MPL Validation NL Validation NIH

Score HR1 P-value HR P-value HR P-value

Univariate Cox model

WHO 4.1 0.028 1.2 NS2 (0.48) 2.2 0.019

Clustering/PAM3 26.2 1.7E-05 5.6 4.7E-12 3.4 1.8E-04

1p19q no codeletion – – 1.9 0.015 – –

IDH1 no mutation – – 1.1 NS (0.6) – –

EGFR amplification – – 4.0 3.5E-04 – –

Multivariate Cox model

Clustering/PAM 23.3 4.5E-05 5.8 1.0E-11 3.0 1.1 E-03

WHO 2.3 NS (0.21) 0.8 NS (0.55) 1.8 NS (0.1)

PAM – – 10.0 3.7E-09 – –

1p19q no codeletion – – 1.5 NS (0.15) – –

PAM – – 5.6 4.7E-09 – –

IDH1 no mutation – – 0.8 NS (0.37) – –

PAM – – 4.5 4.1E-06 – –

EGFR amplification – – 2.8 0.014 – –

PAM – – 13.4 8.5E-06 – –

WHO – – 0.7 NS (0.4) – –

1p19q no codeletion – – 1.7 NS (0.17) – –

IDH1 no mutation – – 1.1 NS (0.88) – –

EGFR amplification – – 1.2 NS (0.82) – –

1Hazard ratio.
2Not significant at a 5% risk.
327-gene signature clustering on MPL and PAM predictor on NL and NIH cohorts.
doi:10.1371/journal.pone.0066574.t003
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angiogenesis are hallmarks of disease progression in many cancers

[48]. In addition, poor-prognosis patient tumors may contain cells

with profound epigenetic and phenotypic modifications as

evidenced by the high level of EZH2 and VIM, two proteins

involved respectively in histone modifications and epithelial-

mesenchymal transition.

In this study, we found that grade II/III patients with a poor

prognosis signature have an overall survival time similar to that of

GBM-diagnosed patients. In addition, some of the poor-prognosis

overexpressed genes such as IGFBP2 and CHI3L1 are hallmarks of

GBM [49,50]. It is thus likely that due to its very high sensitivity,

QPCR analysis can detect GBM well before typical histological

features for this grade (notably necrosis and vascular cell

proliferation) are noticeable by pathologists.

Several genetic alterations have been identified in grade II and

III gliomas, which provide important information on patient

prognosis. Chromosomal 1p19q codeletion, or the mutation of

IDH1 gene represent good prognosis factors whereas the

amplification of EGFR is associated with a poor overall survival.

Using the NL validation cohort, a multivariate Cox model analysis

showed that IDH1 and 1p19q status were not independent from

our 22 gene predictor, in contrast to the EGFR amplification. But

in a multivariate analysis combining the five prognostic factors,

only the predictor remained significant for survival, thus

highlighting its usefulness and robustness for routine patient

classification.

Finally, in contrast to studies starting from large datasets, we

deliberately chose here to identify a signature based on the

expression of a few number of genes relevant to tumor genesis

which can be routinely measured by QPCR at a minimum cost in

a hospital laboratory. Because of this limited number of genes, we

diverted from development procedures for large scale clinically-

relevant gene-based classifiers [51] in building a class predictor for

the unsupervised gene-based clusters. However this signature can

also be detected by microarray technology as we validated it using

two external grade II/III cohorts with transcriptome data

acquired through genome-wide methods. Application of the 22-

genes predictor to the training cohort allowed to exactly retrieving

the two originally selected clusters (data not shown). Therefore,

any new patient could be assessed either by QPCR or microarray

and the 22 normalized and scaled signals used to predict outcome.

This allowed grouping the three normalized cohorts to demon-

strate a much better selection of high risk patients by our predictor,

with a predicted median survival of 1,5 years compared to 3,5 by

the WHO classification (Figure 2C, D).

In conclusion, because WHO classification lacks reproducibility

between pathologists and does not take into account the

continuum between grade II and grade III gliomas, it appears

important to move beyond the sole histology by integrating

molecular biology data to increase the reliability and prognostic

value of pathology investigations. Here, we report for the first time

to our knowledge, in a cohort of grade II/III gliomas excluding

GBM, a 22 gene predictor which allows an early identification of

poor prognosis patients among grade II gliomas (few ‘‘false grade

II’’) as well as an early detection of good prognosis patients among

grade III gliomas (one third to half of ‘‘false grade III’’), with a

significantly better predictive value than the WHO histological

classification as evidenced by cross-tabulation (Table 2). Such a

Table 4. Twenty-two genes in a class prediction analysis on the gene expression clusters of the training cohort.

Gene Class scores1 Probe set2 Banding Annotation2

CHI3L1 20.4426 0.9959 209396_s_at 1q32.1 chitinase 3-like 1 (cartilage glycoprotein-39)

IGFBP2 20.3661 0.8237 202718_at 2q33-q34 insulin-like growth factor binding protein 2; 36kDa

POSTN 20.2196 0.4941 210809_s_at 13q13.3 periostin; osteoblast specific factor

HSPG2 20.1447 0.3255 201655_s_at 1p36.1-p34 heparan sulfate proteoglycan 2 (perlecan)

BMP2 0.1413 20.3179 205289_at 20p12 bone morphogenetic protein 2

COL1A1 20.1361 0.3062 1556499_s_at 17q21.3-q22.1 collagen; type I; alpha 1

NEK2 20.136 0.3061 204641_at 1q32.2-q41 NIMA (never in mitosis gene a)-related kinase 2

DLG7/DLGAP5 20.1245 0.2802 203764_at 14q22.3 discs; large homolog 7 (Drosophila)

FOXM1 20.113 0.2542 214148_at 12p13 Forkhead box M1

BIRC5 20.1081 0.2432 202095_s_at 17q25 baculoviral IAP repeat-containing 5 (survivin)

PLK1 20.0646 0.1453 1555900_at 16p12.1 Polo-like kinase 1 (Drosophila)

NKX6–1 20.0551 0.124 221366_at 4q21.2-q22 NK6 transcription factor related; locus 1 (Drosophila)

NRG3 0.0531 20.1195 229233_at 10q22-q23 neuregulin 3

BUB1B 20.0509 0.1146 203755_at 15q15 BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)

VIM 20.0505 0.1137 201426_s_at 10p13 Vimentin

TNC 20.0479 0.1078 201645_at 9q33 tenascin C (hexabrachion)

DLL3 0.0305 20.0685 219537_x_at 19q13 delta-like 3 (Drosophila)

JAG1 20.0298 0.0671 209099_x_at 20p12.1-p11.23 jagged 1 (Alagille syndrome)

KI67/MKI67 20.0148 0.0334 212020_s_at 10q25-qter antigen identified by monoclonal antibody Ki-67

EZH2 20.0104 0.0235 203358_s_at 7q35-q36 enhancer of zeste homolog 2 (Drosophila)

BUB1 20.0029 0.0065 209642_at 2q14 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)

AURKA 20.0024 0.0053 208079_s_at 20q13.2-q13.3 serine/threonine kinase 6

1PAM scores in low and high risk classes.
2From Affymetrix H.
doi:10.1371/journal.pone.0066574.t004
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new tool, easy to include in clinical routine, could represent a

helpful marker to adapt an optimized and personalized manage-

ment, both regarding the timing and the sequence of therapies

with a better anticipation of the natural history of the disease at the

individual level. It will also be useful for stratification of patients

included in clinical trials.

Materials and Methods

Patients
The ‘‘MPL’’ training cohort included 65 adult patients

diagnosed with WHO grade II/III glioma undergoing surgery at

Montpellier, Nice and Lille Hospitals during 2004–2007 without

prior chemical or radiation therapy. All samples were processed in

accordance with European bioethics laws regarding patient

information: written consent was obtained from participants,

tumor collection was accepted by the Center for Biological

Collections of the Montpellier University Hospital (#AC-2009–

889) and the ethics committee CPP Sud-Méditerranée IV

approved this study (#CPP030601). Affymetrix U133 Plus 2.0

microarray data, histological staging and outcome for two

validation cohorts of WHO grade II/III glioma patients (‘‘NL’’

[18], n = 104 and ‘‘NIH’’ [52,53], n = 73) were downloaded from

the GEO database (GSE16011 and GSE4290). Clinical charac-

teristics of patients are depicted in Table S3. Cohorts are assumed

to be prospective.

Samples
At the time of resection, one sample for each tumor was

immediately frozen and stored at 280uC and another sample was

fixed in 4% formalin, embedded in paraffin, sectioned (3 mm) and

then stained with hematoxylin-eosin. The histopathological

subtypes and grades of glioma were determined by two

independent pathologists following the revised WHO 2007

classification [54] for both cohorts. Tumor subtypes consisting of

grade II/III astrocytomas (n = 6), oligodendrogliomas (n = 43) and

mixed oligoastrocytomas tumors (n = 16) were pooled in each

grade as the distinction between subtypes can be inconsistent

among pathologists due to subjective histological criteria and

personal biases [55–57].

Gene Expression Profiling by QPCR
Quantitative real-time RT-PCR (QPCR) was performed as

described previously [58]. Briefly, cDNA were made from total

RNA extracted from frozen tissues. QPCRs were performed using

the SYBR Green PCR Core Reagents Kit (Perkin-Elmer Applied

Biosystems). The thermal cycling conditions comprised an initial

denaturation step at 95uC for 10 min and 50 cycles at 95uC for

15 s and 65uC for 1 min. Experiments were performed in

duplicates for each data point using primers described in

supplementary Table S2. For each gene, mRNA expression was

calculated relative to TBP (TATA Box Binding Protein) expres-

sion. Results, expressed as n-fold differences in target gene

expression relative to the TBP gene (termed Ntarget), were

determined with the following formula: Ntarget = 2DCtsample, where

the DCt value of the sample was determined by subtracting the

average Ct value of the target gene from the average Ct value of

the TBP gene. Missing values were replaced by the minimal value

of the gene expression across the cohort, and expression signals

were scaled positive as log2(Ntarget 61000).

Gene Expression Based Stratification
We first quantified the expression of a list of 365 preselected

genes in 5 samples of grade II glioma (3 oligodendrogliomas and

two mixed tumors), 5 grade III gliomas (two oligodendrogliomas,

two mixed tumors and one astrocytoma), 5 control brain tissues

derived from epileptic resections and 5 GBM samples using

QPCR as described above. Analysis of this quantification revealed

45 genes with a 2 fold increase between grade II and III gliomas

while 47 genes displayed a 2 fold decrease. In addition, we

performed Mann-Whitney tests between grade II and III for these

365 genes to identify those showing a minimal fold change but

with a strong discrimination score between the two glioma grades.

This allowed us to select 11 additional genes. From this first list of

103 (45+47+11) genes, we selected 33 of them based on their level

of expression, their fold change and individual P-value, their

QPCR reproducibility and their relevance to cancer and glioma.

In addition, we included 5 genes (TIMELESS, SMO, BMP2, EGFR,

NKX6.1) which displayed a strong variation of expression from one

glioma sample to another within the same grade, suggesting that

these genes could identify glioma subgroups. Expression of this 38-

gene list was then analyzed by QPCR on the whole MPL cohort

including the five grades II/III samples of the preliminary

screening. Elimination of genes not significantly relevant to overall

survival was achieved using a univariate Cox-model analysis of the

expression of each of these genes on overall survival with multiple

testing correction [59] at a 5% false discovery rate. A final list of 27

significant genes (Table S4) was obtained and subsequently used to

classify the training cohort and to analyze the validation cohort.

Mathematical Analysis, Validation and Predictor
Construction

Computations were performed using R (http://www.R-project.

org) and Bioconductor [60].

Normalization and scaling of QPCR and microarray

expression signals. QPCR signals from the 38 gene list

expressed in the training cohort were centered using the scale

function of the R base package. The Affymetrix raw ‘‘CEL’’ files

from the patient samples of the NL validation cohort were first

normalized together using the ‘‘gcrma’’ R-package [61] while

recording processing parameters for further new sample normal-

ization. Samples from the NIH validation cohorts were normalized

one CEL file after the other with the previously-saved prepro-

cessing parameters using incremental preprocessing from a

modification [62] of the ‘‘docval’’ R-pakage [63]. For each QPCR

gene the relevant probe set was extracted. The most variable of

multiple probes for the same gene was selected when necessary.

The expression signals were again scaled in the validation cohorts.

Building the classification on the training cohort. Batch-

adjustment of microarray and QPCR-measured expression values

was checked by a genewise one-way ANOVA using the ‘‘pamr’’

R-package [64]. Hierarchical clustering and subsequent expres-

sion heatmap were performed using Euclidean distance. A

shrunken centroid classifier (PAM) was built with adapted

shrinkage thresholds by training on the two classes clustered in

training MPL cohort. A 10-times cross-validation allowed selecting

a threshold minimizing misclassification errors in both training

and cross-validation confusion matrices.

Predicting the Glioma PAM Classification in the
Validation Cohorts

The prognostic score was validated in two independent patient

cohorts using the ‘‘pamr’’ algorithm and optimized parameters

and threshold obtained on the training cohort.

Survival was analyzed using a Cox model applied to outcome

and depicted using Kaplan-Meier curves and log-rank test.
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Extrapolation of survival curves was performed using a parametric

regression model assuming a Weibull distribution fit [65].

Supporting Information

Figure S1 Gene expression-based predictor construc-
tion using PAM. The PAM shrunken centroid method was used

to select 22 genes. (A) Individual gene expression in the training

cohort. (B and C) The optimal number of genes in the predictor

corresponds to the minimum number of misclassification errors.

(D) The class score of each selected centroid is plotted according to

its class incidence. In all plots, the red color represents poor

prognosis genes.

(PDF)

Figure S2 Incidence of histopathological subtypes of
gliomas on overall survival. Kaplan-Meier curves were

designed and log-rank tests performed on both WHO and our

PAM classifications for all cohorts either unseparated (A, E, I) or

separated into their histological components, astrocytomas (B, F,

J), mixed (D, G, K) or oligodendrogliomas (C, H, L).

(PDF)

Table S1 List of 365 initially selected genes with annotations.

(XLS)

Table S2 Primers and expression of 38 genes in the training

cohort. Values represent n-fold differences in target gene

expression relative to the TBP reference gene.

(XLS)

Table S3 Clinical characteristics of patient cohorts.

(PDF)

Table S4 Twenty-seven genes significant in univariate Cox

model analysis of overall survival in training cohort after multiple

testing correction.

(PDF)
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