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Abstract

Background: In order to select for quantitative plant resistance to pathogens, high throughput approaches that
can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide
more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging,
chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel
images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used
in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well
adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast
between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to
quantify disease severity.

Results: Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit
diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of
symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order
to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling
pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various
stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples.
Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel.
Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of
plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest
of this image analysis procedure for assessing the levels of quantitative resistance is illustrated with the quantitation
of disease severity on five commercial varieties of bean inoculated with Xff CFBP4834-R.

Conclusions: In this paper, we describe an image analysis procedure for quantifying the leaf area impacted by the
pathogen. In a perspective of high throughput phenotyping, the procedure was automated with the software R
downloadable at http://www.r-project.org/. The R script is available at http://lisa.univ-angers.fr/PHENOTIC/
telechargements.html.
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Background
Quantitative phenotyping is important in plant breeding

to screen accessions for resistance to pathogens. Indeed,

plant resistance to pathogens may either be qualitative or

quantitative. Qualitative resistance is due to the presence

of single major resistance genes that confer total resistance

to pathogens carrying the cognate avirulence genes. How-

ever, these monogenic total resistances are often rapidly

bypassed. In contrast, resistance conferred by multiple loci

exhibit quantitative phenotype and is thought to contri-

bute to durability [1-3]. Thus quantitative phenotyping

methods are necessary to ensure a good evaluation of the

disease severity and to make appropriate decisions in

gauging cultivar resistance in plant breeding.

Visual assessments have often been used to quantify

disease severity. They require rating scales to be finely

tuned, and raters to be trained, which increases conside-

rably the cost and the time devoted to phenotyping

projects. Moreover, these methods highly depend on the

subjectivity of the raters and thus often lack accuracy, re-

producibility and traceability [4-7].

In contrast, automated image analysis-based phenotyping

provides a powerful alternative to visual assessments. In-

deed, automation eventually provides a calibrated image

analysis, thereby eliminating any subjectivity of the raters

and ensuring reproducibility [6]. Furthermore, automation

allows high throughput phenotyping. Calibrated protocols

and data storage may provide useful tools for traceability

or inter-laboratory comparison of the results.

Image segmentation aims at partitioning the digital

image into multiple sets of pixels to select the areas of

interest. In plant pathology, imaging of the symptoms

has been mainly achieved using conventional color

imaging. Segmentation algorithms aimed at the auto-

mated quantification of the total amount of symptoms

on leaves from conventional color images [8-12]. Some

of them aim at the quantification of the chlorosis or the

necrosis using the differential colors of diseased leaf

tissues [10,12]. Indeed, yellow and brown coloration re-

spectively characterize chlorotic and necrotic tissues.

Such automated segmentation procedures rely on color-

based thresholds to discriminate diseased from healthy

tissues on leaves. However, heterogeneity during expos-

ition may alter the contrast of visible images and interfere

with any color-based thresholding. Batch segmentation of

visible images using color-based thresholds may thus

generate numerous artifacts if light conditions during

exposure are not tightly controlled. Scanner imaging of

detached leaves or adjusting the color balance using a

color checker may help standardizing contrasts prior to

the segmentation procedures [9]. As conventional color

images are typically multichannel images (for instance

RGB images are composed by red, green and blue chan-

nels), they need sophisticated image analysis methods

[13]. As segmentation by simple thresholding can only be

applied on single channel images, conventional color

images should be transformed into grayscale images prior

to the segmentation. Such a transformation may result in

a loss of information. Moreover, conventional color image

standards aim at reproducing human vision, and thus do

not directly represent the physiology of plant leaves.

Among non-conventional imaging approaches, some

approaches such as thermography or chlorophyll fluores-

cence depict the physiology of plant leaves through single

channel images [14,15]. These single channel images may

easily be segmented using automated thresholding proce-

dures for the quantification of disease severity. Chloro-

phyll fluorescence analysis is a non-destructive technique

that has been used for imaging plant pathogen interac-

tions [16,17] and in particular to assess the resistance of

plant to pathogen [18-23]. Indeed, symptoms result from

the alteration of the tissues and many pathogens target

the carbon metabolism and the photosynthetic apparatus

[24-26]. Among all the chlorophyll fluorescence parame-

ters that can be estimated, the maximum quantum yield of

photosystem II (PSII) photochemistry (Fv/Fm = (Fm-F0)/Fm)

[27] is interesting for phenotyping disease severity as it is

an indicator of plant stress [17,28]. Fv/Fm is a parameter

calculated from two measured fluorescence parameters, F0
(minimum fluorescence) and Fm (maximum fluorescence).

Fv/Fm was reported to display a robust contrast between

infected and healthy tissues [17,20,28,29]. Furthermore,

healthy tissues were reported to yield Fv/Fm values around

0.84 for numerous plant species [30,31]. When tissues are

altered by biotic or abiotic stress, Fv/Fm values decrease

[32-34]. In many studies, mean Fv/Fm measurements were

used to qualitatively discriminate between diseased and

healthy leaves [23,33,35-37]. However, quantitative assess-

ments of the total diseased area on leaves require each

pixel to be classified as diseased or healthy. Thresholding

based on Fv/Fm values may allow the segmentation of

diseased areas on the imaged leaves.

Common Bacterial Blight (CBB) of bean is caused by

Xanthomonas axonopodis pv. phaseoli and X. fuscans

subsp. fuscans (Xff ). These pathogens are listed by the

European and Mediterranean Plant Protection Organization

[38] as quarantine pathogens as CBB is the most dest-

ructive bacterial disease of the common bean Phaseolus

vulgaris resulting in up to 60% yield losses in favorable

conditions [39]. On leaves, visible symptoms start usually

four to seven days after infection with pinpoint water

soaked areas that enlarge and eventually form necrotic

tissues surrounded by a chlorotic halo. Attack may also

result in leaflet wilting and in severe cases to defoliation

[38]. Furthermore, the agents of CBB may also accomplish

their whole cycle in the absence of visible symptoms [40].

As for other plant bacterial diseases, no efficient chemical

treatment is allowed in the European Union, and control
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of the disease mainly involves the use of resistant

bean cultivars.

No total monogenic resistance to the agents of CBB is

known in P. vulgaris. However, quantitative trait loci

conditioning resistance to CBB have been identified and

quantitative resistances may be bred into commercial

cultivars of bean [41]. Therefore quantification of the total

diseased area on bean leaflets is needed to monitor the

resistance level of novel bean lines to the agents of CBB

during the selection process. In the present study, we

developed procedures for the automated segmentation of

Fv/Fm images in order to quantify disease severity on plant

leaflets in the pathosystem P. vulgaris/Xff CFBP4834-R. At

first, we explored expert-defined thresholds after visual

observations to discriminate in Fv/Fm images areas corre-

sponding to necrotic, wilted, impacted tissues, and healthy

tissues. Second, we tested a segmentation approach based

on modeling pixel-wise Fv/Fm-distributions as mixtures of

Gaussian distributions, each distribution representing a

different stage of the alteration of plant tissues, from

strongly altered to healthy tissues. Finally, we developed a

thresholding approach based on the probability of mis-

classification of a healthy pixel into the class of diseased

pixels. Then, the segmented diseased areas can be mod-

eled as mixtures of Gaussian distributions to discriminate

various stages of alteration of plant tissues, from strongly

to weakly altered tissues.

Results
Datasets

Two datasets were used. The first one was used to setup

the segmentation procedure for the quantification of

symptoms by image analysis. It features images of leaf-

lets of P. vulgaris cultivar (cv.) Flavert plants inoculated

with the strain Xff CFBP4834-R or water. In this first

dataset, the imaged leaflets were not detached from the

plant to monitor the development of symptoms during

11 days after inoculation (dai). The same leaflets were

imaged first at 1 dai then every day between 4 and 11

dai to monitor the development of the symptoms. For

each leaflet, the symptomatic area was delimited either

by: i) thresholding based on expert visual observations,

ii), thresholding based on modeling pixel-wise Fv/Fm-

distributions as mixtures of Gaussian distributions or

iii) thresholding based on the probability of misclassifi-

cation of a healthy pixel followed by a subsequent clus-

tering of diseased pixels to describe the various stages of

alteration of plant tissues.

A second dataset featured images of leaflets of five

bean cultivars (cvs. Flavert, Michelet, Pike, Caprice and

Wonder) inoculated with Xff CFBP4834-R. The image

analysis procedure previously calibrated on the first

dataset was applied to images belonging to this second

dataset for evaluating the resistance of these commercial

bean cultivars to Xff CFBP4834-R. In this second dataset,

leaflets were detached from inoculated plants just before

imaging to ease and speed up the image acquisition.

Thresholding based on expert visual observations

Expert-based thresholding consisted in the comparison

of conventional color images with Fv/Fm images of the

same leaflet by trained raters to manually define the

relevant thresholds to segment the Fv/Fm images. The

segmented Fv/Fm images should visually reproduce the

distribution of symptoms as visualized on conventional

color images, i.e. the various segmented parts in Fv/Fm
images should co-localize with the various stages of the

symptom development as observed by the eye of trained

raters. On bean leaflets of cv. Flavert harboring symp-

toms of Xff CFBP4834-R, we could discriminate between

necrotic tissues, wilted, impacted and healthy tissues.

Water soaked symptoms displayed Fv/Fm values similar

to that of wilted tissues, therefore both are referred to as

wilted tissues. Some tissues that did not harbor any

visible symptoms displayed similar Fv/Fm values as chlor-

otic tissues, therefore both are referred to as impacted

tissues. Subsequently, three Fv/Fm thresholds were deter-

mined to allow the automated segmentation of necrotic,

wilted, impacted and healthy tissues (Figure 1).

A training subset of images was used by the trained

raters to define thresholds. The comparison of visible

and Fv/Fm images revealed that pixels displaying Fv/Fm
values inferior to 0.6 co-localized with a diseased area.

Fv/Fm values ranging from 0 to 0.25 co-localized with

necrotic tissues, whereas Fv/Fm values ranging from 0.25

to 0.45 co-localized with wilted tissues. Fv/Fm values ran-

ging from 0.45 to 0.6 corresponded to impacted tissues.

Expert-based thresholds were applied on all Fv/Fm im-

ages to quantify each stage of the symptom development.

Significant symptom development began at 7 dai on leaf-

lets inoculated with Xff CFBP4834-R (p-value < 0.01).

From 9 dai on, the symptoms were predominantly com-

posed by wilted tissues (Figure 2A).

Moreover, as in this first dataset we monitored the

evolution of symptoms on the same leaflets over time, we

could assess shrinking of leaflets induced by the pathogen.

Shrinking corresponds to the difference between the max-

imum size of the leaflet and its current size at the observa-

tion timepoint. Shrinking of leaflets may represent up to

10% of the total leaflet area (Figure 2). It mostly corre-

sponds to necrotic tissues. However, some shrinking may

also originate from natural aging of leaflets as shrinking

was also detected on mock-inoculated leaflets.

Thresholding based on modeling pixel-wise Fv/Fm
distributions

Abiotic stresses during the experiment may affect the

physiological status of plants, which will in turn impact
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the Fv/Fm values. In such cases, applying fixed thresholds

may generate segmentation artifacts. To avoid such a

drawback, mock-inoculated leaflets were used as internal

daily controls to setup daily thresholds. Indeed, thres-

holds were defined daily to take into account the daily

Fv/Fm variations.

From the Fv/Fm images of leaflets mock- or Xff

CFBP4834-R-inoculated, we extracted the pixel-wise Fv/

Fm-distributions. Analyzing these distributions may help

defining appropriate non-overlapping clusters of Fv/Fm
values that represent various stages of alteration of plant

tissues. In statistics, Gaussian mixture model (i.e. weighted

sum of Gaussian distribution) is often used for clustering

analysis. A clustering method proposed by Hennig [42]

was tested in the present study to identify clusters of tis-

sues according to pixel-wise Fv/Fm-distributions. Gaussian

mixture model can be used to formalize the underlying

heterogeneous distribution of Fv/Fm values that are as-

sumed to be composed of several clusters of pixels types,

each cluster being modeled by a Gaussian distribution.

From a practical point of view, Gaussian distributions are

often too stiff to model true cluster shapes and Gaussian

mixture modeling methods tend to select “larger optimal

number of mixture components than what seems to be

Figure 1 Expert-based thresholds allow the segmentation of various stages of the symptom development. Two weeks-old bean plants
cv. Flavert were inoculated with either Xff CFBP4834-R (1.106 CFU ml_1) or mock. This leaflet inoculated with Xff CFBP4834-R was sampled on
bean P.vulgaris cv. Flavert at 11 dai. A: visible image obtained by scanning. Necrosis is clearly visible on the left marge of the leaflet surrounded
by wilted tissues. B: Fv/Fm image obtained by chlorophyll fluorescence imaging. The three stages of the symptom development, i.e. necrotic,
wilted and impacted tissues, were segmented respectively with the thresholds 0.25≤ Fv/Fm, 0.25 < Fv/Fm ≤ 0.45 and 0.45 < Fv/Fm ≤ 0.6. Black areas
represent non-selected pixels with the threshold. After the segmentation step, the proportion of pixels in each segment may be quantified.

Figure 2 Evolution of the proportions of necrotic, wilted and impacted tissues on bean leaflets using expert-based thresholding. Two
weeks-old bean plants cv. Flavert were inoculated with either Xff CFBP4834-R (1.106 CFU ml_1) or mock. Observations were made on bean leaflets
sampled at 1 dai, and everyday after the fourth dai. Percentages of diseased tissues and standard error of the mean were calculated for 20 leaflets
per sampling day. The percentages do not include (A) or include (B) the estimation of the shrinking of the leaflet. The shrinking of the leaflet is
attributed to necrotic tissues.
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reasonable when looking to the data” [42]. Among the

various methods proposed by Hennig [42] to solve this

problem, we have tested the ridgeline unimodal method

where clusters are merged if their fusion results in an uni-

modal Gaussian distribution [42,43].

In practice, using the R package MCLUST [44], the

pixel-wise Fv/Fm-distributions were first fitted to Gaussian

mixture models having from 1 to 4 components: one clus-

ter should group pixels representing healthy tissues and

three clusters should group pixels representing the various

stages of the symptom development. The model best sup-

ported by the data is then determined using BIC criteria

and lastly corrected by the ridgeline unimodal method

[42,43]. For each pixel in the image, a probability of mem-

bership to each cluster is estimated. Clusters gathering less

than 1% of the pixels were considered as not significant.

Pixels initially attributed to these non-significant clusters

were assigned according to their second better probability

of membership.

On each image of mock-inoculated leaflets, pixel-wise Fv/

Fm-distribution could be modeled as one single cluster per

image. Predicted means of these clusters grouping pixels

corresponding to healthy tissues may vary among images of

mock-inoculated leaflets (e.g. from 0.71 to 0.85 at 4 dai).

Hence, we calculated a confidence interval for predicted

means of clusters grouping pixels corresponding to healthy

tissues. Conversely, on diseased leaflets, Fv/Fm values were

modeled by mixtures involving more than one cluster.

Among these, one cluster grouped pixels corresponding to

healthy tissues, while additional clusters contained pixels

corresponding to diseased areas. To discriminate between

healthy and diseased tissues, a threshold based on the

lower limit of the confidence interval previously defined

on mock-inoculated samples was used. Subsequently, the

quantification of pixels corresponding to diseased area

allows the calculation of the proportion of diseased tissues

on each leaflet. As expected, the proportion of diseased

area on inoculated leaflets increased from 7 dai to the end

of the experiment (Table 1).

Pixels were recolored according to the cluster they be-

long to (Figure 3). Such a model-based clustering allows

the discrimination between various stages of alteration of

the plant tissues. These various stages of alteration of

plant tissues strictly depend on the structure of pixel-wise

Fv/Fm-distributions and are thus independent of any a

priori based on visual observation of symptoms (Figure 3).

Such an approach over-weights artifacts that can occur

on non-symptomatic samples. Indeed, the rule for

thresholding involves the mean of the predicted distribu-

tion, but not the own Fv/Fm value of each pixel. There-

fore, on a mock-inoculated leaflet, if the mean of the

single predicted distribution is slightly under the thresh-

old, the whole leaflet area will be considered as diseased

tissues. Such a caveat may also occur for the predicted

distribution grouping pixels of healthy areas on Xff

CFBP4834-R-inoculated leaflets, resulting in a strong

overestimation of the diseased areas (Table 1).

Thresholding based on the probability of misclassification

of a healthy pixel

To solve the caveat of the overestimation of the diseased

area on inoculated leaflets, we decided to normalize on

Table 1 Quantification of the diseased tissues using the expert-, the model- and the probability-based thresholding

approaches

1 4 5 6 7 8 9 10 11

Expert-based thresholding Necrotic tissues (%) 0,02 0,00 0,00 0,02 0,03 0,08 0,39 1,46, 3,44

Wilted tissues (%) 0,06 0,01 0,01 0,06 0,19 0,49 1,02 2,15 4,41

Impacted tissues (%) 0,16 0,05 0,06 0,13 0,20 0,37 0,90 1,74 2,56

Total diseased tissues (%) 0,24 0,06 0,08 0,22 0,42 0,93 2,30 5,35 10,41

Model-based thresholding Total diseased tissues (%) 0,00 5,26 5,26 23,87 42,96 5,64 35,62 49,01 30,39

Probability-based thresholding Strong alteration (%) 0,01 0,00 0,00 0,00 0,00 0,00 0,00 1,35 2,70

Moderate alteration (%) 0,08 0,01 0,03 0,11 0,28 0,70 1,85 2,52 6,67

Weak alteration (%) 0,00 0,95 0,04 0,14 0,45 0,66 1,74 2,96 7,27

Total diseased tissues (%) 0,09 0,95 0,07 0,25 0,73 1,36 3,59 6,83 16,64

Expert-based thresholding consists in defining Fv/Fm thresholds that enable the selection of areas on Fv/Fm images that match the various stages of the symptom

development as observed by trained raters on conventional color images. Healthy, necrotic, wilted, or tissues impacted by the pathogen can be quantified.

Model-based thresholding consists in modeling the pixel-wise Fv/Fm-distributions extracted from each image by mixtures of Gaussian distributions. Such modeling

results in the definition of clusters of pixels that correspond to various stages of the alteration of plant tissues. This step is based on the sole analysis of pixel-wise

Fv/Fm-distributions and not on the visual observation of symptoms on conventional color images. Therefore, we use the terminology of strong, moderate and

weak alteration, to emphasize that this classification is not based on visual observations, and does not necessarily correspond to the various stages of the

symptom development as observed by trained raters. When applied directly without preliminary delimitation of the total diseased area, such a modeling over

weights artifacts that can occur on healthy tissues, which results in a large overestimation of the proportion of diseased tissues.

Probability-based thresholds consists in the 500-quantile of the merged pixel-wise Fv/Fm-distributions of mock-inoculated samples. Each day of the experiment,

the Fv/Fm probability-based threshold allows the splitting of pixels corresponding to healthy and diseased areas. Then whithin the diseased area only, pixel-wise

Fv/Fm-distributions are modeled as mixtures of Gaussian distributions to quantify various stages of alteration of plant tissues.
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mock-inoculated samples by classifying each pixel based

on the probability of misclassification of a healthy pixel.

Probability-based thresholds were defined on the pixel-

wise Fv/Fm-distributions of mock-inoculated leaflets.

Thresholds were defined daily to take into account the

daily Fv/Fm variations. Day by day, the pixel-wise Fv/Fm-

distributions of all the mock-inoculated leaflets were

merged. The resulting distribution thus represents all the

possible values for a healthy pixel, including some abnor-

mally low Fv/Fm values. The Fv/Fm values corresponding

to the 100-quantile, 500-quantile or 1000-quantile, i.e. the

Fv/Fm values splitting 1/100, 1/500 and 1/1000 of the

pixels of the distribution of the mock-inoculated leaflets,

were used as thresholds splitting infected and healthy

tissues. For each Fv/Fm image, pixels were recolored

according to these thresholds. The 1/1000 threshold was

too stringent, as the segmented area does not contain the

totality of the visible symptom. The 1/100 threshold was

not stringent enough, as randomly distributed pixels were

selected in addition to symptoms. Thus, we chose the

1/500 threshold as the totality of the symptom was

segmented and no randomly distributed pixels were

selected (data not shown). Using such a threshold the

specificity of the approach is 0.002, i.e. there was a prob-

ability of 0.002 to misclassify a healthy pixel as diseased.

The probability-based thresholds are presented in

Figure 4A by a vertical solid bar. Thresholds varied

according to the day of the experiment (e.g. 0.467 at 1

dai, 0.689 at 7 dai and 0.722 at 11dai, Figure 4A) indica-

ting that daily variations in the Fv/Fm status of plants

occurred during the experiment. For each leaflet, pixels

exhibiting Fv/Fm values lower than these probability-

based thresholds were considered as diseased. Significant

amounts of symptoms first arose at 7 dai (p-value < 0.01,

Figure 4B, Table 1).

In order to discriminate between various stages of alte-

ration of plant tissues, the pixel-wise Fv/Fm-distributions

corresponding to the diseased tissues were extracted.

Using MCLUST [44], these distributions were first fitted

to Gaussian mixture models having up to 3 components

to match the various stages of alteration of plant tissues

(Table 1). Mapping these clusters on the recolored Fv/Fm
images confirmed that they match various stages of the

alteration of plant tissues, i.e. weak alteration, moderate

alteration, strong alteration.

Evaluation of the resistance of commercial bean cultivars to

Xff CFBP4834-R

Five bean cultivars (cvs. Flavert, Michelet, Pike, Wonder and

Caprice) were inoculated with the strain Xff CFBP4834-R or

water. Symptoms were quantified by our image analysis

procedure. The Expert-based thresholding approach was

not used as the thresholds were defined from a training

set of images only on cv. Flavert but not on the other

cultivars. Instead, the total amount of diseased areas was

determined using probability-based thresholds. Then,

using a clustering approach (that does not require training

datasets), the various stages of the alteration of plant

tissues were discriminated and quantified.

Fv/Fm images were taken on detached leaflets at 7 and

11 dai and the amounts of diseased tissues on leaflets

were calculated (Figure 5). During the experiment, the

amount of diseased tissues increased for all the cultivars

tested. However, differential behaviors among the vari-

ous cultivars tested could be observed. At both 7 and 11

dai, cv. Flavert exhibited a significantly higher amount of

symptoms than the other bean cultivars (p-value < 0.05),

indicating that cv. Flavert is the most sensitive cultivar

to Xff CFBP4834-R. On the contrary, the amounts of

symptoms detected on cvs. Wonder and Caprice signifi-

cantly differed from the mock-inoculated samples only

at 11 dai. At 11 dai, cvs. Caprice and Wonder displayed

the weakest total amount of symptoms among all culti-

vars tested, indicating that these cultivars were the most

Figure 3 Mapping of the diseased areas segmented using the three thresholding approaches. Two weeks-old bean plants cv. Flavert were
inoculated with either Xff CFBP4834-R (1.106 CFU ml_1) or mock. This leaflet inoculated with Xff CFBP4834-R was sampled on bean cv. Flavert at
11 dai. A: visible image obtained by scanning. B: Fv/Fm image obtained by chlorophyll fluorescence imaging. C-E: Segmentation of the Fv/Fm
image for selection of the diseased area. C: Expert-based thresholds are defined after comparison with visual observations by trained raters.
D: Model-based thresholds are defined by the clustering approach on the total surface af the leaflet. E: Probability-based thresholds are defined
on the probability that a healthy pixel is misclassified with a specificity of 0.002. The healthy tissues are represented in white. The diseased tissues
are colored in red, blue or green. Defioliation spots are represented in black.
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tolerant to Xff CFBP4834-R in this study. At both 7 dai

and 11 dai, cvs. Michelet and Pike exhibited amounts of

symptoms significantly higher than mock-inoculated

samples (p-value < 0.05). At 11 dai the total amounts of

symptom detected on cvs. Michelet and Pike were

significantly higher than that detected on cvs. Caprice

and Wonder. Therefore, our study revealed three levels

of tolerance to Xff CFBP4834-R at 11 dai: cv. Flavert was

sensitive, cvs. Michelet and Pike were partially tolerant,

and cvs. Caprice and Wonder were tolerant.

Then, the clustering approach was applied on the

diseased areas to discriminate the various stages of the

alteration of plant tissues i.e. weak alteration, moderate

alteration and strong alteration. Therefore, an optimal

Figure 4 Daily thresholds for calculation of the proportion of diseased tissues with the probability-based approach. Two weeks-old
bean plants cv. Flavert were inoculated with either Xff CFBP4834-R (1.106 CFU ml_1) or mock. A: Pixel-wise Fv/Fm-distributions at 1, 7 and 11 dai of
mock-inoculated leaflets (black) and Xff CFBP4834-R-inoculated leaflets (grey). The expert-based thresholds (dotted bars) are fixed over the whole
experiment. Conversely, the probability-based thresholds (solid bars) may vary each day of the experiment, thereby taking into account daily
physiological variations of plants. B: Evolution of the percentage of diseased areas on mock-inoculated (black curve) and Xff CFBP4834-R
-inoculated (grey curve) leaflets calculated with probability-based thresholding approach.
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number of three clusters was estimated. At 7 dai, symp-

toms on cv. Flavert, were essentially composed by moder-

ately altered tissues. Some weakly altered tissues were also

detected. At 11 dai, cv. Flavert exhibited a high amount of

strongly altered tissues in comparison with the other culti-

vars. Symptoms segmented on cvs. Wonder and Caprice

comprised weakly and moderately altered tissues. Cvs.

Pike and Michelet presented an intermediary level of

severity symptoms, i.e. moderately altered tissues and few

strongly altered tissues.

Discussion
During the last decade, non-conventional imaging tech-

niques such as chlorophyll fluorescence imaging were

used for the study of the interactions between plant and

pathogens [17]. Indeed, with chlorophyll fluorescence

imaging, contrasts are enhanced compared to conven-

tional color images, and depict more accurately the

physiology of plant tissues [14,15]. Chlorophyll fluores-

cence imaging provides images that map on leaves the

variations of single parameters associated to photosyn-

thesis. Among the various fluorescence parameters, we

monitored variations in the maximum quantum yield of

photosystem II photochemistry (Fv/Fm). We used chloro-

phyll fluorescence imaging to map on bean (P. vulgaris)

leaflets the areas altered by Xff CFBP4834-R. It must be

pointed out that most stresses that decrease leaf health

will affect photosynthesis. Therefore we first checked that

visible symptoms of CBB on bean leaflets co-localized

with decreased values of the Fv/Fm parameter. Other

parameters such as Fv/F0 or F0/Fm were shown to yield a

high contrast between healthy tissues and tissues affected

with various pathogens [20,45,46]. However, we did not

treat these parameters in this study as they do not have a

clear physiological significance [20].

Images based on the single Fv/Fm parameter are easier

to segment by thresholding approaches than conventional

color images, thereby easing the image analysis process. In

such a context, we developed an automated thresholding

procedure to select pixels corresponding to symptoms.

The respective amounts of pixels corresponding to dis-

eased or healthy areas can then be quantified to assess the

disease severity on inoculated plants. Even though the

decrease in Fv/Fm values due to the pathogen attack is

now well documented [32,33], only few studies developed

approaches for the quantification of the diseased area on

leaves. Most of the studies using the Fv/Fm parameter in

plant pathology are based on the mean Fv/Fm value over

the whole image [23,33,35-37,47]. The mean Fv/Fm value

may qualitatively discriminate between healthy and dis-

eased leaves, but does not quantify the amount of diseased

tissues [23,33,35-37,47]. Only few studies attempted to

analyze the pixel-wise Fv/Fm-distribution to discriminate

between healthy and diseased organs using a threshold of

Figure 5 Quantification of the proportion of diseased tissues

caused by Xff CFBP4834-R on five cultivars of bean. Bean leaflets
of cultivars Flavert, Michelet, Pike, Wonder and Caprice were
inoculated with Xff CFBP4834-R (1.106 CFU ml_1) or mock.
Observations were made at 7 (A), and 11 dai (B). On each leaflet
diseased area was segmented using the probability-based
thresholds. Means of percentages of diseased tissues and standard
error of the mean were calculated from two repeats with 4 (7 dai)
and 7 (11 dai) leaflets. Treatments denoted by different letters are
significantly different (p-value < 0.01) based on the Mann–Whitney
test. Asterisks mark significant differences between the mock-
inoculated and CFBP4834-R-inoculated leaflets (p-value < 0.01) based
on the Mann–Whitney test. Clusters representing the various stages
of the alteration of plant tissues were determined by a clustering
approach using MCLUST [44] on the diseased area only.
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Fv/Fm. For example, in the case of Fusarium culmorum,

wheat ears were considered as infected when pixels

displaying a Fv/Fm value lower than 0.3 could be observed

in the image [18].

In the present study, we investigated thresholding

approaches for the quantification of the diseased area on

infected leaves. At first, trained raters compared a subset

of visible images and Fv/Fm images of bean leaves of cv.

Flavert inoculated with Xff CFBP4834-R. We could asso-

ciate non-overlapping clusters of Fv/Fm values to each

stage of the symptom development (necrotic, wilted, im-

pacted and healthy tissues) caused by Xff CFBP4834-R

on P. vulgaris cv. Flavert. Subsequently Fv/Fm thresholds

could be defined to discriminate between the various

stages of the symptom development. Counting the pixels

associated to each Fv/Fm cluster enables the quantifi-

cation of the leaf area corresponding to each stage of the

symptom development on cv. Flavert. Defining non-

overlapping clusters of Fv/Fm values to segment symp-

tomatic areas can also be performed on a broad range of

plant species to quantify areas affected by biotic or

abiotic stresses. For example, on grapevine affected by

lime-induced iron chlorosis, chlorotic areas displayed

lower Fv/Fm values than healthy tissues [48].

Interestingly, lower Fv/Fm values may be observed on

tissues located in the margin of symptomatic areas, but

that do not display any visible symptoms. These areas

evolve into symptoms over time. Therefore, as pre-

viously observed on Arabidopsis thaliana or Nicotiana

benthamiana inoculated with Pseudomonas syringae,

pre-symptomatic areas may also be phenotyped using

Fv/Fm [33,36]. Fv/Fm values in these tissues may not

differ from those observed in chlorotic tissue and both

chlorotic and pre-symptomatic tissues were grouped into

impacted tissues in the present study. The decrease of

the Fv/Fm values in pre-symptomatic areas is not fully

understood. Indeed, neither these areas are yet colonized

by bacteria, nor can be observed increased levels of

ammonia or a restricting water movement [36].

However, non-overlapping clusters matching the vari-

ous stages of the symptom development should be de-

fined by trained raters in each pathosystem studied.

Indeed, Fv/Fm clusters defined on Flavert do not match

the visual observation on other cultivars. For example,

the cluster corresponding to visually chlorotic tissues on

cv. Michelet overlaps with that corresponding to necro-

sis on cv. Flavert (Additional file 1: Figure S1). Therefore

fixed thresholds defined on a correspondence with

visual observations by trained raters are valuable only

within a single cultivar, and cannot be extrapolated to

other cultivars. Using an expert-based thresholding

approach on other cultivars needs a calibration step

on a training set of pictures. Such a need is a limita-

tion for this thresholding approach in the perspective

of high throughput phenotyping, as visual assessment

is time consuming.

Therefore, we aimed at defining Fv/Fm thresholds that

could be extrapolated to any cultivar or plant species. As

a decrease of Fv/Fm depicts the alteration of PSII, Fv/Fm
threshold can be defined independently of visual obser-

vations. Clusters of Fv/Fm would depict objective stages

of alteration of plant tissues. Moreover, the Fv/Fm par-

ameter may be impacted by the physiological status of

plants [49,50] or abiotic stresses [16,34,51]. Fixed thresh-

olds may therefore bias the quantification of the diseased

area on leaves. Defining the thresholds on control plants

for each experimental round helps avoid such a bias.

To avoid the use of fixed thresholds, we normalized our

segmentation on mock-inoculated plants. We defined the

threshold as the Fv/Fm value under which a healthy pixel

only has a probability of 0.002 to be misclassified. Such a

thresholding does not allow the discrimination of various

stages of the symptom development. Therefore, within the

diseased area, the pixel-wise Fv/Fm-distribution was mo-

deled as a mixture of predicted Gaussian distributions.

Such a modeling is largely used for image analysis in me-

dical sciences [52,53]. As well, in plant sciences such a

modeling was recently applied to the automated recogni-

tion of individual Arabidopsis rosettes, in order to mo-

nitor independently the growth of each plant in the image

[54]. In the present study, the clustering of pixels

according to Gaussian distributions aims at describing the

various stages of alteration of plant tissues without any a

priori based on visual observations. For each Fv/Fm image,

a mixture of Gaussian is fitted independently, and such an

approach does not need any calibration set of images.

Based on these Gaussian mixture distributions, we could

define non-overlapping clusters of pixels displaying similar

Fv/Fm values, corresponding to the various stages of alter-

ation of plant tissues.

Pathogen attack may also result in dwarfing or shrinking

of leaves. Such a phenotype is rarely quantified [9,12], but

the use of non-destructive image analysis approaches may

help solve such a caveat. In the present study, we moni-

tored the size of leaflets over time. We considered the

maximum size of each leaflet as a reference and the size

decrease compared to this reference was considered as

shrinking. Such a phenotyping is difficult to assess by

visual observation only. A similar approach was used to

analyze the leaf area impacted by herbivory [9]. Other ap-

proaches were proposed to evaluate the leaf deformation,

for example using a sphericity index [12,55]. However,

using such an index does not allow the quantification of

the leaf area impacted by the shrinking.

To test the applicability of our segmentation approach

for the evaluation of plant resistance, we quantified the

symptoms caused by Xff CFBP4834-R on five commercial

cultivars of bean (cvs. Flavert, Michelet, Pike, Wonder and
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Caprice). When looking at the total amounts of symp-

toms, the cv. Flavert appeared to be the most sensitive to

Xff CFBP4834-R. The cvs. Caprice and Wonder exhibit

few symptoms and can be considered as tolerant. The cvs.

Michelet and Pike are impacted to an intermediary extent.

On top of the amount of symptomatic tissues, selection

for resistance may also focus on the stage of development

of the symptom. Indeed, it may be of interest for breeders

to notice that cvs. Caprice and Wonder exhibit different

symptoms topologies, even though they displayed similar

total amounts of symptomatic tissues.

Finally, in order to select for quantitative plant resist-

ance to pathogens, high throughput procedures aiming

at precisely quantifying disease severity need to be de-

veloped. Robotic imaging procedures can increase the

number of images taken [56] but few automatic analysis

of chlorophyll fluorescence images procedures are avail-

able. The procedure presented in this study was auto-

mated under R and the R script is available at http://lisa.

univ-angers.fr/PHENOTIC/telechargements.html. Run-

ning our procedure on the 1080 images of our dataset,

two minutes only are needed for the Expert- and Probability-

based thresholding analyses. The use of MCLUST [44]

to discriminate various stages of alteration of plant tis-

sues increases up to one hour the calculation time,

which remains much faster than rating disease severity

by visual observations.

Conclusions
In this paper, we described new procedures to quantify

the impact of a pathogen on a plant, easy to automate,

objective and accurate.

The expert-based thresholding approach aims at re-

producing the visual observations. Such an approach al-

lows the accurate quantification of the various stages of

the symptoms development but needs to be calibrated

by trained raters on each pathosystem. In contrast, a

probability-based thresholding approach may accurately

discriminate between healthy and diseased tissues. Within

the diseased area, a clustering approach may accurately de-

scribe the various stages of alteration of plant tissues. This

latter segmentation approach is expert-independent and is

normalized on mock-inoculated plants at each day of the

experiment. Moreover, the probability-based thresholding

approach may allow the phenotyping of pre-symptomatic

areas, which cannot be achieved by calibrating thresholds

on visual observations by trained raters. A clustering ap-

proach applied on the diseased areas allows the quantifica-

tion of each stage of the alteration of plant tissues. The

segmentation approach developed in this study was auto-

mated using R, and the script is available at http://lisa.

univ-angers.fr/PHENOTIC/telechargements.html.

Such a development of automated segmentation ap-

proach speeds up the assessment of disease severity on

plants. It may reveal a significant improvement for high

throughput testing of the plant resistance to pathogens

during breeding.

Methods
Biological material

The bacterial strain Xff CFBP4834-R used in this study was

obtained from the French Collection of Bacteria associated

to Plants (CFBP, IRHS, Angers, France, http://www.angers.

inra.fr/cfbp/, accession n°4885). The strain was grown at

28°C in 10% TSA medium (tryptone at 1.7 g/L, soybean

peptone at 0.3 g/L, glucose at 0.25 g/L, NaCl at 0.5 g/L,

K2HPO4 at 0.5 g/L, agar at 15 g/L, pH 7.2).

Beans were individually seeded in plastic pots (7 ×

7 × 8 cm) containing prewetted compost (NEUHAUS

HUMINSUBSTRAT *N4*, NFU 44–551). Plants were

grown in a controlled climatic room at 23°C/20°C

(day/night) with a photoperiod of 16 h. Plants were

watered three times per week and supplemented with

N-P-K (18:14:18) at 0.3 g/liter once a week.

Two sets of plants were used in this study. The first set

was used to setup approaches for quantification of symp-

toms by image analysis and was composed by forty plants

of bean Flavert. This experiment was performed three

times. A second set was used to evaluate the resistance of

commercial bean cultivars to Xff CFBP4834-R and was

composed by twenty-eight plants of five cultivars of bean

obtained from Vilmorin (La Ménitré, France): Flavert,

Caprice, Michelet, Pike and Wonder. Twenty-eight plants

of each cultivar were used. This experimentation was

repeated twice.

Pathogenicity assay

Bacterial suspensions calibrated at 1.108 CFU.ml-1 were

made by harvesting bacterial cells from agar plates and

suspending them in sterile distilled water. The inocula-

tions were made at the trifoliate step by deeping half of

batch of plants during 30 seconds in the diluted bacterial

suspension to 1.106 CFU.ml-1. The other half served as

control plants and was deeped in water. The first set of

plants was incubated at 28°C/25°C (day/night) with a

photoperiod of 16 h during 11 days and under high (70%)

relative humidity. The second set of plant was incubated

at 28°C/25°C (day/night) with a photoperiod of 16 h

during 11 days and under high (95%) relative humidity.

Plant inoculations were carried out under quarantine at

UMR1345 IRHS, Centre INRA, Beaucouzé, France.

Technical setup and image acquisition

The PSI Open FluorCam FC 800-O (PSI, Brno, Czech

Republic) was used to capture chlorophyll fluorescence

images and to estimate the maximum quantum yield of

PSII (Fv/Fm) of inoculated and control leaflets. The

system sensor is a CCD camera with a pixel resolution
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of 512 by 512 and a 12-bit dynamic. The system includes

4 LED panels divided to 2 pairs. One pair provides

an orange actinic light with a wavelength of around

618 nm, with an intensity that can vary from 200 to

400 μmol/m2/s. It provides a 2s pulse that allows the

measurement of the initial fluorescent state (F0). The

other pair provides a saturating pulse during 1s in blue

wavelength, typically 455 nm, with an intensity of up to

3000 μmol/m2/s. The saturating pulse allows collecting

of the maximum fluorescence (Fm). Fluorescence chloro-

phyll imaging was used in a dark adapted mode after a

dark period of 45 min [28] to produce maps with the

fluorescent quantum efficiency Fv/Fm = (Fm − F0)/Fm.

For all image acquisitions, the observed leaflet is main-

tained horizontally for this sub-section. A kinetic ana-

lysis was performed: image acquisitions were done at 1

dai, and everyday after the fourth dai. The experiment

was repeated three times, and in total 1080 images were

collected. Another analysis consisted in collecting im-

ages of detached leaflets at 1, 7 and 11 dai, in total 280

images were collected. False color images representing Fv/

Fm values of the pixels and pixel-wise Fv/Fm-distributions

were extracted for each leaflet. For a subset of leaflets,

visible images were also taken with a digital camera to

compare visual symptoms and Fv/Fm values.

Shrinking of the leaflets

The shrinking of the leaflets was calculated when a kinetic

analysis was performed on each leaflet. The shrinking

corresponded to the difference between the maximum size

of the leaflet during the experiment and the current size

of the leaflet. The shrinking of the leaflet was added to the

class presenting the lower Fv/Fm values. The amounts of

the other stages of the symptom development were calcu-

lated using the maximum size of the leaflet.

Thresholding based on expert visual observations

The expert-based thresholding approach consisted in

the determination of values characterizing the diseased

tissues. Three stages of the symptom development were

discriminated: necrotic, wilted and impacted tissues.

Conventional color images and Fv/Fm images were

manually compared by trained raters to determine

clusters of Fv/Fm values matching with each stage of the

symptom development. On the conventional color

image, the various stages of the symptom development

were manually delimited and the delimitations were

superimposed on the Fv/Fm image. The maximum and

minimum Fv/Fm values of each area that co-localized

with each stage of the symptom development were

determined. These values corresponded to the expert-

based thresholds. The amounts of pixels contained in

each subgroup were calculated.

Thresholding based on modeling pixel-wise Fv/Fm
distributions

The R package MCLUST [44] was run to select the

number of Gaussian distributions that compose the

Gaussian mixture model best supported by the data and

to estimate the mean, variance and weight in the mix-

ture distribution of each cluster. For each pixel, a prob-

ability of membership to each cluster is also returned.

Gaussian mixture models including from 1 to 4 clusters

with unequal variance were fitted to each leaflet pixel-

wise Fv/Fm-distribution. The clusters representing less

than 1% of the pixel-wise Fv/Fm-distribution were sup-

pressed as they were considered as artifactual clusters.

Pixels initially attributed to these non-significant clusters

were assigned according to their second better probabil-

ity of membership. The clusters of the Gaussian mixture

model selected were then merged if their fusion was

unimodal according to the ridgeline unimodal method

implemented in the R package fpc [42,43]. A threshold

was calculated for each dai to discriminate between

distributions characterizing the healthy tissues and dis-

tributions characterizing the diseased tissues. The means

of the clusters found on mock-inoculated samples were

averaged. Then, the confidence interval was calculated.

A cluster displaying a mean inferior to the threshold was

considered as characterizing diseased tissues.

Thresholding based on the probability of misclassification

of a healthy pixel

The probability based-thresholds were built based a pixel-

wise Fv/Fm-distribution resulting from the merging of the

pixel-wise Fv/Fm-distributions of all the mock-inoculated

leaflets. The thresholds corresponded to the 100-quantile,

500-quantile or 1000-quantile, i.e. the Fv/Fm values split-

ting 1/100, 1/500 and 1/1000 of the pixels of the distribu-

tion. The thresholds were determined for each dai and

each cultivar to take into consideration the possible daily

variations and the differences between cultivars. A pixel

displaying a Fv/Fm value inferior to the threshold was

considered as diseased. The total diseased proportion was

then calculated for each leaflet. Then, a clustering method

using the R package MCLUST [44] was performed on the

diseased area detected by the Probability-based thresholds

to segment the diseased area according to three stages of

alteration of plant tissues. Gaussian mixture models

including from 1 to 3 clusters with unequal variance were

fitted to the pixel-wise Fv/Fm-distribution of each leaflet.

In order to classify the clusters into the various stages of

alteration of plant tissues, a second clustering procedure

with an optimal number of clusters between 1 and 3

was performed on the means of all the clusters. The

clusters were then classified according to their member-

ship to the clusters representing the stages of alteration

of plant tissues.
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Visualization of the diseased tissues and statistical test

For the three thresholding steps, the stages of the symp-

tom development were colored using the R package

EBImage [57]. The pixels were colored according to the

various thresholds.

Mann–Whitney test [58] was performed to compare

amounts of diseased tissues between mock-inoculated

and Xff CFBP4834-R-inoculated leaflets and between the

various cultivars of bean.

Additional file

Additional file 1: Figure S1. Expert-based thresholds needs to be
calibrated on each cultivar. Symptoms of Xff CFBP4834-R on leaflets of cv.
Flavert (A) and Michelet (B). Beans were inoculated at 1.106 CFU ml_1 and
leaflets were sampled at 11 dai. Expert-based thresholds are defined after
comparison by trained raters of Fv/Fm images and visual observations
only on P. vulgaris cv. Flavert harboring symptoms of Xff CFBP4834-R.
Using expert-based thresholds defined on cv. Flavert, chlorotic tissues on
cv. Michelet are misclassified and considered as necrotic. A: visible image
of a leaflet of cv. Flavert obtained by conventional color imaging and by
chlorophyll fluorescence imaging. The various stages of the symptom
development segmented using expert-based thresholds co-localize with
visual observations. B: visible image of a leaflet of cv. Michelet obtained
by conventional color imaging and by chlorophyll fluorescence imaging.
The major part of the diseased tissues is composed by chlorotic tissues
and misclassify as necrotic tissues with expert-based thresholds calibrated
on cv. Flavert.
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