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Abstract 

 

Purpose: Deep Brain Stimulation (DBS) surgery is used to reduce motor symptoms when movement disorders are refractory to 

medical treatment. Postoperative brain morphology can induce electrode deformations as the brain recovers from an 

intervention. The inverse brain shift has a direct impact on accuracy of the targeting stage, so analysis of electrode deformations 

is needed to predict final positions. 

 

Methods:  DBS electrode curvature was evaluated in 76 adults with movement disorders who underwent bilateral stimulation 

and the key variables that affect electrode deformations were identified. Non-linear modelling of the electrode axis was 

performed using post-operative Computed Tomography (CT) images. A mean curvature index was estimated for each patient 

electrode. Multivariate analysis was performed using a regression decision tree to create a hierarchy of predictive variables. The 

identification and classification of key variables that determine electrode curvature were validated with statistical analysis. 

 

Results: The principal variables affecting electrode deformations were found to be the date of the post-operative CT scan and the 

stimulation target location. The main pathology, patient's gender, and disease duration had a smaller although important impact 

on brain shift. 

 

Conclusions: The principal determinants of electrode location accuracy during DBS procedures were identified and validated. 

These results may be useful for improved electrode targeting with the help of mathematical models. 

 

 

Keywords: Deep Brain Stimulation, electrode curvature, targeting accuracy, brain-shift 
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1. Introduction 
 

1.1. Context 
 

Deep Brain Stimulation (DBS) is currently the most favoured treatment of patients with motor disorders such as Parkinson’s 

Disease (PD), tremor or dystonia whose symptoms do not respond to medical therapy [1]. Recently, it has also shown 

impressive results on patients with severe neurological disorders such as Tourette syndrome [2] or major depression [3]. For 

now, the three major targets according to the patients’ diseases are the caudal part of the ventro-lateral thalamic nucleus, the 

medial Globus Pallidus (GPm) and the Sub-Thalamic Nucleus (STN). In spite of its effectiveness, DBS also presents several 

limitations, e.g., it can cause several types of neuropsychological disorders [4-7]. As a consequence, the accuracy of electrode 

placement is crucial to avoid unwanted stimulation of non-target brain areas. As DBS surgery is a standard stereotactic 

procedure, one source of inaccuracy is due to brain-shift phenomenon, occurring during [8-10] and after DBS surgery [11]. The 

impact of brain shift on the accuracy of electrode placement is considerable and has motivated extended research on new 

surgical techniques on one hand, and on a better understanding, modelling and anticipation of brain-shift phenomena on the 

other hand. Brain-shift during DBS surgery can be decomposed into two main phenomena: the intra-operative and the post-

operative brain shift. During surgery, after the opening of the dura mater, a brain-shift may occur due to the loss of 

Cerebrospinal Fluid (CSF) and the intra-cranial invasion of subdural air. Several days after the procedure, a post-operative 

displacement may appear, when the subdural air resolves and the brain returns to its initial position. This second phenomenon is 

known as the inverse or reversal of the intra-operative brain shift. 

 

1.2. Related works 

 

As brain-shift has a negative impact on the accuracy of DBS surgery, an alternative but more intuitive approach to the analysis 

of phenomena is the development of surgical techniques to counteract this phenomenon [10,12]. However, brain-shift results 

remains non-negligible in some case and some neurosurgery departments still have some important issues. For anticipating 

intra-operative brain shift, lots of work has been done on soft tissue deformation modelling for standard neurosurgical 

procedures [13,14]. Complex biomechanical models have also been proposed [15-17] focusing on the intra-operative 

craniotomy-induced brain-shift. Among these studies, however, only a few focused on DBS surgery. Pallavaran et al. [18,19] 

used somatotopy recordings and stimulation responses to demonstrate the presence of brain-shift in DBS. Later, Bilger et al. 

[20] proposed a biomechanical model of brain-shift in DBS surgery taking into account post-operative phenomena. 

To evaluate the inverse brain shift in DBS, several research works focused on the identification of the shift direction and 

on the quantification of electrode displacements. Miyagi et al. [21] studied both unilateral and bilateral implantations and 

concluded on the brain shift tendency for both type of procedures. Similarly, Halpern et al. [22] evaluated pre and post-operative 

MRI of patients who underwent STN DBS and concluded that the shift was posteriorly when patients were implanted in the 

supine position. Khan et al. [23] reported brain shifts up to 4mm in magnitude in the direction of gravity. Sillay et al. [11] also 

showed that the inverse brain shift had important consequences on electrode positions. Significant shift was identified along 

rostral, anterior and medial directions, with a greater shift found along the rostral direction (average of 1.41mm). Kim et al. [24] 

compared electrode positions estimated from the immediate post-operative CT (STN DBS surgery) with those estimated 6 

months after surgery, and found significant displacement (0.6mm, 1.0mm and 1.0mm for the x, y and z-axis respectively). 

Similarly, van den Munckhof et al. [25] analysed postoperative electrode displacements by comparing CT scans taken 

immediately after surgery with CT scans taken after longer follow-up periods for 14 patients. By means of volumetric 

measurements, they found that the electrode displacement significantly correlated with the amount of subdural air found post-

operatively, and that electrodes moved on average 3.3mm upward along the trajectory. In summary, these studies suggest that 

the brain happens mainly posteriorly with respect to the gravity, that the amount of shift is proportional to the amount of CSF 

leakage and that, for surgeons who don’t use new proposed surgical techniques, the displacement of electrodes due to the brain-

shift is non-negligible. 

All these works were interesting in evaluating brain shift in DBS mainly by quantifying the volume of post-surgical 

intracranial air, but they did not propose any explanation or model of the phenomenon. Towards the identification of predictive 

factors affecting brain-shift in DBS, Obuchi et al. [26] observed that the width of the third ventricle remains the most reliable 

factor for predicting the brain-shift in STN-DBS. Other factors were also tested, such as patient’s age, surgery duration, or 

bicaudate index, but were found having no impact on brain shift. Additionally, Azmi et al. [27] found a correlation between the 

accumulated volume of intracranial air and the degree of cerebral atrophy. Based on these results, as the degree of CSF loss is 

directly linked to the degree of intracranial air invasion, new studies have been proposed. Nazzarro et al. [28] identified factors 

such as brain atrophy, patient position or size of CSF space opening that directly affect the degree of CSF loss in DBS. 
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Similarly, in Slotty et al. [29], no significant correlation was found between volume of intracranial air and duration of surgery, 

as well as no significant difference on electrode deviations between the first and second side of surgery for bilateral 

implantations. On the contrary, Azmi et al. [27] found a greater error in stereotactic accuracy on the second side of the surgery. 

Finally, little has been reported in the literature on the issue regarding the positions and curvatures of electrodes after 

DBS. Moreover, the identification of predictive factors that have an impact on these phenomena remains a difficult task. In this 

context, the objective of this paper was to identify a set of predictive variables that have an impact on the degree of brain-shift 

after surgery. For this purpose, in spite of evaluating the volume of air invasion within the brain, we were interested in 

quantifying the degree of curvature of electrodes, which is probably directly linked to the degree of brain shift. We applied a 

multi-variate analysis using a regression decision tree to create a hierarchy of predictive variables. Statistical analysis then 

validated this classification for the identification of key variables. Based on this hierarchy of predictive variables, we finally 

studied the curvature difference between electrode subsections in order to better understand and anticipate brain shift in DBS. 

 

 

 

2. Materials and Methods 
 

After introducing the data used in this study (Subsection 2.1), we propose an algorithm for automatic electrode segmentation. 

We estimated the electrode axis with a non-linear model (Subsection 2.2) and estimated a value corresponding to the degree of 

deformation of the electrode (Subsection 2.3), i.e. the curvature index. Then, we identified a set of predictive variables in 

Subsection 2.4. that allows a clustering of the electrodes into subgroups of similar curvature index. For this purpose, we applied 

a multi-variate analysis trough a regression decision tree. In order to validate the impact of these variables on electrode 

curvatures, we then performed statistical comparisons (Subsection 2.5). Finally, based on the predictive variables previously 

identified, we investigated local curvatures by defining three spatial sections along the electrode length (Subsection 2.6). 

 

2.1. Data-set 

 

Our data-set consisted of 76 patients who had undergone bilateral STN or GPm DBS surgeries selected according to strict 

inclusion criteria [30-32]. Patient pathologies were mostly PD [30] with a mixed, tremor or akinesia form, but also Dystonia and 

Tourette syndrome. The surgical procedure was performed under local anaesthesia, and the target location estimated during the 

planning is implemented with a stereotactic frame. During the intervention, an X-ray control was performed as well as 

electrophysiological explorations and clinical tests. Single track microelectrode recording was performed for each electrode. For 

each patient, both a pre operative 3T T1-weighted MR image (1mm x 1mm x 1mm, Philips Medical system) and a post-

operative CT scan image (0.44 mm x 0.44 mm x 0.6 mm, GE Healthcare VCT 64) were performed. All CT and MR images 

were pre-processed with a non-local means denoising algorithm [33]. During the surgery, patients were implanted in supine 

position. The study was approved by the local research ethics committee, and informed consent was obtained from all 

participants.  

 

2.2. Electrode curve modelling 

 

To estimate the trajectories of the implanted electrodes, we developed an automatic algorithm based on the segmentation of the 

electrode axis from post-operative Computed Tomography (CT) images. First, the post-operative CT scan was linearly 

registered to the MR images with an affine transformation (algorithm: Newuoa, cost function: normalized mutual information, 

interpolation: Spline3) [34], where the brain mask, Anterior Commissure (AC) and Posterior Commissure (PC) were previously 

extracted using the BrainVisa® (http://brainvisa.info/) software. After reformating, we segmented the hyper-signal artefacts 

generated by the electrodes by thresholding the registered CT volume within the region identified by the brain mask. This 

segmentation allowed us to determine the centres of each hyper-signal region for each slice. Connected components were then 

applied and the two largest point clouds were kept, corresponding to the two electrode point clouds. We finally applied a non-

linear regression [35] to fit both point clouds to a polynomial function. Non-linear regression is used to relate a response to a 

vector of predictor variables, where the prediction equation depends nonlinearly on one or more unknown parameters. In order 

to determine the best degree of the polynomial curve, we performed a manual segmentation of the electrode axis for 20 patients 

and compared all point clouds with the curve fitting of the modelling. The method presented here may also be helpful to extract 

the coordinates of electrodes contacts, given the geometry of the electrode model [36]. 
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Figure 1. 20 segmented electrodes from 10 STN DBS patients warped into a template. In red: segmented contacts. 

Structures: Green: GPm, Yellow: STN, pink: red nucleus. 

 

2.3. Extraction of curvature index 

 

A parametrical definition of the fitted curve was obtained: )(),(),( nznynx . We computed an index corresponding to the 

mean degree of curvature along the electrode axis [37] as follows. The curvature was defined as the inverse of the radius of 

curvature. In 2D, given a point belonging to a curve, there is a unique circle or line, which most closely approximates the curve 

at that point. In 3D, and given the parametrically defined space curve, a local expression of the curvature (i.e. Local Curvature 

Index, LCI ) is given by: 
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In order to compute the Mean Curvature Index ( MCI ) of a curve, the local expression of the curvature is averaged over the 

entire electrode length: 
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with N the number of voxels used for the electrode point cloud. The MCI value is a non-unit value.  

Using the equation of the LCI, another index could be easily computed: the maximum curvature index. In order to test the 

correlation between both indexes, they were extracted and statistically compared for each electrode using the independence 

Pearson Chi-squared test. Both indexes were found dependent (p=0.02), and we decided to keep the MCI for the rest of the 

study. 
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2.4. Multi-variate analysis 

 

In order to cluster the electrodes according to MCI similarity, and toward the objective of identifying predictive variables that 

play a role into the degree of electrode curvature, we applied a multi-variate analysis. In our analysis, the MCI is the variable 

that has to be explained by the others. A set of initial variables was therefore chosen, in accordance with the literature and some 

hypothesis expressed by neurosurgeons. Eight predictive variables were identified: order of electrode implantation, post-

operative acquisition time of the CT scan, patient age, sex, primary pathology, form of the disease (i.e. the secondary 

pathology), stimulation target, and disease duration. The post-operative CT acquisition time, the age and the disease duration 

were quantitative variables, whereas all others were categorical. The male-to-female ratio of the patients was 36-40 with a mean 

age of 59.2 ± 7.6 years (range, 33~78). Half of the patients underwent bilateral STN DBS (38), and the other half of them 

bilateral GPm DBS. Only patients with bilateral implantation were selected in order to keep a homogeneous data-set and avoid 

local brain shift phenomena that can be present on unilateral implantations. As only bilateral implantations were chosen, we had 

the same number of electrodes implanted in first and second position (76 for each). Fig 2. illustrates the distribution along with 

their range of the 4 other variables: CT scan delay, the disease duration, the main and secondary pathology. Some of these 

variables seemed to be not independent, e.g. the main pathology associated with the form of the pathology is often linked to the 

stimulation target chosen by surgeons. In order to test for independency, we performed the independence Pearson Chi-squared 

test between each variable pair (with a 0.05 significance level). 

 

    

 

 

 

 

 

 

 
 

 

 

 
 

 

Figure 2. Distributions of predictive variables: Above: post-operative delay of the CT acquisition. Middle: disease duration. 

Below: Main pathology (left) and form of the disease (right) only for Parkinsonian patients.  

 

As predictive variables were both quantitative and categorical, we chose to use the regression decision tree with the 

CART algorithm and Gini criterion [38]. The minimum number of observations per leaf node was fixed to 10 in order to keep 

enough electrodes in each subgroup to test for statistical significance. The objective of this algorithm is to identify explaining 

variables in their order of importance. Regression decision tree was therefore chosen to estimate the impact of the 8 variables on 

the degree of electrode curvature. As a result, we obtained a hierarchy of predictive variables that cluster electrodes with similar 

MCIs. 

 

2.5. Statistical analysis 

 

Once electrodes have been clustered according to results of the regression decision tree, statistical comparisons were performed 

between the identified clusters. As results showed a non-parametric distribution, the Mann-Whitney U-test was used for 

comparison between electrodes clusters. A p-value of less than 0.05 was deemed significant in the analysis. 
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2.6. Subdivision of electrodes into spatial sections 

 

To better comprehend the electrode curvature phenomenon, and instead of estimating only one MCI for the entire electrode axis, 

we defined three spatial sections along the electrode length and estimated one MCI per section. After the registration of the CT 

scan to the MRI of the patient, and knowing the position of AC and PC on the patient MRI, we defined three zones in the AC-

PC coordinate space. The upper zone was defined from 25mm above the AC-PC line, and corresponds to the cortex zone. The 

second zone was defined between 25mm and 10mm above AC-PC and corresponds to the ventricles zone. Finally, the third zone 

was defined between 10mm above AC-PC and the tip of the electrodes (in the case of STN target, around 5mm below AC-PC), 

and is situated within the basal ganglia zone. Fig. 3. shows an example of such a subdivision on an average MR template built 

from an image data-set of Parkinsonian patients [39].  

 

 
 

Figure 3. Subdivision of MRI in three zones according to AC-PC coordinates. 

 

By means of this subdivision, a better description of the electrode curvature could be obtained. We identified four subgroups of 

patients based on the result of the decision tree. Creating four subgroups is equivalent to pruning the tree at the second level. 

With this pre-classification, it allows us to have homogeneous groups of patients while keeping at least 30 electrodes per 

subgroup. 

 

 

3. Results 
 

3.1. Curve modelling 

 

A total of 152 electrodes from 76 patients were modelled. Results of the curve modelling (Tab. 1.) indicated that the higher the 

degree of the polynomial equation was, the better the modelling was. However, a high degree could also modify the real aspect 

of the electrode. Observing small error differences between the third and fourth degrees, we decided to keep a degree of 3 for the 

characteristic polynomial. 
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Characteristic 

polynomial 
Mean electrode modelling error (std) 

1
st
 degree 0.27 (0.38) 

2
nd

 degree 0.17 (0.26) 

3
rd

 degree 0.10 (0.14) 

4th degree 0.09 (0.12) 

 

Table 1. Electrode modelling error using different degrees of characteristic polynomial. 

The quality of the electrode segmentation could be directly linked to the results of the electrode curve modelling. However, we 

could easily imagine that even with segmentation errors, the impact on the final curve would be negligible as the curve is 

derived from a consequent points cloud. Moreover, errors found for the non-linear regression were very low (~0.1mm), and it 

allowed us to accurately extract curvature index.  

 

 

3.2. Regression decision tree 

 

Each variable was found to be independent to each other. Fig. 4. shows the regression decision tree computed from 152 

electrodes modelled in our study. From the set of height predictive variables originally considered, three of them were 

completely excluded from the decision tree by the regression algorithm, i.e. the age, the order of the electrode and the pathology 

form. On the contrary, the CT scan delay resulted to be very important for the explanation of the MCI, as it appeared at the root 

level and then multiple times all along the tree. Similarly, stimulation target, patient sex, main pathology and disease duration 

resulted to have an impact on the MCI of electrodes after surgery. 

 

 

 

 

 
 

Figure 4. Regression decision tree, with the number of electrodes used at each parent node and the mean MCI calculated at each 

leaf node. 

 

In order to study the evolution of the MCI according to the CT scan delay, we also computed MCIs for different 

subgroups of patients (Fig. 5.). For creating the different subgroups of patients, the cut-off values from the CT scan delay 

variables were used. 
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Figure 5. MCI evolution for the subgroup of STN patients and the subgroup of GPm patients. 

 

 

3.3. Statistical comparisons 

 

First, and in order to validate the hierarchy of predictive variables resulted from the regression algorithm, we defined cluster of 

electrodes based only on single variables and performed same statistical comparisons. For the three binary variables (sex, target, 

and order of implantation), we observed no significant MCI differences. For the two categorical variables “main pathology” and 

“disease form” (having both cardinality equal to three), we performed a multiple comparison test that also showed no 

differences between MCIs. For the three quantitative variables, it was impossible to determine separation values and it would 

not have made sense to set random values for this test. As no variable was easily identifiable to explain the differences between 

MCI values, the use of a decision tree and the creation of a hierarchy of predictive variables seemed to be very relevant. 

Complete results of statistical comparisons are shown on Fig. 6. The idea was to go down through the different levels of the tree 

and, at each node, to validate the clusters recursively defined with a statistical test. 
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Figure 6. Statistical comparisons performed using results of the regression decision tree (one line per level). The y axis 

represents the MCI of electrodes. 
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At the root node, the primary and therefore most discriminant predictive variable affecting the MCI was the date of the 

CT scan, separating electrodes into two distinct groups: CT scans acquired before and after 17 days (p-value = 0.01), with a 

significant larger MCI for the second group. 

At the second level, patients stimulated in the GPm showed larger MCI than patients stimulated in the STN for both 

nodes. The p-value was close to zero (p-value = 0.01) for patients having their CT scan performed less than 17 days after 

surgery, and equal to 0 for patients having their CT scan performed more than 17 days after surgery. For the first subgroup, 

many variables were then affecting the MCI. For the second one, MCIs were probably too close to each other to be further 

separated by any other variables. Therefore, for the rest of the tree, we were interested in the first group (left side of the tree), 

composed of 128 electrodes, with a CT scan delay inferior to 17 days. 

At the third level, for patients who underwent STN DBS surgery, the CT scan delay appears again with a cut-off value 

equal to four days. However, this subdivision was not significant (p-value = 0.16). Interestingly, the same variable was also 

chosen for patients who underwent GPm DBS surgery, with sensibly the same cut-off value (five days), but as in the previous 

case the separation was not significant (p-value = 0.11).  

At the fourth level, for STN patients with a CT scan acquired less than four days after surgery, female patients showed 

lower MCI than male patients (p-value=0.01). Additionally, for STN patients, two clusters were emerging: patients with a CT 

scan acquired between 4 and 7 days and patients with a CT scan acquired between 7 and 17 days (p-value=0.32) after the 

surgery. For GPm patients with a CT scan delay inferior to 5 days, the subgroup of patients suffering from Tourette syndrome 

showed lower MCI than the second subgroup of patients suffering from Parkinson or Dystonia disease (p-value = 0.55). 

At the fifth level, for STN male patients having their CT scan acquired less than 4 days after surgery, the subgroup of 

patients who started to have motor symptoms earlier (with a cut-off value set to 8 years) showed lower MCI than the other (p-

value = 0.4). Finally, for patients implanted within the GPm and suffering from Parkinson or dystonia symptoms, with a CT 

scan delay inferior to 5 days, the subgroup of female patients showed non-significant lower MCI than male patients (p-

value=0.11). 

 

3.4. Electrode section separation 

 

Results of the local curvature analysis are shown on Fig. 7. No statistical differences (with significance level of 0.05) were 

found within each subgroup. However, general tendencies on the average and the variance within and between each subgroup 

have been found. 

 

 
 

Figure 7. Statistical comparisons per electrode zones, given the predictive variables of level 2 of the tree. The y axis 

represents the MCI of electrodes. 
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4. Discussion 
 

This study, based on the analysis of electrodes curvatures for a dataset of 76 patients, showed that the degree of brain shift was 

correlated with several key variables that have to be taken into account for further modelling in DBS surgeries. The results 

presented here aim to reach a higher degree of understanding of the brain shift phenomenon in DBS through the analysis of 

electrode curvature. We can easily imagine that a strong relation exists between the degree of electrode curvature and the degree 

of inverse brain shift, however this relation has not been demonstrated in the literature yet. Moreover, this work aimed at 

identifying key variables affecting electrode curvature during DBS surgery. In that sense, it is a first step towards the creation of 

mathematical models for the prediction of the degree of electrodes curvatures. In order to be able to create such mathematical 

models, however, a larger number of patients is required, as well as a larger number of potential affecting variables. A bigger 

data-set would for instance allow identifying precise variables distribution and creating linear or non-linear multivariate 

regression for explaining electrode curvature. 

 

4.1. Primary predictive variables 

 

Two predictive variables were found to be key variables affecting electrode curvature in DBS: the date of the CT scan and the 

stimulated target. The number of days passed between the surgery and the CT acquisition has been shown to be the predictive 

variable with the most impact on electrode MCI. Indeed, this variable is chosen at the root node of the decision tree and is 

present multiple times all along the tree. For this variable, different cut-off values resulted to be relevant in the decision tree: 

cut-off = 5, 7 and 17 days, showing the relative importance of this variable over the other. The different cut-off values also 

showed that the MCI is significantly increasing in the first two weeks, but seems to stabilize afterwards, since no other 

separation was proposed after the cut-off of 17 days (Fig. 5.). To validate this result, we compared MCI values for each leaf 

node at the right side of the tree (i.e. CT date > 17 days), with one subgroup of patients having their CT scan acquired between 2 

weeks and 1 month after surgery, and one subgroup with patients having their CT scan acquired more than 1 month after 

surgery. The MCI values were found non-significant for both stimulation targets. Kim et al. [24] concluded their paper by an 

open question on the time to wait before evaluating the final position of electrodes in CT scans. Indeed, postoperative 

monitoring of the electrode position remains vital towards the assessment of the best stimulation site in DBS. In their work, they 

found no significant discrepancy of the centre of electrodes estimated in the brain CT scans acquired between 1 and 3 months 

after surgery. Based on our results, we recommend estimating the DBS electrode position in the brain from CT scans acquired at 

least 2 weeks after surgery when the potential inverse brain shift had resolved. With this result in this group of patients, we have 

proven that CSF loss and delayed brain re-expansion was a major factor in electrode curvature. 

The targeted anatomical structure to be stimulated was also identified as a relevant predictive variable in our study. This 

variable, present at the second level of our decision tree, allowed us to identify clusters with similar MCI with statistical 

significance. This can be explained by the fact that GPm-DBS patients may suffer from a higher degree of cerebral atrophy than 

STN-DBS patients. As already shown in the literature, there is a correlation between the accumulated volume of intracranial air 

and the degree of cerebral atrophy [27]. Our GPm implanted patients, mostly parkinsonian patients with akinesia, may have a 

greater cerebral atrophy than patients implanted in the STN. This finding is in agreement with the results of Obuchi et al. [26] 

who demonstrated that the size of the third ventricle is a predictive factor for estimating the brain shift. The second explanation 

is related to the anatomical location of the target. The GPm, located more laterally than the STN, is more affected by the inverse 

brain-shift than deep structures close to the mid-sagittal line, leading to larger anatomical deformations and therefore larger 

electrode deformations.  

 

4.2. Secondary predictive variables 

 

The main pathology and the disease duration appear once within the decision tree, and seem therefore to have an impact, even 

minimal, on the electrode MCI. At the fifth level of the tree, patients with shorter disease duration (< 8 years) had lower MCI 

values than others. As cerebral atrophy is linked to the duration of the disease, the result is not surprising. Moreover,  at the 

fourth level of the tree, patients with Parkinson and Dystonia pathologies had larger MCI values than patients with Tourette 

syndrome. This result is also not surprising, as patients with Tourette syndrome were all young or medium-age patients with no 

particular medical history, whereas patients with Parkinson’s or Dystonia’s disease were older patients easily subjected to 

cerebral atrophy.  
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The sex of the patient resulted to have non-negligible impact on the degree of brain shift, as it appears twice in the tree. 

One explanation could be that the MCI depends on the cerebral density. The higher the cerebral density, the greater the brain 

shift is. As the cerebral density could be lower in female than male patients, this could explain why electrode MCIs of female 

patients have been found to be lower than in male patients. However, further studies including the measure of cerebral density 

are required to reach a better understanding of this complex phenomenon. 

 

4.3. Other predictive variables 

 

The patient age has been found to have no impact. However, it remains linked to disease duration and the main pathology, even 

if both variables were found independent. The algorithm used for the creation of the tree found that both the patient main 

pathology and the disease duration were more discriminant than the patient age, explaining the fact that this variable didn’t 

appear in any tree nodes. The second pathology has not surprisingly been found to have no impact. Even if we tested the 

independence of each variable pair, the target is often linked to the association of two variables: the main pathology and its 

form. As both variables already appeared upper in the tree, the form of the pathology turns out to have no impact. Finally, the 

order of implantation of the electrodes did not show any impact on the MCI. This result follows the conclusion of Slotty et al. 

[29] who found no significant difference on electrode deviations between the first and second side of surgery. This may be 

surprising, considering that the first dura matter incision causes a unilateral air invasion that is expected to be higher than the 

second dura matter incision. For instance, it was shown that errors in stereotactic accuracy due to intracranial air are more 

present on the second side [27]. According to our results, we can imagine that the intra operative brain shift is minimal 

compared to the post-operative brain shift that we model, when the brain returns to its initial position.  

 

4.4. Local curvature analysis 

 

Through an analysis of the electrode local curvature in three pre-defined zones, we observed that within each subgroup of 

electrodes identified by the regression algorithm, the three local MCI means were almost identical, even if the variance varied 

from zone to zone. This means that the curvature was approximately equally distributed on the entire length of electrodes. This 

is a very important result with respect to the idea of introducing non-linear electrode trajectories for DBS. Currently, the exact 

positioning of the electrode is usually planned assuming that the electrode trajectory is linear, but some companies have recently 

proposed the use of non-linear trajectories to anticipate and compensate the brain shift phenomenon. Despite its originality, this 

procedure would require a good comprehension of brain shift phenomena, especially regarding results on local electrode 

curvatures presented in this paper. 

Additionally, we observed that the MCI variance for STN patients with a CT scan acquired earlier than 17 days after the 

surgery was very small. In these cases, implanted electrodes maintained an approximately linear trajectory as the subdural air 

had not completely resolved. On the contrary, GPm patients with a CT scan acquired earlier than 17 days after the surgery had 

already a higher variability, probably due to a higher degree of atrophy of these patients. 

We can also point out that MCIs of the subgroup of STN patients with a CT scan delay higher than 17 days are very close 

to the subgroup of GPm patients with a CT scan delay lower than 17 days. This similarity explains why the decision tree did not 

choose the stimulation target as predictive variable for the root node. 

Another remark is the important variance on the ventricles zone observed for GPm patients when the CT scan was 

performed more than 17 days after surgery. This is due to the high anatomical variability of this group of patients, probably 

associated to high brain atrophy. Brain atrophy, indeed, causes a reduction of the ventricles, which in turns affects the electrodes 

curvature in this particular zone.  

 

 

5. Conclusion 
 

Since the brain can shift slightly during and after DBS surgery, there is a possibility that the implanted electrodes may also be 

displaced or dislodged. Several factors are likely to influence this brain shift phenomenon. In this paper, we presented results on 

the analysis of electrode curvature in order to better understand the brain shift phenomenon. We first proposed a method for the 

automatic segmentation and modelling of DBS electrode trajectories from post-operative CT images and estimated a degree of 

curvature for each electrode. Our hypothesis was that the degree of curvature of electrodes was deeply linked to the degree of 

the brain shift. We then correlated electrode curvatures of 76 patients with patients’ clinical data in order to better understand the 

brain shift phenomenon. The CT scan delay was found to be the variable with the most influence on the degree of curvature. 
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Based on our results, we suggested that post-operative CT should be taken at least 2 weeks after surgery (when the potential 

inverse brain shift had resolved) for accurate post-operative image-based identification of electrode and contacts from CT 

images. Additionally, the stimulation target was also found to have a major role in studying the brain shift through electrode 

curvature. Disease duration, patient sex and main pathology also showed to play a role in explaining the electrode curvature 

data, even with a smaller impact than the other two. We found no impact on electrode MCIs for patient age, pathology form and 

order of electrode implantation. Finally, we conducted a local electrode curvature analysis based on these results and found that 

the curvature was approximately equally distributed on the entire length of electrodes. We believe that this type of analysis can 

contribute in improving electrode placement in DBS using further predictive mathematical models. 
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