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example of a non-linear dose-dependent event. The HRS/

IRR response was originally observed in vivo in mice using 

acute skin tissue damage as an endpoint (Joiner et al. 

1986). Thereafter, the HRS response, mostly observed by 

using in vitro survival assay in single tumor cells, was 

shown to result in a significant reduction of about 25% cell 

survival between 0.1 and 0.8 Gy. The dose at which the 

maximal HRS response is observed (DHRSmax) depends on 

the cell line (Table I). The HRS response generally occurs 

in tumor or transformed cells (Marples and Collis 2008). 

At doses higher than DHRSmax, cell survival increases pro-

gressively and this phenomenon was called IRR response. 

Despite a number of studies, the mechanisms of the  

HRS and IRR responses, whether taken separately or 

together, remain unclear. It has been suggested that the 

HRS response may depend upon changes in chromatin 

conformation (Joiner et al. 2001), failure of the Ataxia 

Telangiectasia Mutated protein (ATM)-dependent G2/M 

checkpoint (Marples et al. 2004), or defects in DNA  

double-strand breaks (DSB) (Vaganay-Juery et al. 2000, 

Short et al. 2005). It was notably suggested that the HRS 

response may reflect apoptotic death of tumor cells that 

failed to arrest in cell cycle whereas the IRR response may 

reflect early cell cycle G2-phase arrest allowing time for 

repair and increased cell survival (Marples and Collis 

2008). In 2008, we pointed out that the HRS response  

may be caused by impairments in the non-homologous 

end-joining (NHEJ) repair pathway that targets G1 cells 

and in lack of control of the RAD51-dependent recombi-

nation repair pathway that targets S-G2/M cells; the con-

sequences of such impairments are failure to arrest in the 

cell cycle, propagation of damage through the cell cycle, 

mitotic death, but not p53-dependent apoptosis (Thomas 

et al. 2008).

he HRS/IRR response is more marked in cells displaying 

genomic instability: In fact, this response was mostly 

Abstract

Purpose: To ask whether dose-rate inluences low-dose hyper- 

radiosensitivity and induced radioresistance (HRS/IRR) response in 

rat colon carcinoma progressive (PRO) and regressive (REG) cells.

Methods: Clonogenic survival was applied to tumorigenic PRO 

and non-tumorigenic REG cells irradiated with 60Co g-rays at 

0.0025–500 mGy.min21. Both clonogenic survival and non-

homologous end-joining (NHEJ) pathway involved in DNA  

double-strand breaks (DSB) repair assays were applied to PRO 

cells irradiated at 25 mGy.min21 with 75 kV X-rays only.

Results: Irrespective of dose-rates, marked HRS/IRR responses 

were observed in PRO but not in REG cells. For PRO cells, the 

doses at which HRS and IRR responses are maximal were depen-

dent on dose-rate; conversely exposure times during which  

HRS and IRR responses are maximal (t
HRSmax

 and t
IRRmax

) were 

independent of dose-rate. The t
HRSmax

 and t
IRRmax

 values were 

23  5 s and 66  7 s (mean  standard error of the mean [SEM], 

n  7), in agreement with literature data. Repair data show  

that t
HRSmax

 may correspond to exposure time during which  

NHEJ is deicient while t
IRRmax

 may correspond to exposure time 

during which NHEJ is complete.

Conclusion: HRS response may be maximal if exposure times  

are shorter than t
HRSmax

 irrespective of dose, dose-rate and  

cellular model. Potential application of HRS response in radio-

therapy is discussed.

Keywords: Hyper-radiosensitivity (HRS) response, induced 

radioresistance (IRR) response, dose-rate, DSB repair, tumor 

cells, radiotherapy

Introduction

It is now well documented that cells irradiated at single 

low-dose fraction can show marked hyper-radiosensitivity 

(HRS) and induced radioresistance (IRR) response  

(Table I). The HRS/IRR response is a representative  

*he authors dedicate this work to Bernard Fertil for his contribution to radiobiology.
Correspondence: Charles homas, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laënnec, 69008 Lyon, France. Tel:  33 6 9826 1603, 
E-mail: charles.thomas1@sfr.fr
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 C. Thomas et al. 

Table I. Major radiobiological studies on HRS/IRR response. Most studies used tumor cell lines. Few studies used transformed cell lines  
(V79, CHO-K1, MR4, GM0639, EBS7YZ5) or a normal ibroblast cell line (BJ). he doses at which the maximal HRS and IRR response are observed 
(DHRSmax, DIRRmax) and the time at which the maximal HRS and IRR response are observed (tHRSmax, tIRRmax) were obtained from survival data  
reported in the quoted references.

Irradiation

Dose rate 

(mGy.min21)

DHRSmax 

(mGy) tHRSmax (s)

DIRRmax 

(mGy) tIRRmax (s) Cell line Reference

240 KV X-rays 180 200 67 600 200 Human HT29 Lambin et al. (1993)
240 KV X-rays 118 120 40 500 167 Human Be11 Lambin et al. (1996)
240 KV X-rays 180 250 83 500 167 Human RT112 Lambin et al. (1996)
60Co g-rays 580 200* 21 600 62 Human variant 1 

(T1p26)
homas et al. (1997)

60Co g-rays 580 100* 10 200 21 Human clone 4 (T1C3) homas et al. (1997)
60Co g-rays 1000 440 26 750 45 Rodent V79 Tsoulou et al. (2001)

9.5Mev a-rays 1000 340 20 500 30 Rodent V79 Tsoulou et al. (2001)
300 KV X-rays 500 110 13 500 60 Rodent subline CHO-K1 Barkowiak et al. (2001)
60Co g-rays 2000 100 3 500 15 Human BMG1 Chandna et al. (2002)
60Co g-rays 2000 200 6 500 15 Human U87 Chandna et al. (2002)
60Co g-rays 2000 300 9 500 15 Human PECA4451 Chandna et al. (2002)
60Co g-rays 2000 300 9 1000 30 Human PECA4197 Chandna et al. (2002)
10 MV X-rays 2430 800 20 950 23 Human G5 Beauchesne et al. 

(2003)
10 MV X-rays 2430 700 17 800 20 Human G111 Beauchesne et al. 

(2003)
10 MV X-rays 2430 700 17 950 23 Human G142 Beauchesne et al. 

(2003)
10 MV X-rays 2430 800 20 950 23 Human G152 Beauchesne et al. 

(2003)
137Cs g-rays 220 100 27 200 54 Human A549 Enns et al. (2004)
137Cs g-rays 220 250 68 750 205 Human T98G Enns et al. (2004)
320 KV X-rays 750 180 14 300 24 Rodent MR4 Wykes et al. (2006)
320 KV X-rays 750 105 8 400 32 Human M059K Wykes et al. (2006)
320 KV X-rays 750 140 11 400 32 Human EBS7YZ5 Wykes et al. (2006)
60Co g-rays 660 280 25 1000 91 Human T47D Edin et al. (2007)
320 KV X-rays 750 310 25 750 60 Human T98G Krueger et al. (2007a)
60Co g-rays 1800 100 3.3 300 10 Human BJ Nuta & Darroudi (2008)
60Co g-rays 500 190 23 500 60 Rodent PRO homas et al. (2008)
200 KV X-rays 500 100 12 300 36 Human GM0639 Xue et al. (2009)
290 Mev 6C 500 170 20 400 48 Human GM0639 Xue et al. (2009)
62 Mev protons 15000 2000 8 4000 16 Human HTB140 Petrovic et al. (2010)
250 KV X-rays 855 250 18 500 35 Human A549 Wera et al. (2012)

 *hese numbers correspond to a reanalysis of our raw data for exposure times less than 10 min.

observed in tumor and in some transformed normal cell 

lines (Table I). Furthermore, we have previously reported 

that human and rodent tumorigenic cells with high meta-

static potential preferentially show the HRS response 

(homas et al. 1997, 2008). We have therefore suggested that 

the HRS response may ind applications in radiotherapy, 

notably for unvascularized and isolated micrometastasis 

(homas et al. 2001, 2007). On the other hand, the occur-

rence of the HRS/IRR response in primary normal cells is 

still controversial and may depend on the diferentiation 

and/or proliferation status. As an example, six among nine 

primary explants of uroepithelium showed HRS/IRR 

response with a 14 days post-irradiation proliferative assay 

as endpoint (Mothersill et al. 1995). he HRS/IRR response 

assessed by micronuclei assay was also observed in about 

10% of primary keratinocytes and ibroblasts from cervix 

carcinoma patients (Slonina et al. 2007).

Interestingly, the literature shows that the HRS/IRR 

response of tumor cells irradiated with low-energy transfer 

(LET) radiation was investigated at dose-rates ranging from 

0.18–2.43 Gy.min21 (Table I). hese data raise the question 

of a dose-rate-dependence of the HRS/IRR response. In 

order to answer this question, we investigated clonogenic 

cell survival at seven dose-rates (from 0.0025–500 mGy.

min21) in two rat colon carcinoma sublines progressive 

(PRO) and regressive (REG) cells that were shown to be HRS 

positive and negative, respectively (homas et al. 2008).

Materials and methods

Cells and irradiation
Rat colon carcinoma PRO and REG cells were kindly pro-

vided by Dr F. Martin (Dijon, France). PRO and REG sub-

lines were isolated from the parental tumor cell line 

DHD-K12, established from dimethylhydrazine-induced 

colon carcinoma in syngeneic BDIX rats (Martin et al.  

1983). PRO and REG sublines were isolated according to 

their sensitivity to trypsin-mediated detachment from  

plastic surface (PRO subline is more trypsin-resistant  

than REG subline). When grafted subcutaneously in BDIX 

rats, REG cells produced regressive tumors disappearing 

within 3–4 weeks while PRO cells produced progressive 

tumors in 60% of animals with metastases to lungs,  

kidney or lymph nodes (Martin et al. 1983). PRO and REG 

sublines were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 medium with 2 mM glutamine, 10% decom-

plemented fetal bovine serum, 1% [4-(2-hydroxyethyl)- 

1-piperazineethanesulfonic acid] (HEPES) and antibiotics 

(1% penicillin, streptomycin) (Gibco-Invitrogen-France, 

Cergy-Pontoise, France). Cells were mycoplasma-free and 
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 The HRS/IRR response does not depend on dose-rate 

maintained at 37°C at 5% CO2 for no more than ive pas-

sages after defrost. For all the assays described below, con-

luent PRO and REG cultures were softly detached with 

0.025% trypsin and 0.02% ethylenediaminetetraacetic acid 

(EDTA) (Gibco-Invitrogen-France, Cergy-Pontoise, France) 

to obtain single cell suspensions. Since the HRS/IRR 

response is suppressed under condition of increased cell-

cell contact (Chandna et al. 2002), the number of aggregates 

(no more than 5 cells) was kept as low as possible. Irradia-

tions were performed at European Synchrotron Radiation 

Facility (ESRF, Grenoble, France) with X-rays produced by a 

clinical irradiator (75 kV, 14 mA) at a dose-rate of 25 mGy/

min and at Institut de Recherche Biomédicale des Armées 

(IRBA, Grenoble, France) with 60Co g-rays at dose-rates of 

230, 60, 44, 25, 0.3 or 0.0025 mGy.min21. his range of dose-

rate corresponds to space radiation (0.0025 mGy.min21), 

nuclear medicine (0.3 mGy.min21), radiodiagnosis (25, 

44, 60 mGy.min21) and radiotherapy (230 mGy.min21). 

These four groups of dose-rate are evenly distributed on 

log scale. The 25 mGy.min21 dose-rate was chosen to 

evaluate cell survival at two different clinically relevant 

radiation type (Cobalt 60 g-rays and 75 kV X-rays). Dose 

and their homogeneity in the irradiation field were rou-

tinely verified with Physikalisch Technische Werkstatten 

(PTW) ionization chambers (0.3 cm3 type TM23332 for 

dose-rates higher than 25 mGy.min21 and 30 cm3 type 

TM23361 for dose-rates lower than 25 mGy.min21 at IRBA 

and semiflex chamber type TW31010–03907 for dose-rate 

of 25 mGy.min21 at ESRF). The relative dose error was 

10%. The error committed on exposure times (given digi-

tally) was negligible. For all the dose-rates applied in this 

study, the exposure times were always shorter than 10 min 

(Table II).

Clonogenic survival assay
Clonogenic survival was assessed as previously described 

(homas et al. 2008). Briely, 250 cells were seeded in six-

well plates and irradiated 24 h after plating at various  

dose-rates. Colonies were ixed and stained with standard 

crystal violet solution (Sigma-Aldrich-France, l’Isle d’Abeau, 

France) after 10 days incubation without change of medium. 

Only colonies showing more than 50 cells were considered. 

Plating eiciencies of unirradiated REG and PRO cells  

at IRBA were 39  6% (mean  standard error of the mean 

[SEM], n  8 independent experiments) and 25  2% 

(mean  SEM, n  17 independent experiments), respectively. 

Plating eiciencies of unirradiated REG and PRO cells at 

ESRF were 29  3% (mean  SEM, n  3 independent  

experiments) and 14  1% (mean  SEM, n  2 indepen-

dent experiments), respectively. he impact of cell prolifera-

tion before irradiation on HRS response was previously 

investigated; we showed that the HRS response was similar 

in PRO cells whether irradiated 2 or 24 h after plating;  

cell multiplicity (i.e., the number of cells per colony- 

forming unit) 24 h after plating was found to be close to  

one (homas et al. 2008).

Survival curves analysis
Using the JMP software (version 2.0.5. SAS institute, Cary, 

NC, USA), the surviving fractions (SF) were itted to two 

models: he one population linear-quadratic (LQ) model 

and the induced repair (IR) model (homas et al. 2008) 

deined by, respectively:

SF(D)  e2(a.D  b.D2) (1)

SF(D) e
r

s

r

D

dc
r

21 1 e D D


2 




2 2

2



















⋅ ⋅ ⋅

 
(2)

he IR model is a modiied version of the LQ model in  

which the a term is dependent on dose (D): at very low 

doses, a is large, and it decreases with increasing dose in  

an exponential manner at a rate determined by a constant  

dc. he parameter as represents the initial slope of the sur-

vival curve at very low doses; ar represents the initial slope 

of the survival curve extrapolated from the conventional 

high-dose response described by the LQ model; dc repre-

sents the dose that induced the change from HRS to IRR 

response and br represents the distal slope of the survival 

curve. he occurrence of the HRS/IRR response is mathe-

matically deduced from as and ar values that do not coin-

cide and dc values signiicantly greater than zero (Table II). 

Since some data reported in Table I were not always itted  

to the IR model, we deliberately chose to rename the dc 

parameter DHRSmax since it corresponds to the maximal 

extent of the HRS response. Similarly, we deined the DIRRmax 

parameter that corresponds to the maximal extent of the 

IRR response (Table I).

Immunoluorescence assay
he assay which is described elsewhere (homas et al. 

2008), was applied with minor modiications to measure 

the number of g-pH2AX foci per cell 15 min, 1 h , 4 h and  

24 h after irradiation. Briely, 104 cells were seeded on slides 

in six-well plates and incubated for 24 h in complete 

medium at 37°C. After irradiation at 75 kV X-rays at 10 mGy 

(24 s) and 100 mGy (240 s), plates were incubated at 37°C 

for 10 min and 24 h. Cells were then ixed in paraformal-

dehyde solution for 15 min at room temperature and per-

meabilized for 90 s at 4°C in lysis solution (20 mM HEPES) 

[pH 7.4], 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose,  

0.5% Triton X-100) (Sigma-Aldrich-France, l’Isle d’Abeau, 

France). Primary antibody incubations were performed  

for 40 min at 37°C. Anti-g-pH2AXser139 antibody (#05636; 

Upstate Biotechnology-Euromedex, Mundolsheim, France) 

was used at 1:800. Incubation with anti-mouse luorescein 

Table II. Dose-rates, exposure times and doses investigated in this 
study with 60Co g-rays (data shown in Figure 1A–F).

Dose-rate 

(mGy/min) Exposure times (s) Doses (mGy)

230 2.6; 6.5; 13; 26; 65; 78; 130 10; 25; 50; 100; 250; 300; 500
 60 5; 10; 25; 50; 100; 200; 

300; 500
5; 10; 25; 50; 100; 200; 300; 

500
 44 7; 14; 27; 70; 140; 270; 341 5; 10; 20; 50; 100; 200; 250
 25 6; 12; 24; 60; 120; 180; 240 2.5; 5; 10; 25; 50; 75; 100
0.3 5; 10; 20; 40; 100; 200 0.025; 0.05; 0.1; 0.2; 0.5, 1
0.0025 2.4; 6; 12; 24; 48; 120; 240 0.0001; 0.00025; 0.0005; 

0.001; 0.002; 0.005; 0.01
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Results

HRS/IRR response of PRO cells irradiated with 60Co g-rays

In 2008, we demonstrated the existence of a HRS/IRR 

response in PRO cells but not in REG cells irradiated at  

500 mGy.min21. he DHRSmax value that relects the transi-

tion between the HRS and IRR response (i.e., the lowest 

survival data) was 190 ( 8) mGy (homas et al. 2008). his 

dose corresponds to an exposure time of 23 ( 1) s at  

500 mGy.min21 (Table I). In order to examine whether dose-

rate inluences the HRS/IRR response, we investigated  

clonogenic survival of PRO cells irradiated at six diferent 

dose-rates between 0.0025 and 230 mGy.min21. For all the 

dose-rates applied in this study, a HRS/IRR response was 

systematically observed in PRO cells (Figure 1A–F). Since 

the distal part of the survival curves obtained at 0.3 and 

(green) secondary antibody was performed at 1:100 at 37°C 

for 20 min. Slides were mounted in 4′,6-diamidino-2-

phenylindole (DAPI)-stained Vectashield (Abcys, Paris, 

France) and the number of g-pH2AX foci per cell in 126-209 

cells (15 min experiments) or 142-198 cells (24 h experi-

ments) were examined with Olympus BX51 luorescence 

microscope. DAPI staining permitted to indirectly evaluate 

yield of G1 cells (nuclei with homogeneous DAPI staining), 

S cells (nuclei showing numerous g-pH2AX foci), G2  

cells (nuclei with heterogeneous DAPI staining) and meta-

phase (visible chromosomes). DAPI staining permitted also 

to quantify the percentage of cells with micronuclei by 

examining 100 cells at least. In order to avoid any bias by 

using imaging analysis software, the number of foci per cell 

was determined after eye-scoring in about 50 cells in G0/

G1 per slide.
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Figure 1. Impact of dose-rate on the HRS/IRR response. Survival curves of PRO cells (A–F) and REG cells (C and F) irradiated with cobalt  
60 g-rays at low-doses. Experiments were performed with cells cultured for no more than ive passages (p  5). Each data represents the mean  SEM 
of three (A), three (B), two (PRO cells) and two (REG cells) (C), two (D), four (E) and three (F) experiments for cells irradiated 24 h after plating.  
Six data points per dose are included in each experiment. Figures were itted to a smooth function. *p  0.05 for comparison between irradiated 
cells and unirradiated cells, using the t-test.
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 The HRS/IRR response does not depend on dose-rate 

0.0025 mGy.min21 showed negative br parameter with the 

IR model (Table III), all data were itted to a smooth function 

(Figure 1A–F). Irrespective of the dose-rates, the HRS/IRR 

response was observed systematically, but not at the same 

dose range. For example, the lowest survival was 86  1% 

irrespective of dose-rate, but DHRSmax ranged between 190 

mGy at 500 mGy.min21 and 0.00071 mGy at 0.0025 mGy.

min21 (Table IV). he DHRSmax values appeared to be a linear 

function of dose-rate with DHRSmax  0.4428  dose-rate 

(R2  0.89) (Figure 2A). he slope of this linear function cor-

responds to the exposure time required for the maximal 

HRS response. For convenience, we called it tHRSmax. Its 

average value was 0.4428  0.05 min or 26.57  3 s, and 

independent of dose-rate (Figure 2B). Similarly, if DIRRmax 

and tIRRmax are deined as the dose and the exposure time 

required for the maximal IRR response, respectively, our 

data showed that DIRRmax is linearly dependent on dose-rate 

with DIRRmax  0.997  dose-rate (R2  0.99) (Figure 2C). 

he slope tIRRmax was found to be 0.997  0.07 min or 

59.8  4.2 s, and independent of dose-rate (Figure 2D). 

hus, it appears that the maximal HRS and IRR responses  

in PRO cells correspond to exposure times that are inde-

pendent of dose-rates.

In agreement with our previous data obtained at 500 

mGy.min21, it is noteworthy that REG cells did not show 

marked HRS/IRR response at 44 mGy.min21 and 0.0025 

mGy.min21 (Figure 1C and 1F, respectively). Conversely, 

REG cells displayed signiicant radio-stimulation at 0.0025 

mGy.min21 (Figure 1F). Such very low dose-rate is known to 

stimulate the division potential in normal cells (e.g., Croute 

et al. 1986, Planel et al. 1987). However, these hormetic-like 

responses and their possible cellular mechanisms – that 

were recently reviewed (Szumiel 2012) – are beyond the 

scope of this paper (Supplementary Material to be found 

online at http://informahealthcare.com/abs/doi/10.3109/ 

09553002.2013.800248).

Comparison with the literature
We reviewed the HRS/IRR responses obtained in the litera-

ture from 1993–2012 (Table I). As a irst step, only low-LET 

radiation (X- and g-rays) data obtained at single dose-rate 

with short exposure times less than 10 min were considered. 

With regard to the HRS/IRR response parameters, no signii-

cant diference was observed between human and rodent 

cells. By pooling rodent and human data shown in Table I, 

the HRS/IRR responses were obtained at an average dose-

rate of 1000 mGy.min21. At such dose-rate, the DHRSmax and 

DIRRmax values obtained in the literature are in agreement 

with our data (Figure 1A and C). he tHRSmax value obtained 

in the literature [23  4 s (mean  SEM, n  25)] was not sig-

niicantly diferent from the experimental tHRSmax value 

obtained in this study [23.4  5.3 s (mean  SEM, n  7)] 

(Table IV). Similarly, the tIRRmax value obtained in the litera-

ture [59  12 s (mean  SEM, n  25)] was not signiicantly 

diferent from the experimental tIRRmax value obtained in 

this study [66  7.1 s (mean  SEM, n  7)] (Table IV). By 

pooling literature and our data, over a very large range of 

dose-rates (0.0025–2430 mGy.min21) tHRSmax and tIRRmax 

were found to be 23  3 s and 60  9 s [mean  SEM (n  32)], 

respectively.

HRS/IRR response of PRO cells irradiated with 75 kV X-rays
Since radiodiagnosis exams like computed tomography (CT) 

scans involve low-energy X-rays rather than high-energy 

g-rays, we examined whether the HRS/IRR response of PRO 

cells also exists with 75 kV X-rays. With regard to dose-rate, 

we chose to work at 25 mGy.min21 since this dose-rate  

Table III. Values of parameters obtained from the survival data it to the IR model; as represents the initial 
slope of the curve at very low doses; ar represents the low-dose slope of the survival curve extrapolated 
from high-doses; dc represents the dose that induced the change from HRS to IRR response and br 
represents the distal slope of the survival curve. Numbers in parentheses are the standard errors given  
by the JMP software; nc  no convergence.

as ar as/ar dc (mGy) br

Figure 1A 9.96 (2.1) 0.43 (0.23) 18 42 (8) 0.124 (0.5)
Figure 1B 21.8 (3.5) 0.21 (0.13) 106 21 (2.6) 0.21 (0.31)
Figure 1C (PRO cells) 17.2 (1.2) 0.5 (0.17) 34 23 (1.7) 0.11 (0.74)
Figure 1C (REG cells) nc nc nc nc nc
Figure 1D 31.5 (1.6) 1.5 (0.3) 21 11 (0.7) 1.22 (3.45)
Figure 1E 4.05 (0.69) 0.1 (0.03) 41 0.045 (0.006) 20.024 (0.033)
Figure 1F (PRO cells) 0.59 (0.2) 0.017 (0.016) 35 0.00071 (0.0002) 20.0006 (0.0018)
Figure 1F (REG cells) nc nc nc nc nc
Figure 3A (75 kV X-rays) 55.8 (5.7) 1.36 (1) 41 11 (1.2) 4.9 (10.4)
Figure 3A (60Co g-rays) 31.5 (1.6) 1.5 (0.3) 21 11 (0.7) 1.22 (3.45)

Table IV. Values of the HRS/IRR response parameters obtained with 
PRO cells irradiated with 60Co g-rays. DHRSmax and DIRRmax are the  
doses at which the maximal HRS and IRR response are observed, 
respectively; tHRSmax and tIRRmax are the time at which the maximal  
HRS and IRR response are observed, respectively.

Dose-rate 

(mGy.

min21)

DHRSmax 

(mGy)

tHRSmax 

(s)

DIRRmax 

(mGy)

tIRRmax 

(s)

500 190  8.1a

250b
23  1a

30b
500a

500b
60a

60b

230 42  8a

37  12b
11  2a

10  3b
175a

217  17b
46a

65  4b

 60 21  2a

28  12b
21  2a

28  12b
125a

83  17b
125a

83  17b

 44 23  2a

27b
31  3a

37b
100a

55b
136a

75b

 25 11  1a

17b
26  2b

41b
50a

38b
120a

91b

0.3 0.045  0.006a

0.031  0.006b
9  1a

6  1b
0.2a

0.19  0.1b
40a

38  20b

0.0025 0.00071  0.0002a

0.0005  0.00025b
17  5a

12  6b
0.004a

0.002  0.0009b
96a

48  22b

 aParameters obtained from survival data it to the IR model. bExperimental  
parameters obtained from raw survival data shown in Figure 1 except those at  
500 mGy.min21 (taken from homas et al. 2008).
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foci ranged from 7–11 nuclear foci for both doses, the incu-

bation times at which it was reached difered signiicantly, 

i.e., 4 h and 1 h post-irradiation after a dose of 10 mGy and 

100 mGy, respectively. Furthermore, while the DSB repair is 

completed after 100 mGy, the DSB induced by 10 mGy 

appeared to be more severe with 5.5  0.7 residual g-H2AX 

foci 24 h after irradiation (Figure 3B). hese data suggest that 

tHRSmax may be associated with deicient NHEJ repair and 

maximal HRS response while tIRRmax may be associated with 

full NHEJ repair and maximal IRR response.

Discussion

Impact of dose-rate on the HRS/IRR response
By investigating one of the largest ranges of dose-rates 

applied in HRS/IRR studies, our data show that the maximal 

HRS and IRR responses obtained with low-LET radiation 

correspond to exposure times of about 20 s and 60 s, res-

pectively. To our knowledge, the impact of dose-rate and  

exposure time on the HRS/IRR response have not been 

investigated per se, notably with short exposure times less 

than 10 min. Exposure time is basically dependent on  

dose and dose-rate since these three parameters are linked 

mathematically. he dose-rates applied in the published 

studies ranging from 0.18–2.43 Gy.min21 (Table I), have 

rarely been explained: heir choice generally results from  
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Figure 2. Relationships between the HRS/IRR response experimental parameters (shown in Table IV) and the dose-rates in PRO cells. (A) Signiicant 
linear correlation between DHRSmax and dose-rate was found (y  0.4428.x, R2  0.89, p  0.05). (B) tHRSmax was not signiicantly correlated to  
dose-rate. (C) Signiicant linear correlation between DIRRmax and dose-rate was found (y  0.997.x, R2  0.99, p  0.05). (D) tIRRmax was not signi-
icantly correlated to dose-rate. Error bars indicate the SEM for n  2–4 independent experiments taken from Figures 1A–F (■) and for 25 indepen-
dent experiments obtained with low-LET radiation taken from Table I ( ).

generally applied in CT scan exams. Figure 3A shows that in 

the 5–100 mGy range, the HRS/IRR response occurs in PRO 

cells. Although the extent of the HRS response in PRO cells 

appeared to be larger with 75 kV X-rays than with 60Co g-rays, 

the survival data were not found signiicantly diferent (Fig-

ure 3A). Accordingly, the HRS and the IRR response param-

eters itted with the IR model were found similar with 75 kV 

X-rays and 60Co g-rays (Table III). Finally we conirmed that 

REG cells irradiated with 75 kV X-rays did not display signii-

cant HRS/IRR response (data not shown).

DSB repair features of HRS/IRR response
hereafter, by using 75 kV X-rays delivered at 25 mGy. 

min21, we examined the radiation-induced DSB relected by 

g-H2AX foci in two representative conditions: After 10 mGy, 

corresponding to the maximal HRS response (DHRSmax) and 

an exposure time lower than tHRSmax; after 100 mGy, corre-

sponding to dose higher than the maximal IRR response 

(doses higher than DIRRmax) and exposure time longer than 

tIRRmax. Figure 3B showed that for both doses, the kinetics of 

appearance/disappearance of g-H2AX foci elicited the same 

biphasic shape: (i) An increase of the number of g-H2AX foci  

corresponding to the recognition of radiation-induced  

DSB managed by NHEJ; (ii) a decrease of the number of 

g-H2AX foci corresponding to the repair of recognized  

DSB. However, while the maximal number of g-H2AX  
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Figure 3. HRS/IRR response of PRO cells irradiated with 75 kV X-rays. 
(A) Comparison between 60Co g-rays survival data (dashed line) 
and 75 kV X-rays survival data (continuous line). Experiments were 
performed with cells cultured for no more than 5 passages. Each data 
represents the mean  SEM of two independent experiments for cells 
irradiated 24 h after plating. Six data points per dose are included in 
each experiment. *p  0.05 for comparison between unirradiated cells 
and irradiated cells using the t-test. (B) Kinetic of DSB repair at 10 mGy 
(HRS response) or 100 mGy (IRR response). Each data represent the 
mean  SEM of 3–5 independent experiments for cells irradiated 24 h 
after plating. All data in Figure 3 were itted to a smooth function.

a practical compromise between the availabilities of the 

irradiator in the laboratory, a short exposure time to avoid 

artifacts and the possibility to expose cells during a minimal 

time. For example, some authors used several dose-rates for 

completing a single survival curve (e.g., Marples and Joiner 

1993, Martin et al. 2009). We deliberately chose not to 

include the studies using several dose-rates in our review 

shown in Table I. Similarly, HRS/IRR responses obtained 

with long exposure times (generally longer than 1 h) were 

not considered (e.g., Enns et al. 2004).

Some HRS/IRR responses were also observed with  

other radiation than X- or g-rays. his is notably the case of 

neutrons (Dionnet et al. 2000), a-rays (Tsoulou et al. 2001), 

protons (Petrovic et al. 2010), heavy ions (Xue et al.  

2009) and b-rays (Wéra et al. 2012). Interestingly, DHRSmax, 

DIRRmax, tHRSmax, tIRRmax are also in agreement with the  

values range of our review (Table I), which consolidates our 

conclusions showing that the maximal HRS and IRR 

responses would correspond, (by pooling literature and our 

data), to average exposure times of 31  8 s (SEM, n  35) 

and 58  9 s (SEM, n  35), respectively, irrespective of the 

radiation type (low and high-LET radiation). hus our data 

suggest that the HRS response is not limited to low-doses 

since tHRSmax can theoretically be reached with high-doses. 

Accordingly, tumor cells irradiated at 2 Gy with protons at  

15 Gy.min21 (exposure time  8 s) showed HRS response 

(Petrovic et al. 2010). However, since most HRS/IRR 

responses were obtained with low-LET radiation corre-

sponding to cell survival of 75  18 % (mean  SD, n  28) 

with doses ranging from 100–800 mGy (Table I), we stressed 

that the validity of the HRS/IRR response may not be  

relevant for higher doses and lower cell survival.

Biological signiicance of t
HRSmax

he indings that tHRSmax and tIRRmax are constant and com-

mon to human and rodent cells, tumor and transformed 

normal cells suggest that exposure times corresponding to 

the maximal HRS and IRR responses may not entirely 

depend on cellular parameters like cellular model or cell 

death pathways. Furthermore, a drastic decrease of cell sur-

vival was shown to be correlated with DSB repair impair-

ments with a number of cellular models and conditions 

(e.g., Joubert et al. 2008). In mammalian cells, DSB are 

mainly recognized and repaired by the NHEJ pathway. Par-

ticularly, alterations in NHEJ induce hyper-radiosensitivity 

at high-doses. his is the case of ATM-, ligase (LIG) 4-, DNA-

protein kinase (PK)-mutated cell lines that exhibit a survival 

fraction at 2 Gy (SF2) of about 1% (Joubert et al. 2008). 

Interestingly, the a parameter of the LQ model and  

the surviving fractions corresponding to these hyper- 

radiosensitive cell lines are very similar to those observed 

in the initial part of the survival curve in PRO cells and in 

other HRS-positive cell lines sorted in Table I. We suggest 

therefore that the [0–tHRSmax] exposure time interval may 

correspond to an incapacity of NHEJ to recognize and  

repair eiciently the induced DSB, as it is the case for the 

ATM-, LIG4-, DNA-PK-mutated cells. It was shown that the 

ATM kinase produces a cascade of phosphorylations of  

proteins involved in the radiation response (Foray et al. 

2003). he NHEJ repair pathway requires several steps such 

as: (i) DSB recognition, (ii) interaction between ATM and 

g-H2AX, and (iii) complete H2AX phosphorylation. In our 

hands, at least 10 min post-irradiation are required to observe 

the maximal number of g-H2AX foci. Besides, some authors 

applied 30 min post-irradiation to assess the number of rec-

ognized DSB (e.g., Joubert et al., 2008). Hence, DSB recogni-

tion and repair steps likely require much more than 20 s. 

Since residual DSB is observed 24 h after irradiation at  

10 mGy delivered either at 25 mGy.min21 (exposure time of 

24 s) (this study) or at 70 mGy.min21 (exposure time 8.5 s) 

(Grudzenski et al. 2010), we suggest that tHRSmax may be con-

sistent with the time corresponding to deicient NHEJ repair.

Biological signiicance of t
IRRmax

With regard to the second part of the survival curve ranging 

from tHRSmax to tIRRmax, an increase of cell survival is observed: 

induced-radioresistance (IRR) is the major interpretation  

of this part of the survival curve (Krueger et al. 2007b).  
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(Grudzenski et al. 2010)]. Altogether, our data are compatible 

with three exposure time phases and N-shaped dose- 

response curve regarding DSB and cell survival (Figure 4):

t  •  tHRSmax: Incomplete DSB recognition by NHEJ and 

decrease of cell survival (HRS response);

t • HRSmax  t  tIRRmax: Progressive activation of NHEJ and 

increase of cell survival (IRR response);

t  • . tIRRmax: All DSB are recognized but they are so numer-

ous that they cannot be all repaired; decrease of cell 

survival (beyond the HRS/IRR response).

he tIRRmax exposure time would therefore correspond to the 

time necessary for a fully active NHEJ pathway. Our data in 

Figure 3B show that NHEJ repair is complete 24 h after  

irradiation at 100 mGy delivered at 25 mGy.min21 which  

corresponds to an exposure time larger than tIRRmax. Accord-

ingly, tIRRmax may be compatible with kinetic of change in 

chromatin structure and nucleo-shuttling of pATM forms 

(Bakkenist and Kastan 2003), the earliest time to detect 

g-H2AX foci after irradiation (Rothkamm and Löbrich 2003) 

and the time required for induced repair after low-dose 

X-rays [e.g., 68 s or 80 mGy delivered at 70 mGy.min21 

Figure 4. Model for the HRS/IRR response. From 0 to DHRSmax, radiations induce physical DSB that are not all recognized biologically and  
therefore unrepaired. Consequently, cell survival decreases. From DHRSmax to DIRRmax, DSB are all recognized biologically and progressively  
repaired and cell survival increases. For doses higher than DIRRmax, DSB are all recognized but their amount is so large that some DSB are not 
repaired and cell survival decreases.
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Potential impact of the HRS/IRR response in radiotherapy
Our indings suggest that signiicant decrease of cell sur-

vival could be reached independently of dose-rate provided 

that exposure times are shorter than 30 s. his may be nota-

bly the case of the cyberknife™ radiotherapy technique that 

delivers non-uniform patterns of intermittent radiation 

using a compact miniaturized 6 MV nominal linear accel-

erator with high doses-rates of 4, 6 or 8 Gy.min21. he dose 

per fraction is delivered using 80–150 non-coplanar sequen-

tial mini-beams with  0.1% leakage at 1 m from the beam 

path. For example, for a dose per fraction of about 7 Gy to 

the brain, the peripheral dose is less than 5 mGy at 80 cm 

from the target (Di Betta et al. 2010). Interestingly, cyberknife 

delivers a single fraction of the total dose in 1–36 s with an 

interval between two beams of 5 s (Murphy et al. 2007). Fur-

thermore, Lin and Wu reported that not all 2 Gy fractions 

are equivalent: Human and rodent cells irradiated with 
60Co g-rays at 1.3–1.5 Gy.min21 in 10 fractions of 0.2 Gy 

(corresponding to about 8 s per fraction with an interval of 

16 s between fractions) showed higher radiosensitivity than 

a single fraction of 2 Gy (corresponding to an exposure time 

of 86 s at 1.4 Gy.min21) (Lin and Wu 2005). hus data sug-

gest that intermittent irradiation delivered in multiple frac-

tions or continuous irradiation delivered in a single fraction 

with exposure time per fraction shorter than 20 s may show 

maximal HRS response independently of dose-rate. How-

ever, further investigations are required to examine whether 

the time between fractions impacts signiicantly on the HRS 

response.

Finally and consistently with our previous reports (homas 

et al. 1997, 2001, 2007, 2008), we suggest that the HRS 

response may be relevant to target unvascularized microme-

tastases with peripheral doses received at a distance from the 

clinical target volume irradiated with intermittent radiation. 

In the context of oligometastatic disease, local ablative ste-

reotactic irradiation can be used to eradicate gross tumor 

while the potential microscopic disease is managed using 

systemic treatments (chemotherapy) or left untreated (har-

iat et al. 2012). We suggest that the HRS response driven by 

short exposure times such as used with stereotactic radio-

therapy may ind also application to manage micrometastatic 

disease at distance from the irradiated gross tumor. More 

experimental and clinical investigations with additional 

highly metastatic human cell lines will be needed to verify 

this medical hypothesis.
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PRO cells D1.

Control 10 mGy 25 mGy 50 mGy 100 mGy 250 mGy 500 mGy

1.18 1.02 0.89 0.98 0.93 0.8 0.8
0.98 0.93 0.93 0.89 1.02 1.1 0.69
1.09 0.84 0.93 0.98 0.8 0.8 0.98
0.98 0.93 0.89 0.84 0.98 1.05 0.8
0.93 0.84 0.84 0.89 0.84 0.8 0.8
0.89 0.89 0.98 0.89 0.89 0.85 0.69
0.98 0.8 1 0.9 0.6 0.98 0.75
0.93 0.6 0.9 0.8 0.8 0.91 0.7
0.98 0.85 0.95 0.75 0.9 0.84 0.55
1.13 0.9 0.7 0.8 1 0.84 0.75
1.09 0.85 0.65 0.75 0.9 0.77 0.75
0.93 0.75 0.95 0.6 0.95 0.91 0.5
1 0.95 0.84 0.84 0.84 0.88
1 1.09 1.05 0.91 0.77 0.95
1.2 0.81 0.88 0.91 0.81 0.7
0.8 0.84 0.84 0.91 0.84 0.77
1.1 0.98 0.98 0.95 0.84 0.98
0.9 0.91 0.91 0.91 0.84 0.98
1.12
1.12
1.09
0.91
0.91
0.84

Supplementary material for homas C, et al. Impact of dose-rate on the low-dose hyper-radiosensitivity and induced 

radioresistance (HRS/IRR) response. International Journal of Radiation Biology, 2013; doi: 10.3109/09553002.2013.800248.

PRO cells D2.

Control 1 mGy 5 mGy 10 mGy 25 mGy 50 mGy 100 mGy 200 mGy 300 mGy 500 mGy

0.91 0.94 0.75 0.84 0.81 0.75 0.78 0.94 0.75 0.84
1.03 1.06 0.88 0.81 0.69 0.63 0.97 0.84 0.91 0.94
1 0.88 0.75 0.78 0.75 0.78 1.03 0.94 0.78 0.94
0.88 1 0.78 0.72 0.81 0.75 0.97 0.84 0.84 0.81
0.94 1.12 0.72 0.81 0.81 0.66 0.75 0.88 0.94 0.75
1.25 0.94 0.69 0.66 0.84 0.72 0.81 0.94 0.88 0.69
0.94 0.83 0.82 1 1.06 1 1.18 1 0.94 0.82
1.18 1 1 1.06 1.24 0.82 0.82 0.94 1.12 0.88
0.94 0.83 1 0.71 1.06 0.94 1.06 0.82 1.18 0.76
0.94 0.83 0.94 0.94 0.82 1 1 0.82 0.88 0.71
1.06 0.92 0.88 1.12 0.94 0.82 0.76 1.12 0.82 0.82
0.94 1.04 1 0.94 0.94 1.06 1 0.82 1 0.76
1 0.92 1 0.83 1.04 0.83 1.04 1 1
1.04 0.92 1 0.75 1 0.92 1.21 1 0.83
0.92 1 0.83 0.75 1 0.75 1.04 1 0.92
0.92 0.92 0.75 1 1.12 1 1 1.04 1
1.13 1 1 0.75 0.92 0.92 1 0.83 0.75
1 0.92 0.92 0.75 1.04 1 1 1 1
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PRO cells D3.

Control 5 mGy 10 mGy 20 mGy 50 mGy 100 mGy 200 mGy 250 mGy

1.04 0.95 0.96 0.86 0.72 0.88 0.9 0.72
1.2 1 0.88 0.9 0.8 0.76 0.88 0.96
1.2 1.05 0.8 1 0.8 0.76 0.9 0.88
1.04 0.86 0.8 0.9 0.8 0.88 0.95 0.8
0.88 0.9 0.8 0.86 0.76 0.76 0.95 0.88
1.28 1 0.8 0.9 0.8 0.8 1 0.8
0.88 1.05 0.95 0.72 0.9 1.1 0.98 0.92
1.04 0.85 0.95 0.92 0.81 1 0.92 0.85
0.8 0.85 0.86 0.72 0.86 1 0.79 0.98
0.88 0.72 0.86 0.85 1 1 0.85 0.92
0.96 0.85 0.9 0.82 0.95 0.9 0.85 0.72
0.96 0.92 0.86 0.92 0.95 1.05 0.92 0.98
0.95 1 1.05 0.83 0.85 0.92 1.08 1.25
1.05 1.17 0.98 0.92 0.85 0.79 1 0.96
0.9 0.92 0.98 0.92 0.85 0.85 1 0.83
1.05 0.83 0.85 1.08 0.92 0.79 1 0.92
1.1 1.08 0.72 0.92 0.85 0.79 0.83 0.92
0.95 0.83 0.85 1.17 0.85 0.89 1.08 1
0.92 0.65 0.88 1.22 1.17 0.92 1.04 0.83
1.1 0.96 0.92 1.09 1.25 0.96 0.87 0.74
0.98 1.22 0.88 0.91 1.08 1 0.91 1
0.92 0.87 1 1.04 0.92 0.83 1.13 0.96
1 0.96 1 0.96 1 0.92 0.74 0.91
1.17 0.91 1 1 1 0.92 1.3 0.91
0.92 1 0.91 0.95 0.87 1.09 1.24 1.07
1.04 1.02 1.13 0.95 1 1.22 1.24 0.95
1 0.95 1 1.19 0.96 0.83 1.07 0.83
0.92 1.07 1.22 0.95 1.09 0.83 0.88 0.95
1.04 1.19 1 1.95 1 1 1.07 0.95
1 0.9 1 1.19 0.96 1 1.07 1.19
1 0.95 1 1
0.92 0.95 1.07 1.19
1 1.07 1.07 0.95
0.83 1 0.95 0.95
1.17 0.95 1.19 0.9
1.04 1.07 1
1.09
1.13
1.04
0.83
1.09
0.96
1.13
0.83
1
0.96
0.82
0.87
1.09
0.87
1
0.96
1.07
0.95
0.95
0.98
1.24
1
1.07
0.9
1.09
1
0.95
0.98
1
0.95
0.95
0.98
0.95
1.07

PRO cells D5.

Control 0.025 mGy 0.05 mGy 0.1 mGy 0.2 mGy 0.5 mGy 1 mGy

1.17 0.91 0.78 1.09 1.04 1.04 0.91
1.04 0.87 1.04 0.83 1.04 0.96 0.91
1.09 0.83 1.04 0.91 0.91 0.78 0.74
1.13 0.87 1.04 1 0.96 0.87 0.83
1.04 0.91 0.87 0.87 1.13 0.87 1.09
0.83 0.87 1 0.96 0.96 0.78 1
1.09 1.17 0.91 0.78 0.96 1 0.65
0.96 0.96 0.83 0.96 0.83 0.91 0.91
1.13 0.91 1.04 1 0.87 0.91 0.87
0.83 0.78 0.87 0.65 0.87 0.96 0.96
1 0.65 1.09 0.74 1.04 0.61 0.91
0.96 0.96 0.83 0.74 0.87 0.78 0.87
0.83 1.14 1.05 1.12 1.02 0.98 1.07
0.87 1.02 1.02 1 1 0.98 1
1.09 0.93 1.07 1.19 1.07 0.95 1.1
0.87 0.98 1 0.95 1 1.14 1.02
1 0.9 1.02 1.07 0.95 1 1
0.96 1.12 1.07 1 0.95 1 1.05
1.07 0.94 1 0.7 1.03 0.9 0.7
0.95 1.03 0.7 1 1.03 0.9 0.7
0.95 1.13 0.6 0.95 1 0.95 0.7
0.98 0.86 0.6 0.7 1.03 0.85 0.8
1.24 0.84 0.75 0.8 1.06 0.8 0.75
1 0.96 0.85 0.95 1.03 0.9 0.85
1.07 1.13 1.23 1.08 1.23
0.9 1.09 0.97 1.13 0.92
1.09 0.97 0.87 1.18 0.97
1 0.97 1.03 0.92 1.13
0.95 0.92 1.13 1.23 1.08
0.98 0.94 1.18 1.03 1.03
1
0.95
0.95
0.98
0.95
1.07
1
1
1.2
0.8
1.1
0.9
1.02
0.97
0.92
1.13
0.97
0.97

PRO cells D4.

Control 2.5 mGy 5 mGy 10 mGy 25 mGy 50 mGy 75 mGy 100 mGy

1.1 0.96 0.74 0.96 0.74 0.96 0.9 0.74
0.96 0.92 0.74 0.81 0.81 0.89 0.9 0.81
1.1 0.96 0.89 0.74 0.74 0.96 0.76 0.81
0.89 0.81 0.81 0.74 0.96 0.81 0.88 0.89
1.04 1.1 1.04 0.81 0.74 0.89 0.86 0.81
0.93 0.92 0.89 0.78 0.78 0.81 0.9 0.85
1.05 0.95 1.05 0.9 1 0.95 0.95
1 0.86 1.05 0.95 0.86 0.9 0.86
1.1 0.9 1 0.95 1 0.93 0.9
1.1 0.95 0.95 1 0.95 0.95 0.88
0.86 0.9 0.9 1 1.05 0.93 0.86
0.9 0.9 0.93 0.81 1.05 0.9
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3

PRO cells D6.

Control 0.25 uGy 0.5 uGy 1 uGy 2 uGy 5 uGy 10 uGy

1 1 0.85 0.45 0.95 0.9 0.9
1 0.95 0.75 0.7 1.12 0.8 0.8
1.2 1.07 0.65 0.75 1.07 0.95 0.6
0.8 1 0.85 0.7 1 0.7 0.7
1.1 0.83 0.65 0.65 0.98 0.95 0.7
0.9 0.95 0.85 0.5 1.14 0.8 0.9
1.07 1 1.07 1 1.05 0.9 1.05
0.95 0.8 1.05 1 0.95 1 1.1
0.95 1 0.95 0.98 0.8 0.95 1.1
0.98 0.9 1.05 0.95 0.9 0.93 0.98
1.24 0.85 0.98 0.86 0.9 0.95 1.02
1 0.8 0.9 0.88 0.9 0.95 1.05
1.07 0.85 1 1.05 0.9
0.9 0.75 1.05 0.95 1
1.09 0.9 0.95 0.95 0.95
1 1 0.8 1 0.85
0.95 1 0.85 0.9 0.9
0.98 0.9 0.9 0.8 0.8
1
0.95
0.95
0.98
0.95
1.07
0.9
1.1
1.2
1
0.9
0.9

REG cells D3.

Control 5 mGy 10 mGy 20 mGy 50 mGy 100 mGy 200 mGy

1 1.13 1 1.07 0.93 0.93 1
0.9 1 1 1.07 1.1 0.9 1
1 0.93 1 1 1.07 1 1
1.07 1 1 1 1 0.9 1.07
1 1.07 1 1.07 1 0.93 1
1.07 0.93 1.13 0.87 0.87 0.8 1.13
1.19 0.97 1.3 0.97 0.97 0.97 0.86
0.97 0.86 0.86 0.97 0.81 0.97 0.92
1.08 1.08 1.08 0.86 0.97 1.03 0.81
0.92 0.86 1.08 0.92 1.03 0.76 0.97
0.86 1.14 0.97 1.03 0.92 1.19 0.92
0.97 0.86 0.76 0.97 0.86 1.08 0.97

REG cells D6.

Control 0.5 uGy 1 uGy 2 uGy 5 uGy 10 uGy

1.09 0.85 1.21 1.23 1.03 0.85
0.97 1.21 1.15 0.85 1.21 1.03
1.03 0.73 1.27 1.23 0.97 1.21
0.97 0.97 1.39 0.85 1.03 1.27
1.09 0.85 1.33 0.92 1.27 1.51
0.85 0.96 1.09 1.15 0.97 0.97
0.73 1.15 1.08 1.08 1.08 1.08
0.92 1.15 1.23 0.85 1.23 1.08
0.85 1.23 0.92 1.08 0.92 1.08
0.92 1.08 0.88 1.15 0.81 1.15
1 1.15 1.15 1.08 0.92 1.27
1.15 0.85 1.15 1 1.04
0.92 1 1.08 0.85 1.15
1 1 1.23 1.15 1.08
1.23 1.15 1.23 1.23 0.95
1.15 1.15 0.85 1 1.14
1 1 1 1.14 1.33
1 1.31 1.33 0.95
0.86 0.95 0.95
0.76 0.95 0.95
0.81 1.14
0.81 0.95
0.86
1.05
1.33
1.24
0.95
1.14
1.14
1.14


