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Scale invariants of Tchebichef moments are usually achieved by a linear combination of corresponding invariants of geometric
moments or via an iterative algorithm to eliminate the scale factor. According to the properties of Tchebichef polynomials, we
propose a new approach to construct scale invariants of Tchebichef moments. An algorithm based on matrix multiplication is also
provided to eiciently compute the 3Dmoments and invariants. Several experiments are carried out to validate the efectiveness of
our descriptors and algorithm.

1. Introduction

Since the introduction of geometric moment invariants
by Hu [1], moments and moment’s functions have been
extensively applied in pattern recognition [2, 3]. Due to the
nonorthogonal kernel function of geometric moments, they
sufer from high degree of information redundancy and are
sensitive to noise, especially when higher order moments
are concerned. Teague [4] introduced orthogonal continuous
Legendre and Zernike moments, which can represent the
image with minimal information redundancy and can be
easily used for image reconstruction. he main drawback

of the aforementioned moments is the discretization error,
which accumulates with the increasing of moment order [5].

To resolve this problem, discrete orthogonal polynomials
have been utilized to construct moments, such as Tchebichef
[6], Krawtchouk [7], and Hahn [8]. heir basis functions

exactly satisfy the orthogonality, which means they do not
require any numerical approximation and spatial domain
transformation. It makes them superior to the conven-
tional continuous moments in terms of image representation
capability.

Recently, the problem of moment invariance has been
extensively investigated. For example, the invariants of Leg-
endre moments have been achieved through image nor-
malization method and indirect method. Chong et al. [9]
proposed a direct method to construct the translation and
scale Legendremoment invariants. Ong et al. [10] generalized
this method to 3D directly. Following this way, Zhu et al.
[11] derived translation and scale invariants of Tchebichef
moments. However, Khalid pointed out that one weakness
of this method is the high computational cost, especially
when image size is large and higher order moments are
concerned. herefore, this method is suitable only for a set
of binary images with small size [12]. Another diiculty of
aforementioned scale invariants is how to determinate their
parameters, which need to be selected carefully to keep a
compromise between numerical stability and complexity.

Inspired by the method proposed by Zhang et al. [13], we
propose in this paper an improved approach to construct 3D
scale invariants of Tchebichef moments. Instead of normal-
izing by lower order moments, scale factors are eliminated
by utilizing the orthogonality of coeicients. his method
avoids enormous computing caused by iteration. Moreover,
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we propose an algorithm based on matrix multiplication to
eiciently compute the 3D moments and invariants.

he remaining of this paper is organized as follows: in
Section 2, Tchebichef polynomials and derivation of corre-
sponding scale invariants are described in detail. Section 3
discusses an eicient way for computing 3D moments and
invariants. Experimental results for evaluating the perfor-
mance of the proposed descriptors are given in Section 4.
Finally, conclusions are provided in Section 5.

2. Improved Scale Invariants of
3D Tchebichef Moments

In this section, the falling factorial is introduced to build
a mutual relationship between Tchebichef polynomials and
power series. In order to separate the scale factor, Tchebichef
polynomials need to be transformed into power series irstly.
hen, these separated power series are expressed through
Tchebichef polynomials. By this way, moments of scaled
image can be expressed as a linear combination of the original
moments. We use the Stirling numbers instead of tedious
iterations to obtain scale invariants, because the recursive
procedure is an inherent deiciency of descriptors reported
in [9–11].

2.1. Some Properties of Tchebichef Polynomials. he squared-
norm of scaled Tchebichef polynomials is deined as [6]

�� (�) = (1 − �)�√� (�,�)
�∑
� = 0

(−�)�(−�)�(1 + �)�(�!)2(1 − �)� ,
�, � = 0, 1, 2, . . . , � − 1,

(1)

where (�)� is the Pochhammer symbol given by

(�)� = � (� + 1) (� + 2) ⋅ ⋅ ⋅ (� + � − 1) ,
� ≥ 1, (�)0 = 1, (2)

and �(�,�) is the squared-norm deined by

� (�,�) = (� + �)!(2� + 1) (� − � − 1)! . (3)

he falling factorial ⟨�⟩� is deined as [14]

⟨�⟩� = (−1)�(−�)� = � (� − 1) (� − 2) ⋅ ⋅ ⋅ (� − � + 1) ,
� ≥ 1, ⟨�⟩0 = 1. (4)

Using (4), (1) can be rewritten as

�� (�) = �∑
�=0

���⟨�⟩�, (5)

where

��� = 1√� (�,�)
(� + �)!(1 − �)�(�!)2 (� − �)!(1 − �)� . (6)

Let ��(�) = (�0(�), �1(�), . . . , ��(�))� and ��(�) = (1, ⟨�⟩1,. . . , ⟨�⟩�)� be two column vectors, where the superscript T
indicates the transposition. Using (5), we have

�� (�) = ���� (�) , (7)

where ��=(���), 0 ≤ � ≤ � ≤ �, is a lower triangular matrix
whose size is (� + 1) × (� + 1). he matrix �� is invertible
because its diagonal elements are not zero; therefore,

�� (�) = �−1��� (�) = ���� (�) , (8)

where �� = (���), 0 ≤ � ≤ � ≤ �. �� is a lower triangular
matrix too, and its elements are given by [15]

��� = (−1)�+�√� (�,�) (2� + 1) (�!)2(1 − �)�(� + � + 1)! (� − �)!(1 − �)� . (9)

he falling factorial ⟨�⟩� and the power series �� can be
expanded mutually:

⟨�⟩� = �∑
�=0

�1 (�, �) ��, �� = �∑
�=0

�2 (�, �) ⟨�⟩�, (10)

where �1(�, �) is the Stirling number of the irst kind, satisfying
the following recurrence relations:

�1 (0, 0) = 1, �1 (0, �) = �1 (�, 0) = 0, � ≥ 1, � ≥ 1,
�1 (�, �) = �1 (� − 1, � − 1) − (� − 1) �1 (� − 1, �) ,

(11)

and �2(�, �) is the Stirling number of the second kind, satis-
fying

�2 (0, 0) = 1, �2 (0, �) = �2 (�, 0) = 0, � ≥ 1, � ≥ 1,
�2 (�, �) = �2 (� − 1, � − 1) + ��2 (� − 1, �) .

(12)

he relationship between Tchebichef polynomials and
power series has been established via the falling factorial,
which is the fundamental of our descriptors.

2.2. Scale Invariants of 1D Tchebichef Moments. he 1D Tche-
bichef moment of order � for an �-length signal �(�) is
deined as

��� = �−1∑
�= 0

�� (�) � (�) . (13)

Let �(�) be a scaled version of �(�) with a scale factor 1/�;
that is, �(�) = �(�/�); then the Tchebichef moment of order� of �(�) has the form of

��� = �−1∑
�= 0

�� (�) � (�) = ��−1∑
�= 0

�� (��) � (�) . (14)

From (5), (8), and (10), we can see that

�� (��) = �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) ���2 (�, �) ����� (�) .
(15)
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Substituting (15) into (14), we have

��� = �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) ��+1�2 (�, �) ������. (16)

Equation (16) shows that the Tchebichef moment of the
scaled signal can be expressed as a linear combination of
the original ones. Based on this relationship, we derive the
following theorem.

heorem 1. For a given integer �, let
��� = �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) Γ−(�+1)� �2 (�, �) ������, (17)

with Γ� = ��0 . hen ��� is invariant to image scaling.

he proof is given in the appendix.

2.3. Scale Invariants of 3D Tchebichef Moments. he (� + � +�)th Tchebichef moment of a 3D image �(�, �, �) is deined
by

����� = �−1∑
�= 0

�−1∑
�= 0

�−1∑
� = 0

�� (�) �� (�) �� (�) � (�, �, �) . (18)

Let us assume that the original image� is scaled with fac-
tors 1/�, 1/�, and 1/�, along �-direction, �-direction, and �-
direction, respectively. hat is, �(�, �, �) = �(�/�, �/�, �/�).
he (� + � + �)th moments of scaled image � are given by

����� = ��� �−1∑
�= 0

�−1∑
�= 0

�−1∑
� = 0

�� (��) �� (��) �� (��) � (�, �, �) .
(19)

Similarly to 1D case, we can rewrite (19) as

����� =
�∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) ��+1�2 (�, �) ���

× �∑
� = 0

�∑
� = 0

�∑
�=0

�∑
V= 0

����1 (�, �) ��+1�2 (�, �) ��V
× �∑
� = 0

�∑
ℎ= 0

ℎ∑
� = 0

�∑
� = 0

����1 (�, ℎ) �ℎ+1�2 (ℎ, �) ������V�.
(20)

To construct the 3D moment invariants, we need the follow-
ing lemma.

Lemma 2. Let

Γ� = ��100��000 − �10�00, Θ� = ��010��000 − �10�00,

Λ � = ��001��000 − �10�00.
(21)

hen, one has Γ� = �Γ�, Θ� = �Θ�, and Λ � = �Λ �.

Proof. Using (6), (9), and (19), we have

Γ� = ��100��000 = �10�00��000 + ��11�10��000 + ���100��000
= �10�00 + �(��100��000 + �11�10) .

(22)

Taking �10�00 + �11�10 = 0 into account, we have Γ� = �Γ�.
he other two relationships can be demonstrated in a similar
way.

Using (20) and Lemma 2, we can construct the scale
invariants of 3D Tchebichef moments, which are described
in following theorem.

heorem 3. For given integers �, �, �, let
����� =

�∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) Γ−(�+1)� �2 (�, �) ���

× �∑
� = 0

�∑
� = 0

�∑
�= 0

�∑
V= 0

����1 (�, �) Θ−(�+1)� �2 (�, �) ��V

× �∑
� = 0

�∑
ℎ= 0

ℎ∑
� = 0

�∑
� = 0

����1 (�, ℎ) Λ−(ℎ+1)� �2 (ℎ, �) ������V�,
(23)

where Γ�, Θ�, and Λ � are deined in Lemma 2. hen, ����� is
invariant to image scale.

he proof is similar to that of heorem 1 since the kernel
function is separable, and so it is omitted here.

3. Computing 3D Moments and Invariants

To achieve the scale invariance of 3D moments, (23) implies
that it needs to compute a 12-level nested loop. Since the
structure of (23) is symmetric, we introduce a new algorithm
based on matrix multiplication to reduce the number of
loops.

3.1. Computing 3D Moments. Let us begin with discussion of

the 1D case. Let M = (M0,M1, . . . ,M�)T be a column vector
constituted by the (0 ∼ �)th moments of �(�). From (5), it is
well known that

M = [[[
[

�0�1⋅ ⋅ ⋅��
]]]
]

= [[[
[

�0 (1) �0 (2) ⋅ ⋅ ⋅ �0 (� − 1)�1 (1) �1 (2) ⋅ ⋅ ⋅ �1 (� − 1)⋅ ⋅ ⋅�� (1) �� (2) ⋅ ⋅ ⋅ �� (� − 1)
]]]
]

[[[
[

� (0)� (1)⋅ ⋅ ⋅� (� − 1)
]]]
]

.
(24)
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Yap et al. [7] proposed amatrix form ofmoments for a 2D
image

� = �1���2 , (25)

where � is an � × � matrix of Tchebichef moments, �1 ={��(�)}� =�−1, � =�−1� = 0, � = 0 , �2 = {��(�)}� = �−1, � =�−1� = 0, � = 0 , and � =
{�(�, �)}�, � =�−1�, � = 0 .

Exchanging the order of summation, we rewrite (18) as

����� = �−1∑
� = 0

�� (�) {�−1∑
�= 0

�−1∑
�= 0

�� (�) �� (�) � (�, �, �)} . (26)

By combining (24) with (25), an efective algorithm to
calculate (26) can be derived as follows.

Step 1. Computing � 2D images along �-direction by (25),
we can get temporary matrices (see Figure 8), where ����(�)
denotes the element of �th row and �th column in the �th
plane of �-direction.
Step 2. Along �-direction, we rearrange the temporarymatri-
ces obtained in Step 1 and get a (� + 1) matrix with size of�×(�+1).hen the required 3Dmoments are achieved ater
they are premultiplied by the kernel function matrices; that
is,

[[[
[

�000 ⋅ ⋅ ⋅ �0�0�001 ⋅ ⋅ ⋅ �0�1⋅ ⋅ ⋅�00� ⋅ ⋅ ⋅ �0��
]]]
]

= [[[
[

�0 (0) �0 (1) ⋅ ⋅ ⋅ �0 (� − 1)�1 (0) �1 (1) ⋅ ⋅ ⋅ �1 (� − 1)⋅ ⋅ ⋅�� (0) �� (1) ⋅ ⋅ ⋅ �� (� − 1)
]]]
]

× [[[[
[

��00 (0) ⋅ ⋅ ⋅ ��0� (0)��00 (1) ⋅ ⋅ ⋅ ��0� (1)⋅ ⋅ ⋅��00 (� − 1) ⋅ ⋅ ⋅ ��0� (� − 1)
]]]]
]

,

[[[
[

�100 ⋅ ⋅ ⋅ �1�0�101 ⋅ ⋅ ⋅ �1�1⋅ ⋅ ⋅�10� ⋅ ⋅ ⋅ �1��
]]]
]

= [[[
[

�0 (0) �0 (1) ⋅ ⋅ ⋅ �0 (� − 1)�1 (0) �1 (1) ⋅ ⋅ ⋅ �1 (� − 1)⋅ ⋅ ⋅�� (0) �� (1) ⋅ ⋅ ⋅ �� (� − 1)
]]]
]

× [[[[
[

��10 (0) ⋅ ⋅ ⋅ ��1� (0)��10 (1) ⋅ ⋅ ⋅ ��1� (1)⋅ ⋅ ⋅��10 (� − 1) ⋅ ⋅ ⋅ ��1� (� − 1)
]]]]
]

,

...,
[[[
[

��00 ⋅ ⋅ ⋅ ���0��01 ⋅ ⋅ ⋅ ���1⋅ ⋅ ⋅��0� ⋅ ⋅ ⋅ ����
]]]
]

= [[[
[

�0 (0) �0 (1) ⋅ ⋅ ⋅ �0 (� − 1)�1 (0) �1 (1) ⋅ ⋅ ⋅ �1 (� − 1)⋅ ⋅ ⋅�� (0) �� (1) ⋅ ⋅ ⋅ �� (� − 1)
]]]
]

× [[[[
[

���0 (0) ⋅ ⋅ ⋅ ���� (0)���0 (1) ⋅ ⋅ ⋅ ���� (1)⋅ ⋅ ⋅���0 (� − 1) ⋅ ⋅ ⋅ ���� (� − 1)
]]]]
]

.
(27)

he matrix representation is usually considered very
efective in sotware packages such as MATLAB. But in
Section 4, our experiment shows that it performs well in C++
too.

3.2. Computing 3D Invariants. Equation (23) has a similar
structure to the deinition of 3D moments. Exchanging the
order of summation, we can rewrite (23) as

����� =
�∑
�=0

�∑
V= 0

�∑
� = 0

�1 (�,�) �2 (�, V) �3 (�, �) ���V�, (28)

where

�1 (�,�) = �∑
� =�

�∑
� =�

�∑
� =�

����1 (�, �) Γ−(�+1)� �2 (�, �) ���,
(29a)

�2 (�, V) = �∑
� = V

�∑
� = V

�∑
�= V

����1 (�, �) Θ−(�+1)� �2 (�, �) ��V, (29b)

�3 (�, �) = �∑
� = �

�∑
ℎ= �

ℎ∑
� = �

����1 (�, ℎ) Λ−(ℎ+1)� �2 (ℎ, �) ���. (29c)

herefore, the algorithm presented in the previous sub-
section can be applied to compute the invariants. Let

us denote matrices {���}�, � = ��, � = 0 , {�1(�, �)}�, � = ��, � = 0 , diag (�1�, �2�, . . . ,��+1� ), {�2(�, �)}�, � = ��, � = 0 , and {���}�, � = ��, � = 0 by C, S1, Δ, S2, and D,

respectively. hey are all lower triangular matrices, and (29a)
can be evaluated by a matrix way; that is, Ξ = � ∗ �1 ∗ Δ ∗�2 ∗ �, where Ξ denotes the matrix {�1(�, �)}�, � = ��, � = 0 . he same

procedure will be repeated in computing (29b) and (29c).

4. Experimental Results

In this section, we irst evaluate the eiciency of our comput-
ing algorithm, which is compared with geometric moment
invariants [16], Legendre invariants [10], and Zhu’s invariants
[11]. hen we illustrate the performance of the proposed
descriptors based on a 3D MRI image. Classiication abilities
of four invariants are tested on character sets inally.

A 3D silhouette image shown in Figure 1 is composed
of 128 binary images with size of 128 × 128. It is used to
evaluate the computational speed of the algorithm described
in Section 3. Figure 2 shows the computational time required
to calculate the invariants of order up to 18. It should be
noted that the program is implemented in C++ on a PC
with Intel Core 2 Duo P8400 2.4GHz CPU, 4GB RAM.
Figure 2 implies that our descriptors require less computation
time when the order of invariants increases, because we
apply the proposed algorithm for computing the Tchebichef
moments as well as the invariants. he geometric moments
and corresponding invariants are calculated directly through
nested loops. For Zhu’s invariants and Legendre invariants,
we utilize ourmethod to obtain their 3Dmoments irstly, and
then nested loops are used to compute moment invariants.
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Figure 1: A 3D silhouette.
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Figure 2: Comparison of mean time elapsed (s).

Since there are no nested loops in our algorithm, the required
time increases little with the order growing.

he Volume Library [16] contains regular volume data
mainly coming from CT or MRI scanners. Figure 3 shows
a 3D MRI head image selected from this library. We resize
this head image with the factors of 0.5, 1, 1.5, and 2 along�-axis, �-axis, and �-axis, respectively, which form a test
set consisting of 64 images with diferent sizes. In order
to measure “invariant” performance of the descriptors, we
also adopt the deviation �/�, which was proposed by Chong
et al. [9]. Here � and � denote the standard deviation
and mean of invariants with the same order, respectively.
Figure 4 illustrates the standard deviation of the geometric
invariants, Legendre invariants, Zhu’s invariants, and the
proposed descriptors with the same order. It shows that
the geometric invariants have the worst performance. Since
high order of geometric moments has large variation in the
dynamic range of values [6], this leads to unstable relative
errors. Our descriptors have a slightly lower relative error
than Zhu’s invariants and Legendre invariants.

Figure 3: A 3D MRI head image.
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Figure 4: Standard deviation of lower order invariants for a non-
uniformly scaled 3D MRI image.

Moments of higher orders are generally considered more
sensitive to image noise. To test the robustness of our
invariants for degraded images, we add Gaussian noise (with
mean � = 0 and variance � varying from 0.01 to 0.3) and
salt-and-pepper noise (with diferent noise densities from
0.01 to 0.3) to Figure 1, respectively. We rearrange the scale
invariants of an image following the scheme through the path(0, 0, 0) → (1, 0, 0) → (0, 1, 0) → (0, 0, 1) → (2, 0, 0) →(1, 1, 0) → (1, 0, 1) → (0, 2, 0) → (0, 1, 1) → (0, 0, 2) →⋅ ⋅ ⋅ → (0, 0, �) and so on, to construct an invariant vector��(�), where� is the maximum order of moment invariants.
In this experiment, � = 4 is chosen; that is, the length of��(�) equals 35.

he relative error of the invariant vector corresponding to

the original image � and the degraded image �̃ is deined as

� (�, �̃) =
������� − ��̃����������������� , (30)

where ‖ ⋅ ‖ is the Euclidean norm.
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Figure 5: Relative errors of four descriptors with respect to additive
Gaussian noise.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

Density of salt-and-pepper noise

R
el

at
iv

e 
er

ro
r 

Geometric invariants

Legendre invariants

Zhu’s invariants

Proposed invariants

Figure 6: Relative error of four descriptors with respect to additive
salt-and-pepper noise.

Relative errors caused by Gaussian and salt-and-pepper
noise are depicted in Figures 5 and 6, respectively. We can
observe that the relative error increases when increasing the
noise level, and the proposed descriptors are more robust to
noise than the other three competitors.

In the last experiment, we test the classiication ability
of our descriptors in both noise-free and noisy conditions.
A classiier is required to identify the class of an unknown
input object. We utilize the second and third order of
invariants to form a feature vector. herefore, the length of
the vector equals 16. During the classiication, the feature of
an unknown object is compared with the training feature

          

     

Figure 7: Original alphanumeric characters as a training set for
invariant character recognition.

Table 1: Classiication results.

Noise-free 1% 2% 3% 4%

Geometric invariants 97.16 87.07 81.25 68.04 50.85

Legendre invariants 97.87 89.06 83.95 74.15 56.96

Zhu’s invariants 98.30 90.91 85.94 76.28 57.24

Proposed invariants 98.72 92.61 89.25 80.97 61.36

of a particular class. he Euclidean distance is frequently
utilized as the classiication measure, which is deined by

� (��, �(�)� ) = ������ − ������ , (31)

where �� and �(�)� are feature vectors of the unknown sample
and the � class, respectively. We deine the classiication rule
such that an unknown input object will belong to the nearest
class. he average classiication accuracy is deined as

� = Number of correctly classiied images

he total number of images
× 100%.

(32)

An original set of alphanumeric characters with size of64 × 64 × 64 shown in Figure 7 is used in this experiment.
he reason for such a choice is that the elements in subsets{6, �, �}, {9, �, �}, and {�, �, �, 0, �}may be confused due to the
similarity. Every element is scaled with the factors {0.5, 1, 1.5,
and 2} along �-, �-, and �-axes, respectively, forming a testing
set including 11 classes and 704 images. Additive salt-and-
pepper noise with diferent noise densities 0.01, 0.02, 0.03,
and 0.04 is added to the test set. he feature vectors based
on the proposed invariants, geometric invariants, Legendre
invariants, and Zhu’s invariants are used to classify these
images. he comparison result is listed in Table 1. We can see
that there are few diferences among the four descriptors in
noise-free case. However, with the increase of noise density,
our method is more robust than the other three.

5. Conclusions

We have presented a new method to derive the scale invari-
ance of 3D Tchebichef moments. To reduce the computation
time, we have proposed an eicient algorithm based on
matrix multiplication for computing both 3D moments and
3D invariants. Experimental results show that our method
has better classiication ability, it is more robust to noise than
the existing moment-based methods, and it is very efective.
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⌈
⌊⌊
⌊

��00(� − 1) ��01(� − 1) ... ��0�(� − 1)
��10(� − 1) ��11(� − 1) ... ��1�(� − 1)
...

...
���0(� − 1) ���1(� − 1) ... ����(� − 1)

⌉
⌋⌋
⌋

⌈⌊⌊⌊
⌊

��00(1) ��01(1) ... ��0�(1)
��10(1) ��11(1) ... ��1�(1)
...
���0(1) ���1(1) ... ����(1)

⌉⌋⌋⌋
⌋

⌈⌊⌊⌊
⌊

��00(0) ��01(0) ... ��0�(0)
��10(0) ��11(0) ... ��1�(0)
...
���0(0) ���1(0) ... ����(0)

⌉⌋⌋⌋
⌋

�

Figure 8

Appendix

Proof of Theorem 1

Taking Γ� = �Γ� into account, we have

��� = �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) Γ−(�+1)� �2 (�, �) ������

= �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
�=0

����1 (�, �) �−(�+1)Γ−(�+1)� �2 (�, �) ���

× �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
� = 0

����1 (�, �) ��+1�2 (�, �) ������ .
(A.1)

Exchanging the order of summation, we can rewrite (A.1) as

��� = �∑
� = 0

�∑
� = 0

����1 (�, �) Γ−(�+1)�

× �∑
� = 0

�∑
� = 0

�∑
�= 0

�∑
� = 0

�∑
� = 0

�2 (�, �) �1 (�, �) ��−��2 (�, �) ������

× �∑
�=�

������.
(A.2)

Since

�∑
�=�

������ = ���, (A.3)

where ��� is the Kronecker symbol.

Substitution of (A.3) into (A.2) yields

��� = �∑
� = 0

�∑
� = 0

����1 (�, �) Γ−(�+1)�

× �∑
� = 0

�∑
� = 0

�∑
� = 0

�∑
� = 0

�2 (�, �) �1 (�, �) ��−��2 (�, �) ������ .
(A.4)

Again, exchanging the order of � and �, we have
��� = �∑
� = 0

�∑
� = 0

����1 (�, �) Γ−(�+1)�

× �∑
�= 0

��−� �∑
� = �

�2 (�, �) �1 (�, �) �∑
� = 0

�∑
� = 0

�2 (�, �) ������ .
(A.5)

Using ∑�� = � �2(�, �) �1(�, �) = ���, we obtain
��� = �∑
� = 0

�∑
� = 0

����1 (�, �) Γ−(�+1)�

�∑
� = 0

�∑
� = 0

�2 (�, �) ������ = ��� .
(A.6)
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