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Abstract

The capacity of testicular somatic cells to promote and sustain germ cell differentiation is largely regulated by sexual
steroids and notably androgens. In fish species the importance of androgens is emphasized by their ability to induce sex
reversal of the developing fries and to trigger spermatogenesis. Here we studied the influence of androgens on testicular
gene expression in trout testis using microarrays. Following treatment of immature males with physiological doses of
testosterone or 11-ketotestosterone, 418 genes that exhibit changes in expression were identified. Interestingly, the activity
of testosterone appeared stronger than that of 11-ketotestosterone. Expression profiles of responsive genes throughout
testis development and in isolated germ cells confirmed androgens to mainly affect gene expression in somatic cells.
Furthermore, specific clusters of genes that exhibit regulation coincidently with changes in the natural circulating levels of
androgens during the reproductive cycle were highlighted, reinforcing the physiological significance of these data. Among
somatic genes, a phylogenetic footprinting study identified putative androgen response elements within the proximal
promoter regions of 42 potential direct androgen target genes. Finally, androgens were also found to alter the germ line
towards meiotic expression profiles, supporting the hypothesis of a role for the somatic responsive genes in driving germ
cell fate. This study significantly increases our understanding of molecular pathways regulated by androgens in vertebrates.
The highly cyclic testicular development in trout together with functions associated with regulated genes reveal potential
mechanisms for androgen actions in tubule formation, steroid production, germ cell development and sperm secretion.
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Introduction

The hypothalamic-pituitary-gonadal axis regulates sexual

maturation and spermatogenesis through the release of two

gonadotropins from the anterior pituitary upon GnRH stimu-

lation, the luteinizing hormone (LH) and the follicle-stimulating

hormone (FSH) [1]. The control of spermatogenesis by

gonadotropins mainly relies on LH-induced testosterone (T)

production by Leydig cells, as observed in mammals: T is

indeed sufficient to restore complete spermatogenesis in

hypogonadal mice [2,3] or hypophysectomized rats [4,5]

whereas FSH promotes Sertoli cell proliferation and differenti-

ation and is thus responsible for the final spermatogenetic

capacity of the adult testis [6,7].T binds to the nuclear

androgen receptor (AR) that, upon homodimirization, regulates

expression of genes containing cis regulatory elements termed

Androgen Response Elements (AREs). In mammals, AR is

expressed in Leydig, peritubular and Sertoli cells in the adult

testis [8]. Consequently, the control of spermatogenesis by T is

more likely to occur by modulating somatic signaling rather

than by a direct effect on the germ cells. This was further

evidenced by the ability of AR2/2 spermatogonial stem cells to

colonize recipient testes [9] and by the spermatogenetic defects

observed in selective AR knockout in testicular somatic cells

[10,11,12]. A number of studies have addressed the specific

question of testicular gene modulation by androgens and,

despite the use of various models (for review, see [13]), the

way T regulates spermatogenesis are still not fully understood.

Notably, only a few direct androgen-target genes have been

identified so far and the specific role of T at specific steps in

male gonad development is still unclear. In this regard,

seasonally-breeding fish species such as the rainbow trout,

Onchorynchus mykiss, represent an interesting model to investigate

those molecular pathways regulated by androgens in the testis.

The seasonal spermatogenetic cycle, together with the cystic

organization of the trout testis, tends to synchronize the

developmental state of somatic cells at any time. On the other

hand, the endocrine landscape in teleost fish species appears

somehow more complex than in mammals. In addition to T

and androstenedione (D4) several 11-oxygenated androgens such
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as 11b-hydroxyandrostenedione (11bOHA), 11-ketoandrostene-

dione (11KA), 11b-hydroxytestosterone (11bOHT) or 11-keto-

testosterone (11KT) are found in males and exhibit distinct

plasma profiles during fish development and throughout the

reproductive cycle [14]. Much evidence points towards 11KT

being a potent androgen for promoting spermatogenesis in a

few fish species [15,16,17,18,19]. Contradictory results were

obtained for T in this regard: A direct stimulatory effect was

reported on spermatogenesis in the Mummichog and goldfish

[20,21] whereas it was found to inhibit the 11KT-induced

spermatogenesis in the African catfish in vivo [22].In this study

we investigated the influence of androgens on gene expression

in the trout testis at the onset of puberty. Immature males were

submitted to short-term supplementation of either T or 11KT

and testicular androgen-responsive genes were identified using

microarrays. The use of expression data from testes at various

developmental stages [23] further allowed identifying relevant

genes that exhibit differential expression coincidently with

changes of androgen circulating levels along the reproductive

cycle. In addition, it enabled us to distinguish between the

somatic or germ cell origin of responsive genes. Functions

associated with regulated genes reveal potential mechanisms for

androgen actions. Finally, we performed a computational

phylogenetic footprinting analysis and pointed out potential

direct target genes of androgens whose promoters harbour

evolutionary conserved AREs.

Materials and Methods

Ethics Statement
Experimental research on animal reported here was performed

in conformity with the principles for the use and care of laboratory

animals in compliance with French and European regulations on

animal welfare. Furthermore, experimenters were delivered an

authorization given by the French ‘‘Direction des Services

Vétérinaires’’ to conduct or supervise experimentations on live

animals.

Animals and Hormonal Treatment
Rainbow trout (Oncorhynchus mykiss) were maintained under

natural temperature and photoperiod at the INRA experimental

fish farm (Drennec, France).

Prepubertal male trout weighting 150+/234 g were submitted

to androgen supplementation using subcutaneous implants (Inno-

vative Research of America). Pellets used as implants were a ready-

to-implant form, using Matrix-Driven Delivery (MDD) Pellet

System (.21 day release; Innovative Research of America, USA).

Trout were anesthetized using phenoxyethanol and pellets were

implanted in the dorsal muscle, just behind the dorsal fin, using a

10-gauge trochar. The control group (n = 14) received an empty

pellet.

Four androgen supplementations were realized : 2 doses of

testosterone (T) were compared to detect potential dose response

effects. For the lowest T dose (T1 = 0.1 mg or 0.666 mg/g body

weight; n = 5), a single time point (day 7) was investigated. For the

highest T dose (T2 = 0.2 mg or 1.333 mg/g body weight ), 2 time

points were investigated to eventually discriminate between early

and late responses (day 7, n = 4; day 14, n = 5). The response to

11KT, a major androgen in fish physiology with low metabolisa-

tion potential, was also studied, although only at one dose and one

time point (0.25 mg or 1.667 mg/g body weight, day 7; n = 7) for

which the highest response to T was obtained.

Following supplementations, the testes were recovered, weighed

to determine the gonadosomatic index (GSI) and rapidly

immersed in Bouin’s solution for histological study or frozen until

use for microarray analysis. Blood samples were collected and

circulating androgen levels were measured by specific radioim-

munoassay (RIA) as previously described [24]. These experiments

were conducted in January and February, when most animals

were immature (containing spermatogonia only in terms of germ

cells). The testicular histology of both treated and control animals

was also carefully analysed.

cDNA Microarray Experiment
Microarray hybridization and raw data

production. cDNA microarrays (platform: http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc = GPL3650) were generated

by CRB GADIE (http://crb-gadie.inra.fr/) as previously de-

scribed [25]. Procedures for RNA extraction, cDNA target

synthesis using [alpha-33P] dCTP, microarray hybridization and

raw data production have been previously described in details

[23].

Normalization procedure. Expression data were normal-

ized as previously described [23]. Briefly, raw data were corrected

for the amount of spotted cDNA (Si/Vi). To avoid the bias

affecting relative gene expression levels, the corrected signal of

each spot was further multiplied by the median vector signal of all

arrays for this same spot ((Si/Vi) x medVi). Expression values were

then log2-transformed and submitted to a quantile-quantile

normalization [26] using the AMEN software (http://

sourceforge.net/projects/amen/; [27]. Raw data as well as a

normalized expression file are available at the GeneOmnibus

public data repository (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE16030).

Statistical and cluster analyses. Non-informative clones

for which too little cDNA was spotted (oligonucleotide signal ,3

times the background level in more than 20% of samples) were

removed from the analysis. Androgen-responsive genes were then

identified by comparing the control group to each of the treated

groups (T1, ‘‘T2, day7’’, ‘‘T2, day14’’, 11KT) using the multi-class

Limma statistical test (FDR 1%) [28]. All differentially-expressed

transcripts were submitted to the PAM algorithm (Euclidian

distance measure) and grouped into 4 expression clusters. Three

pairwise comparisons were also performed to identify genes

differentially-regulated by testosterone and 11KT at a comparable

time point (i.e. at day 7) using the Limma statistical test: control vs

‘‘T2, day7’’, controls vs 11KT, 11KT vs ‘‘T2, day7’’. Here, a

Bonferroni adjustment was used to obtain a global risk of type I

error equals to 1%. Thus, for any one comparison to be

considered significant, the p-value had to be less than 0.0033,

that is 1% divided by the number of pairwise comparisons. For

heatmap representations, unlogged data were loaded into the

MeV software (www.tm4.org/mev/) and normalized according to

the following formula: Value = [(Value) – Mean(Row)]/[Standard

deviation(Row)].

Metaanalysis. Expression data from testes at different

developmental stages and isolated germ cells populations [23]

were used to investigate the developmental pattern and the cell

type in which androgen-responsive genes are expressed. Briefly,

samples in this dataset included - Testes in early stages

containing slowly-dividing type A spermatogonia (Stage I) or

growing numbers of actively-dividing type B spermatogonia

(Stages IIa and IIb) - Maturing testes also containing meiotic

spermatocytes (Stage IIIb) and post-meiotic spermatids (Stage V)

- Spawning testes containing essentially mature spermatozoa

(stage VIII) (see [29,30] for a more precise description of all

stages) - Fractions of isolated germ cells enriched in spermato-

gonia, spermatocytes or spermatids obtained as previously

Androgen-Regulated Genes in Trout Testis
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described [31]. Genes differentially-expressed during testis

development (F’s statistic permutation test, FDR 5%) were

compared to androgen-responsive genes.

Trout Microarray Annotation and Functional Data Mining
Trout cDNAs spotted onto the microarray were annotated as

previously described [23]. GeneOntology (GO) terms associated to

fish genes and their rat, mouse and human orthologs were

extracted from the Ensembl database (version 52). Biological

mining of expression clusters was then performed by searching for

over- and under-represented functional GO terms (Gaussian

hypergeometric test) as compared to all well-measured genes,

using the AMEN software.

Prediction of Androgen Response Elements
As there is yet no genome sequence available for the

Oncorhynchus mykiss or any other salmonid we used that of

Gasterosteus aculeatus (Stickleback) as a reference. Stickleback

Ensembl genes were identified as previously described [23] and

their Transcriptional Start Sites (TSS) were localized using the

ensGene.txt file from UCSC (http://genome.ucsc.edu/) [32]. AREs

were predicted within genomic regions from 210000 base pairs

(bp) up to +2000 bp with respect to each TSS. Validated ARE

motif matrices (M00447, M00481, M00953, M00956 and

M01201) from the Transfac Professional database (release

2009.1; http://www.biobase-international.com) [33] were predict-

ed using the MATCH program [34]. Core and matrix similarity

cutoff values were set at 0.8.To reduce the number of false positive

and focus on motifs that are more likely to be functional, hits

sequences were required to be conserved between species [35]. For

each predicted motif, a cross-species conservation score was

processed by averaging the base-by-base phasCons scores

calculated between 8 vertebrates (chicken, fugu, human, medaka,

mouse, stickleback, tetraodon, and zebrafish) as provided by the

UCSC genome browser [36] and only motifs with such a cross-

species conservation score $0.8 were considered. Similarly, we

also screened for the presence of putative Estrogen Response

Elements (EREs) in the same gene promoter regions using the

validated M00191 Transfac matrice.

qPCR Experiments
Total RNAs were first treated with the turbo DNA-freeTM kit

(Ambion) and 2 mg were submitted to reverse-transcription (RT)

using random hexamer primers and 200 units of MMLV reverse

transcriptase (Promega). Real-time PCR assays were performed on

the StepOneTM Real-Time PCR System (Applied Biosystems)

using 1:30 diluted RT products, primers (300 nM) and Fast

SYBRH Green Master Mix (Applied Biosystems). Relative

expression levels were normalized using a reference gene, rps15

(clone 1RT58B15_B_A08), designed on the basis of its invariant

expression (low standard deviation) both in androgen treatment

and in spermatogenesis development microarray experiments

(Figure S1). Real-time PCR oligonucleotide primers were designed

using the perlprimer software (http://sourceforge.net/projects/

perlprimer/), verified with the oligoanalyser 3.1 web interface

(http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/) to

avoid self- and hetero-dimer formation as well as hairpin

structures, and matched (BLAST algorithm) against the SI-

GENAE trout contig collection (som.8 version) to avoid non-

specific annealing to other transcripts (Table S1). Aberrant values,

as determined by Dixon test (p,5%), were removed and statistical

analyses were performed using the Statistica software using the

non-parametric test of Mann & Whitney (n individuals = 5 to 7).

Results

Short-term Supplementations of Immature Male Trout
Induce Physiological Androgen Circulating Levels

We treated prepubertal males in early stages of maturation

(stages I-II), for which low basal androgen levels (1 to 2 ng/ml)

should make the detection of responsive genes more convenient

and sensitive, and we used implants with moderate releasing rates

so that possible toxicological effects would be very limited.

Supplementation of immature males with either T or 11KT

resulted in a significant increase in corresponding blood plasma

androgen concentrations (Figure 1A). T circulating levels were

increased 8 and 28 times in animals treated for 7 days with low

(T1) and high (T2) T doses, respectively (Figure 1A). Similarly,

11KT circulating levels were increased 32 times in animals treated

for 7 days with this hormone as compared to controls (Figure 1A).

Figure 1. Androgen plasma levels in male trout. A : Increased
androgen plasma concentrations following testosterone and 11-
ketotestosterone supplementation. Androgen circulating levels were
measured in stage I to II males supplemented for 7 or 14 days with
testosterone (0.1 mg, T1; 0.2 mg, T2) or 11-ketotestosterone (0.25 mg,
11KT) as well as in corresponding controls (Cont). B : Natural
testosterone (grey) and 11-ketotestosterone (black) circulating levels
throughout the male trout reproductive cycle. Roman numerals (I-VIII)
indicate testicular developmental stages. Mean values 6 standard
deviation are presented.
doi:10.1371/journal.pone.0053302.g001

Androgen-Regulated Genes in Trout Testis
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The induced androgen circulating levels correspond to physi-

ological concentrations since natural T and 11KT circulating

levels reach up to 90 and 170 ng/ml respectively during the trout

reproductive cycle (Figure 1B). Additionally, by restricting the

hormone supplementation to a few days, the gonadosomatic index

of treated animals was unchanged and no striking change in

cellular composition could be observed by qualitative histology

(data not shown). These treatments were therefore found optimal

to further investigating the influence of androgens on trout

testicular gene expression.

Identification of Androgen-responsive Genes in the Trout
Testis

We first identified androgen-regulated genes by comparing

testicular gene expression in controls and in all 4 treated groups.

Among 7916 accurately measured cDNAs, 485 were differentially

expressed (FDR ,1%) in testes of supplemented animals (Figure

S2, panel A). Overall the majority of these changes occurred

through up-regulation. Expression signals of only 100 cDNAs were

decreased following androgen treatment (cluster 1) whereas 327

were increased: 203 cDNAs showed the highest up-regulation at

day 7 following T implantation (T2 showing generally more effects

than the lower dose T1) (cluster 2) and 124 showed the highest

induction at day 14 (cluster 3). In addition, a smaller cluster of 58

cDNAs exhibited down-regulation at day 7 and up-regulation at

day 14 (cluster 4). Extensive information for all the androgen-

responsive genes, including expression data, cluster information

and corresponding annotations, is provided in File S1.

We next compared the effects of different androgen treatments

at day 7 and found that the influence of T was stronger than that

of 11KT: Among the 485 androgen-regulated genes, 84 genes

were indeed significantly regulated by T only (T2, day 7) while 6

genes were regulated by 11KT only (p,0.0033) (Figure S3; these

genes are marked ‘‘T only’’ and ‘‘11KT only’’ in File S1). In

addition, all the 26 genes regulated by both androgens were found

to be more influenced by T treatment (p,0.0033; Figure S3;

marked ‘‘T .11KT’’ in File S1).

Androgens Mainly Affect Gene Expression in Testicular
Somatic Cells

The expression profiles of responsive genes were then further

investigated during pubertal development of the gonad, using

expression data obtained from trout testes in different maturation

states (early stages I to V of spermatogenesis and late stage VIII of

sperm excretion in the efferent ducts) and from isolated germ cell

fractions enriched in spermatogonia, spermatocytes or spermatids

[23].

Consistent with a physiological response to androgen supple-

mentation we found that most of the androgen-responsive genes

were also differentially expressed during the course of the

reproductive cycle (Figure S2, panel B). More importantly, we

showed that androgen-responsive genes were preferentially

expressed in somatic cells: Among the 304 androgen-regulated

genes that were identified as differentially-expressed during

spermatogenesis, 242 were indeed found in somatic expression

clusters (A–D in table 1) while only 62 belonged to germ cell

expression clusters (E–I in table 1) (Figure 2).

Strikingly, most up-regulated genes were found in the ‘‘somatic’’

clusters A or C of the spermatogenesis study (Table 1 and Figure 2),

which exhibit a high or a very high expression in stage VIII testes,

coinciding with the greatest circulating androgen levels during the

reproductive cycle (Figure 1B). Conversely, out of the 29 somatic

genes that were down-regulated following experimental androgen

supplementation (cluster 1), 22 were found in cluster B of the

spermatogenesis study, which exhibits low or very low expression

in stage VIII testes (Table 1 and Figure 2).

The dynamics of these somatic genes are therefore highly

consistent with a regulation by endogenous androgens during the

natural course of the reproductive cycle, and with a role in testis

maturation or in the spermatogenetic processes. Important to note

is that, while T and 11KT exhibit highest circulating levels during

late phases of the reproductive cycle, they first significantly

increase at the recrudescence phase (Stages I-II-III, panel in

Figure 1B). Therefore part of the responsive genes may be tightly

regulated by androgens at the onset of spermatogenesis.

Importantly, a few genes from the germ cell expression clusters

also exhibited remarkable features following androgen supple-

mentations : Out of the 35 androgen-responsive genes from

‘‘spermatogonial’’ expression clusters (E and F), 24 were down-

regulated in treated animals (cluster 1). On the other hand, 15 of

the 16 genes from the meiotic/post-meiotic expression cluster (H)

were up-regulated (clusters 2 and 3) following androgen treatment

(Table 1 and Figure 2). This indicates that, in addition to

regulating gene expression in supporting somatic cells, androgen

treatment would result in a shift in germ cell expression profiles,

from mitotic spermatogonia to meiotic spermatocytes.

Potential Direct Targets of Androgens are Revealed by
Promoter Analysis

Like in most studies that aimed at identifying androgen-target

genes in the testis, the picture obtained in our experimental

scheme is likely to result from a complex cascade of gene, protein

or endocrine regulations, with only a small number of genes being

under the direct control of the AR.

To identify genes potentially directly regulated by androgens

we searched for AREs within the promoter of androgen-

regulated genes. Because the Oncorhynchus mykiss genome was not

available we used that of Gasterosteus aculeatus as a reference and

considered evolutionary conserved AREs only (i.e. sequences

with a high evolutionary conservation score across up to 8

vertebrates). A total of 775 matching sequences were assigned to

the promoter regions (210000/+2000 bp relative to the TSSs)

of 283 out of the 395 trout androgen-regulated genes that also

displayed a clear ortholog in Gasterosteus aculeatus (Figure 3). We

next focused on those androgen responsive genes that also

exhibit differential expression during spermatogenesis and, when

restricting the exploration to a more proximal promoter

(22000/+400 bp relative to the TSS), we identified 53 genes

(18.7%) that presented at least one putative conserved ARE. We

found that 42 of these genes belonged to somatic cell expression

clusters, which represent the most promising direct targets of the

AR in this study (column labeled ‘‘predicted as ‘‘Somatic’’ with

a proximal ARE’’ in File S2).

Of note is that searching for conserved AREs was compulsory

for us in order to reveal AREs that might also be present in the

trout genome. While this method fails to identify a subset of

species-specific regulatory elements, it allows focusing on

sequences that are more likely to be functional given that

important DNA regulatory regions tend to be conserved

between species [35]. All information regarding androgen-

responsive genes that contain at least one conserved ARE in

their promoter regions (210000/+2000 bp relative to the TSSs)

is reported in the File S2.

Androgen-Regulated Genes in Trout Testis
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Functional Implication of Androgens are Revealed by
GeneOntology Terms Analysis

We performed a GeneOntology (GO) term analysis to evaluate

the functional impact of testicular changes in expression mediated

by androgens (Figure 4 and Figure S4).

Importantly a statistical enrichment was found for genes

involved in ‘‘sex determination’’ within genes that were up-

regulated mainly at day 7 (cluster 2). The same cluster was

enriched in genes involved in ‘‘regulation of cyclic nucleotide

metabolic process’’. Genes that were up-regulated later on, at day

14 (clusters 3 and 4), were found to bear common and overlapping

functions related to ‘‘collagen metabolism’’ and ‘‘collagen organi-

Figure 2. Expression of androgen-responsive and developmentally-regulated genes. Heatmap representation of specific expression
clusters of androgen-regulated genes that also display differential expression during trout spermatogenesis. Subgroups of genes were established by
crossing 4 clusters (1 to 4) of androgen-responsive genes and 9 clusters (A to I) of spermatogenesis as indicated in table 1. For these genes, we
present expression signals obtained: - in testes from controls and androgen-supplemented animals, and - in testes at various developmental stages
and in enriched fractions of isolated germ cells. Normalized expression values are shown according to the scale bar while histograms represent
averaged fold changes to the control (androgens data) or to the stage I (spermatogenesis data) 6 SEM for each cluster. T1 and T2 correspond to
animals supplemented with testosterone implants of 0.1 and 0.2 mg, respectively; 11KT indicates animals treated with 11-ketotestosterone implants
of 0.25 mg; d7 and d14 correspond to animals treated for 7 and 14 days, respectively. Roman numerals (I–V and VIII) indicate testicular
developmental stages. Sg, Sc and St correspond to isolated germ cell populations enriched in spermatogonia, spermatocytes and spermatids,
respectively. The annotation of each gene is accessible in the searchable File S1.
doi:10.1371/journal.pone.0053302.g002
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zation’’, ‘‘ion transport’’ or several developmental processes such

as ‘‘ossification’’, ‘‘skin development’’ and ‘‘visual perception’’

(Figure 4). When focusing on androgen-regulated genes with

‘‘somatic’’ expression (clusterA–D), additional processes were also

found enriched such as ‘‘positive regulation of hormone secretion’’

‘‘regulation of transcription factor import into nucleus’’ or ‘‘water

transport’’.

Overall these particular expression changes suggest an impor-

tant role for androgens in remodelling extracellular matrix and the

seminiferous tubule structure, which was also evidenced at the

‘‘Molecular function’’ (e.g. ‘‘extracellular matrix structural con-

stituent’’, ‘‘structural molecule activity’’) and ‘‘Cellular compo-

nent’’ levels (e.g. ‘‘extracellular region’’ and ‘‘extracellular matrix

part’’) (Figure S4).

Real-time PCR Validation of Candidate Genes
We choose several somatic transcripts possibly involved in

paracrine regulations and representative of the 3 major androgen-

responsive clusters to perform qPCR measurments (Figure 5). We

confirmed the strong inhibition of 4 genes that are also down-

regulated during the spermatogenetic maturation process: inhba

and clu are inhibited by both T and 11KT whereas amh and angptl7

are mainly influenced by T. In addition, the moderate down-

regulation of inha following 7 days of T supplementation and the

strong and wide inhibition of star by T were also confirmed.

Noteworthy is that these 2 genes exhibited high expression in stage

VIII testes. Among the up-regulated genes we investigated, il13ra2,

cxcl14, cldn11 and zpacp were confirmed to be increased by T and

11KT (Figure 5), while the up-regulation of fgf12 was confirmed

statistically for 11KT only (data not shown).

We also intended to validate the regulatory effect of androgen

treatments on several somatic genes encoding for transcription

factors of interest for testis pubertal development (Figure 5). tbx1,

whose expression strongly decreases throughout the reproductive

cycle, was confirmed to be down-regulated, while dmrt1, a testis-

specific factor, was up-regulated by the two androgens. Surpris-

ingly, when investigating the expression of sox9, only sox9a was

confirmed to be highly up-regulated after both T and 11KT

treatment whereas sox9b was down-regulated by T. It is likely that

sox9a mRNA actually cross-hybridizes onto the sox9b cDNA probe,

resulting in its apparent up-regulation of both factors when using

cDNA microarrays.

The expression of 8 germ cells transcripts was also further

investigated. In those cases the statistical validation was rendered

difficult post probably because of the low amplitude of androgen

effects, notably for genes preferentially expressed in spermatogonia

and down-regulated by androgens (noc21, bop1, eprs, prpf8 and

Table 1. Summary of androgen-responsive clones that also exhibit differential expression during spermatogenesis.

1 - Downregulated
2 - Upregulated
at day 7

3 - Upregulated
at day 14

4 - Down at day 7, Up at
day 14

A - Somatic 4 65 40 6

B - Somatic, low in stage VIII 22 5 22 9

C - Somatic, high in stage VIII 1 40 6 3

D - Somatic+isolated spermatogonia 2 7 7 4

E - Spermatogonia - type A 19 1 1 4

F - Spermatogonia - type B 5 2 2 1

G - Germline 2 3 2 0

H - Meiotic/Post-meiotic 0 10 5 1

I - Isolated germ cells only 1 3 0 0

Subgroups of clones were established by crossing 4 clusters of androgen-responsive genes (1 to 4, present study) and 9 clusters (A to I) of genes differentially expressed
during trout spermatogenetic development [23]. Bolded numbers indicate subgroups of genes that are represented in Figure 2.
doi:10.1371/journal.pone.0053302.t001

Figure 3. Identification of conserved Androgen Response
Elements within the promoter of androgen-regulated genes.
A : The relative number of genes displaying 0 to 14 conserved AREs is
presented. Conserved AREs (cAREs) were searched in a region of
210000/+2000 base pairs relative to the TSS in the promoter of 395
androgen-responsive gene orthologs in Gasterosteus aculeatus. B :
Frequency of conserved AREs in the promoter regions of androgen-
responsive genes with respect to the TSS, expressed by number of sites
per kilobase of DNA.
doi:10.1371/journal.pone.0053302.g003
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rnf17). However, similar profiles for PCR and microarray data

were obtained for eprs and prpf8 (data not shown) and a significant

down-regulation was confirmed for noc2l (Figure 6). Furthermore 3

genes preferentially expressed in meiotic and post-meiotic germ

cells, rsph3, morn3 and bty, were confirmed to be up-regulated

following T supplementation.

Discussion

Androgens, in fish species notably, have been shown to

masculinize the female gonad, to trigger spermatogenesis onset

and to promote testis growth and maturation. In this study we

provide new information on molecular pathways regulated by

androgens in the testis of a vertebrate.We identified a complement

of genes showing transcript regulation in fish testis after androgen

supplementation, and a number of evidences support the

physiological relevance of the data: Changes in expression were

obtained in response to physiological doses of androgens and

before any modification of the testis cell composition could be

detected. The highly cyclic and partially synchronous development

of the trout testis made it a choice model to show that many of

these androgen-regulated genes are naturally differentially ex-

pressed at particular stages of testicular development, suggesting

that they are indeed involved during testis maturation or during

spermatogenesis. The model also enabled to predict in which cell

type the regulated transcripts are expressed [23]: Regulated

transcripts were preferentially found in the somatic compartment

of the gonad, which is in agreement with the known expression of

the AR in testicular somatic cells ([37,38]; and this work: Figure

S5). We notably find many somatic cell genes whose develop-

mental patterns fit well with changes in endogenous androgen

circulating levels during natural testis maturation, which further

reinforces the physiological significance of the data reported here.

With this study we thus provide a substantial body of data and

identify genes that likely contribute to pubertal development in the

testis. Most of the comprehensive and useful information regarding

these androgen-regulated genes - including expression during testis

development, promoter analysis as well as annotation - is provided

in the File S1 and in the File S2. Taken together these data also

allow further speculating on the molecular mechanisms of

androgen action in the testis.

The potential impact of androgens could include an active role

in the initiation of spermatogenesis. Indeed, besides their effects on

somatic cells, androgens altered the germ line towards more

differentiated germ cell expression profiles. This would be quite in

agreement with experimental data obtained in other fish species

that showed androgens to induce spermatogenesis or accelerate

this process (for reviews, see [39,40]). In trout, Baron and

collaborators found that in early sexual differentiation, a

prolonged treatment of female embryos with high doses of

androgens promote testicular organization with apparition of

meiosis whereas control male gonads contain only spermatogonia

[41]. The way androgens act on germ cells and influence their

Figure 4. Enriched biological processes among testicular androgen-responsive genes. Over-represented ‘‘biological process’’ terms from
the GeneOntology (GO) were identified in the 4 expression clusters of androgen-responsive genes (1 to 4) as well as in 3 groups of androgen-
regulated genes that exhibit ‘‘somatic’’ (A to D), ‘‘spermatogonial’’ (E and F) and ‘‘germline’’ (G to I) expression profiles during spermatogenesis.
Rectangles indicate the observed (left) and expected (right) numbers of genes bearing the corresponding GO term whereas the number of genes
exhibiting this GO term on the entire microarray is given on the left. Only GO terms with a p-value of #1026 and for which at least 3 non-redundant
genes were in the cluster were considered as statistically enriched. To avoid redundancy between closely related terms an Ontology Specific
Information Rate (OSIR) cutoff of $0.95 was selected [27]. Numbers in bold indicate a statistical enrichment for a given GO term according to the
scale bar.
doi:10.1371/journal.pone.0053302.g004
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Figure 5. Real-time PCR validation of candidate genes. Relative expression profiles as measured by qPCR in the androgen supplementation
experiment (left panel) and by microarray during spermatogenesis (right panel). The mRNA levels measured by qPCR were normalised to the Rps15
gene reference levels whereas microarray data correspond to Log2-transformed signal intensities. Mean values 6 SEM are are presented. One, 2 or 3
star symbols indicate p,0.05, p,0.01 or p,0.005, respectively, when comparing treated samples and corresponding controls (cont) using the non-
parametric test of Mann & Whitney. T1 and T2 correspond to animals supplemented with testosterone implants of 0.1 and 0.2 mg, respectively. 11KT
indicates animals treated with 11-ketotestosterone implants of 0.25 mg. Day 7 and Day 14 correspond to animals treated for 7 and 14 days,
respectively. The number of biological replicates used for qPCR experiments is indicated in brackets. Roman numbers (I–V and VIII) indicate testicular
developmental stages analysed by microarrays. Sg = spermatogonia. Sc = spermatocytes. St = spermatids.
doi:10.1371/journal.pone.0053302.g005

Figure 6. Real-time PCR validation of candidate genes (continued).
doi:10.1371/journal.pone.0053302.g006
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proliferation and differentiation is likely to be indirect and to

involve growth factors and extracellular signaling from the somatic

compartment. Importantly, we found that androgens strongly

down-regulate inhba and amh transcripts, two members of the

Activin family. Activins have effects on many physiological

processes, including a stimulatory effect on spermatogonia

proliferation [42,43]. Inhibition of the ßA subunit would prevent

the formation of biologically active activin, particularly activin A

(dimer ßA-ßA), and could therefore have a blocking action on

germ cell proliferation and allow their differentiation towards

meiosis. This is consistent with our observation of a rapid decrease

of this transcript when meiosis develops during the reproductive

cycle (stages III-V of spermatogenesis), coincidently with an

increase in androgen levels. AMH (or Mullerian inhibiting

substance) production in the mouse fetal testis has been linked

with male-specific differentiation events associated with the

assignment of male gender to PGCs [44]. amh expression and its

hormonal regulation were studied in trout during gonad sex

differentiation [45] but its role in the adult male gonad is mainly

ignored. In vitro, when applied to prepubertal eel and zebrafish

testis explants, AMH prevents androgen-stimulated proliferation

or differentiation of early spermatogonia [46,47]. For the first time

in trout we show that both T and 11KT can down-regulate amh in

the early stages of pubertal maturation. Interestingly, we show that

amh transcript relative abundance rapidly decreases during the

natural reproductive cycle in inverse correlation with the large

increase in circulating levels of T and 11KT (this study), and that

amh transcripts are preferentially accumulated in Sertoli cells

surrounding early spermatogonia [23]. In agreement, accumula-

tion of the ar transcripts in Sertoli cells surrounding early germ

cells was demonstrated in zebrafish testis [37]. Our data reinforce

the idea that androgen-mediated suppressions of AMH and activin

are physiologically required for initiation of active spermatogenesis

at puberty. We propose to extend this hypothesis to several down-

regulated candidates from cluster 1 with known functions in cell

fate/growth or differentiation, including inhibin, folistatin like 1,

BMP and activin membrane-bound inhibitor (BAMBI), Platelet-

derived growth factor receptor beta, TGFB-inducible early growth

response protein 2, Proliferation-inducing gene 32 protein,

secreted retinol binding protein 4 and Angiopoietin-like factor 7.

Other genes involved in cell commitment and specification (tbx1,

sox8, sox9a and sox9b), were found regulated in androgen-treated

prepubertal testes. By regulating the expression of such genes,

androgens might influence the differentiation and function of the

supporting somatic cells during the reproductive cycle. Further-

more, some of these genes are known as important for sex

determination/differentiation (sox9a, dmrt1 and nr0b1) in the trout

larvae [41], which emphasizes some similarities of androgen action

both in adult testis development and in early gonad differentiation.

In addition to their roles during testis recrudescence, other

regulated genes also emerge as probably involved in later stages of

the reproductive cycle, at the time of sperm excretion. Within up-

regulated genes, statistical enrichment was found for genes

involved in ‘‘water transport’’ (aqp1, aqp4 and itpn/vspn) and ‘‘ion

transport’’, including ‘‘chloride transport’’ and ‘‘potassium trans-

port’’ (c1qtnf5, c1qtnf6, clic4, col1a1, col5a1, col6a2, col12a1, col18a1,

gabra1, gabra3, ppap2a, slc12a4 and slc26a4), and ‘‘proton transport’’

(atp6v0a2, atp6v1f and rsph3). These functions are highly relevant

concerning the final maturation of spermatozoa in fish, which

relies on seminal plasma pH and Ca2+ concentrations, their

motility in the male tract, which depends on K+ concentration,

and their excretion, which involves H2O transport [48,49].

Strikingly, these genes were also found strongly up-regulated in

the ultimate stages of normal testicular development or spermato-

genesis (Figure 2: clusters A, C, G and H). Therefore the related

genes reported here represent strong new candidates in sex steroid

control of sperm hydration and final maturation in seminiferous

tubules and efferent ducts.

An interesting issue regarding androgen function in fish species

resides in the respective roles of T and 11KT for promoting male

germ cell differentiation: 11KT was shown to be a potent

androgen in some species [15,16,17,19], and in other cases T

was shown to have no, or only weak positive effects [18,21]. More,

T inhibits the positive effects of 11KT on germ cell proliferation

and testis maturation in the African catfish [22]. Under our

experimental conditions T appeared quantitatively and in several

cases qualitatively more active than 11KT (more transcripts

significantly modified with stronger regulatory effects following 7

days of treatment) at similar blood plasma concentrations. The

mechanisms underlying the different effects of T and 11KT

remain unknown. Specific conformation changes of the AR upon

ligand binding may account for an efficient interaction with

different transcription cofactors. Furthermore, the rainbow trout

contains two distinct isoforms of the androgen receptor, ARa1 and

ARa2 [50,51], that may differ in terms of response to 11KT as

suggested by the binding affinities of the ARa2 in the salmon

ovary [52]. Importantly, part of the specific effects we observed for

T may occur through its metabolisation into active products,

either locally or peripherally, including aromatization into

estradiol and the subsequent regulation of estrogen-responsive

genes. However, no evidence of such estrogenic effects could be

noticed: Indeed, according to unpublished microarray data, the

genes responding to T did not demonstrate significant changes in

estradiol-treated males (Figure S6). Actually, only two out of the

418 androgen-responsive genes were also found to be regulated

following estradiol-supplementation. Conversely, at the time

points analysed, androgen supplementations did not result in

change in expression for the vitellogenin or the choriogenin L

genes, two highly responsive genes to estrogenic compounds in

many fish tissues, including the testis (Figure S6; [53]). These

observations support the idea that T and 11KT have both distinct

and common functions in the gonad, even though a more detailed

analysis (several time points and several doses) would be required

to make final conclusions on the potencies of T compared to

11KT.

Although we presume that most changes in expression occurred

via the intra-testicular action of androgens, we cannot exclude that

the effects we observe after in vivo supplementation partially result

from alteration in the circulating levels of gonadotropin or other

endocrine factors, or from the regulation of the testicular hormone

receptivity. Indeed, positive and inhibitory effects on basal

gonadotropin secretion by testosterone during the early-recrudes-

cence phase of the gonadal cycle have been reported [54,55]. In

addition, we found that the fshr transcript was slightly down-

regulated and that lhr was up-regulated at day 7, suggesting that

the responsiveness to gonadotropin might be changed in treated

animals. While the expression of ara1 and ara2 themselves was not

modified following androgen treatment (Figure S5), genes

encoding factors involved in the androgen or steroid metabolic

pathways (cyp17a1, fdxr, hs3db2, star and tdh) or that mediate the

response to androgens (nr0b1 and pap2a) were regulated. This is

consistent with the modulation of steroidogenesis in an auto-

regulatory manner [56]. Such feedback loops are important for

fine tune local regulation of testicular steroid production, and

inhibitory effects may prevent Leydig cell hyperactivity in some

stages of puberty.

Finally, when androgens act directly at the testis level, only a

small proportion of the regulated genes are expected to be under
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the direct control of the AR. Using a phylogenetic footprinting

approach we identified 42 genes as potential direct targets of the

AR in the trout testis. Indeed, those androgen-regulated genes are

of particular relevance as they have at least one highly conserved

ARE predicted in their proximal promoter region (22000/+400

with respect to their TSSs) and they are expressed in somatic cells

where the AR is also present. This in silico analysis also highlighted

genes that harbor two or more putative AR binding sites nearby

the transcription initiation start site and are of great interest :

Others and we have indeed demonstrated that multiple AREs,

cooperate to confer full responsiveness and cell specific expression

of some androgen target genes including for example, Igf1 [57],

Lcn5 [58], Rhox5 [59] or Slp [60]. Of note is that, in addition to

cAREs, we also found potential cEREs within the promoter of

androgen-responsive genes (File S2). In silico promoter analyses

indeed remain predictions and we we do not expect all predicted

response elements to be functional. Instead we believe the somatic

genes that respond to androgens and that also display proximal or

multiple putative cAREs are preferential candidates for future

functional validations.

In conclusion, we have identified a complement of genes

expressed in the somatic compartment and predicted to be under

the influence of androgens during testicular development in trout.

Functions associated with these genes reveal potential mechanisms

through which androgen exert their regulatory actions in tubule

formation, germ cell differentiation, sperm secretion, and steroid

production. Therefore we provide meaningful information on the

mechanism by which T and/or 11KT could regulate germ cell

production in vertebrates.

Supporting Information

Figure S1 Expression profile of the reference gene rps15
in microarray datasets. Expression of rsp15 (clone

1RT58B15_B_A08) as measured in androgen supplementation

and spermatogenesis datasets. Histograms represent means 6

standard deviation of Log2-transformed signal intensities. Cont

correspond to untreated control animals. T1 and T2 correspond to

animals supplemented with testosterone implants of 0.1 and

0.2 mg, respectively. 11KT indicates animals treated with 11-

ketotestosterone implants of 0.25 mg. Day 7 and Day 14 indicate 7

and 14 day post-implantation, respectively. Roman numbers (I–V

and VIII) indicate testicular developmental stages. Sg = sperma-

togonia. Sc = spermatocytes. St = spermatids.

(TIF)

Figure S2 Changes in testicular gene expression follow-
ing androgen supplementation. Heatmap representation of

418 androgen-responsive genes (485 clones) in the trout testis.

After statistical filtration, co-expressed transcripts were classified

into 4 clusters (1–4) using the PAM algorithm. For these genes, we

present expression signals obtained: - in testes from controls and

androgen-supplemented animals, and - in testes at various

developmental stages and enriched fractions of isolated germ

cells. Each line represents the expression signal of a single clone

and each column is a sample. Normalized expression values are

shown according to the scale bar while histograms represent

averaged fold changes to the control (androgens data) or to satge I

(spermatogenesis data) 6 SEM for each cluster. T1 and T2

correspond to animals supplemented with 0.1 and 0.2 mg

testosterone implants, respectively; 11KT indicates animals treated

with 0.25 mg 11-ketotestosterone implants; d7 and d14 corre-

spond to animals treated for 7 and 14 days, respectively. The gene

annotation of each cluster is accessible in the searchable File S1.

(TIF)

Figure S3 Expression of genes altered differently by
testosterone and 11-ketotestosterone treatments. Heat-

map representation of 103 androgen-responsive genes (116 clones)

which regulation by testosterone and 11-ketotestosterone differs

statistically. Genes are displayed according to their response to

testosterone only (T only; Up- or Down-regulated), to 11-

ketotestosterone only, or to their greater response to testosterone

(T .11KT; Up or Down regulated). Each line represents the

expression signal of a single clone and each column is a sample.

Normalized expression values are shown according to the scale bar

while histograms represent averaged fold changes to the control 6

SEM for each cluster. T1 and T2 correspond to animals

supplemented with testosterone implants of 0.1 and 0.2 mg,

respectively; 11KT indicates animals treated with 11-ketotestos-

terone implants of 0.25 mg; d7 and d14 correspond to animals

treated during 7 and 14 days, respectively. The gene annotation of

each cluster is accessible in the searchable File S1.

(TIF)

Figure S4 Enriched molecular functions and cellular
components GeneOntology terms among testicular
androgen-responsive genes. Over-represented ‘‘biological

process’’ terms from the GeneOntology (GO) were identified in

the 4 expression clusters of androgen-responsive genes (1 to 4) as

well as in 3 groups of androgen-regulated genes that exhibit

‘‘somatic’’ (A to D), ‘‘spermatogonial’’ (E and F) and ‘‘germline’’

(G to I) expression profiles during spermatogenesis. Rectangles

indicate the observed (left) and expected (right) numbers of genes

bearing the corresponding GO term whereas the number of genes

exhibiting this GO term on the entire microarray is given on the

left. Only GO terms with a p-value of #1026 and for which at

least 3 non-redundant genes belonged to the cluster were

considered as statistically-enriched. To avoid redundancy between

closely related terms an Ontology Specific Information Rate

(OSIR) cutoff of $0.95 was selected [27]. Bolded numbers

indicate a statistical enrichment for a given GO term according to

the scale bar.

(TIF)

Figure S5 Expression profiles of ara1 and ara2. Expres-

sion of ara1 and ara2 was measured by qPCR and normalised to

rps15 expression levels. Cont corresponds to untreated control

animals. T1 and T2 correspond to animals supplemented with

testosterone implants of 0.1 and 0.2 mg, respectively. 11KT

indicates animals treated with 11-ketotestosterone implants of

0.25 mg. Day 7 and Day 14 indicate 7 and 14 day post-

implantation, respectively. Roman numerals (I-VIII) indicate

developmental stages. SgA/B = Type A/B spermatogonia; ScI/

II = primary/secondary spermatocytes; St = spermatids

(TIF)

Figure S6 Androgen- versus estrogen-responsive genes.
A: Heatmap representation of the expression of all the androgen-

responsive genes according to the androgen-supplementation

experiment (this study) as well as to the estradiol-supplementation

experiment (unpublished data). Normalized expression data are

displayed according to the scale bar. B: Venn diagram showing the

overlap between androgen-responsive genes (this study) and

estradiol-responsive genes (unpublished data). C-F: Expression

profiles (as determined by microarray analysis) for two estradiol-

responsive genes (choriogenin in C, vitellogenin in D) and for two

estradiol- and androgene-responsive genes (aldh1l2 in E, mfap2 in

E). Histograms represent fold changes to the control 6 SEM.

(TIF)
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Table S1 Sequences of primers used in qPCR experi-
ments. The clone name, the corresponding gene symbol and the

sequence of forward and reverse primers (59-39) used for qPCR

measurements are indicated.

(DOC)

File S1 Androgen-responsive genes in the trout testis. A

searchable excel file containing normalized expression data (Log-2

transformed), annotations, and information about ‘‘Androgen

response’’ (clusters 1 to 4), ‘‘Testicular development’’ (clusters A to

I) and the identification of ‘‘conserved ARE’’ for the 485

androgen-responsive clones. Annotation provided contains the

‘‘Clone Name’’, the ‘‘Annotation status’’ (‘‘None’’, ‘‘Not confi-

dent’’, ‘‘Confident’’), the ‘‘EST Name’’ and ‘‘Organism’’ retained

for annotation, the corresponding ‘‘BLAT Score’’, the ‘‘Matching

type’’ (‘‘Exonic’’, ‘‘Intronic’’ or ‘‘Intergenic’’), the ‘‘Overlapping

length’’ (# base pairs; if ,0 corresponds to the distance from the

closest gene), the confidence index ‘‘n’’, the ‘‘Fish ortholog

Ensembl gene IDs’’ and ‘‘Fish ortholog Gene Symbols’’ and

‘‘Descriptions’’, the ‘‘Non redundant ID’’ (Ensembl Gene ID of

fish orthologs according to the following species availability:

Gasteosteus aculeatus, Danio rerio, Oryzias latipes or Takifugu rubripes), the

‘‘Mammalian ortholog Ensembl gene IDs’’ (for human, mouse and

rat), the ‘‘Mammalian ortholog gene symbols’’ and ‘‘Descriptions’’

and associated GeneOntology terms and IDs (‘‘Biological

process’’, Molecular function’’ and ‘‘Cellular component’’).

(XLS)

File S2 Identification of genes with putative conserved
Androgen Response Elements. An excel file containing all

putative conserved Androgen Response Elements (cAREs) and

Estrogen Response Elements (cEREs) identified in the promoter of

Gasterosteus aculeatus genes. Each line corresponds to one such

putative ARE. For genes harbouring several of these putative

response elements, as many lines as necessary are presented.

Provided is the ‘‘Ensembl Gene ID’’ and associated ‘‘Gene

Symbol’’ and ‘‘Description’’, the chromosome location (‘‘Chro-

mosome’’ and ‘‘Strand’’ of the gene; the ‘‘Start’’ and ‘‘End’’ of the

motif), the Transfac ‘‘Matrix ID’’ that matched the motif, the

corresponding ‘‘Genomic sequence’’, its position relative to the

Transcription Start Site (‘‘210000/25000’’, ‘‘25000/22000’’,

‘‘22000/21000’’, ‘‘21000/0’’, ‘‘0/+200’’, ‘‘+200/+400’’,

‘‘+400/+1000’’ and ‘‘+1000/+2000’’; labelled ‘‘0’’ or ‘‘1’’), the

‘‘Cross-species conservation score’’ and the ‘‘Orientation’’ of the

motif (+ or 2). Column D indicates those genes that are

‘‘Predicted as ‘‘Somatic’’ with a proximal cARE’’. If such a gene

harbours several putative AREs, then only that (those) identified in

the proximal region is (are) bolded.

(XLS)

Acknowledgments

We thank the SIGENAE informatics team for their support, the PEIMA

experimental fish farming facilities for the experimental animals and the

INRA-Rennes/BIOSIT functional genomic platform for advice.

Author Contributions

Conceived and designed the experiments: RH FC FLG. Performed the

experiments: ADR AL ASG JJL RH FC FLG. Analyzed the data: ADR

AL ASG JJL RH FC FLG. Contributed reagents/materials/analysis tools:

AL RH FC. Wrote the paper: ADR FLG.

References

1. Gharib SD, Wierman ME, Shupnik MA, Chin WW (1990) Molecular biology of

the pituitary gonadotropins. Endocr Rev 11: 177–199.

2. Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, et al. (2003)

Sertoli and germ cell development in hypogonadal (hpg) mice expressing

transgenic follicle-stimulating hormone alone or in combination with testoster-

one. Endocrinology 144: 509–517.

3. Singh J, O’Neill C, Handelsman DJ (1995) Induction of spermatogenesis by

androgens in gonadotropin-deficient (hpg) mice. Endocrinology 136: 5311–

5321.

4. El Shennawy A, Gates RJ, Russell LD (1998) Hormonal regulation of

spermatogenesis in the hypophysectomized rat: cell viability after hormonal

replacement in adults after intermediate periods of hypophysectomy. J Androl

19: 320–334; discussion 341–322.

5. Elkington JS, Blackshaw AW (1974) Studies in testicular function. I. Quantitative

effects of FSH, LH, testosterone and dihydrotestosterone on restoration and

maintenance of spermatogenesis in the hypophysectomized rat. Aust J Biol Sci

27: 47–57.

6. Meachem SJ, Ruwanpura SM, Ziolkowski J, Ague JM, Skinner MK, et al.

(2005) Developmentally distinct in vivo effects of FSH on proliferation and

apoptosis during testis maturation. J Endocrinol 186: 429–446.

7. Orth JM, Gunsalus GL, Lamperti AA (1988) Evidence from Sertoli cell-depleted

rats indicates that spermatid number in adults depends on numbers of Sertoli

cells produced during perinatal development. Endocrinology 122: 787–794.

8. Zhou Q, Nie R, Prins GS, Saunders PT, Katzenellenbogen BS, et al. (2002)

Localization of androgen and estrogen receptors in adult male mouse

reproductive tract. J Androl 23: 870–881.

9. Johnston DS, Russell LD, Friel PJ, Griswold MD (2001) Murine germ cells do

not require functional androgen receptors to complete spermatogenesis following

spermatogonial stem cell transplantation. Endocrinology 142: 2405–2408.

10. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, et al. (2004) Infertility with

defective spermatogenesis and hypotestosteronemia in male mice lacking the

androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 101: 6876–6881.

11. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, et al.

(2004) A Sertoli cell-selective knockout of the androgen receptor causes

spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 101: 1327–1332.

12. Holdcraft RW, Braun RE (2004) Hormonal regulation of spermatogenesis.

Int J Androl 27: 335–342.

13. Rolland AD, Jegou B, Pineau C (2008) Testicular development and

spermatogenesis: harvesting the postgenomics bounty. Adv Exp Med Biol 636:

16–41.

14. Borg B (1994) Androgens in teleost fishes. Comp Biochem Physiol C Pharmacol

Toxicol Endocrinol 109: 219–245.

15. Miura T, Yamauchi K, Takahashi H, Nagahama Y (1991) Hormonal induction

of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla

japonica). Proc Natl Acad Sci U S A 88: 5774–5778.

16. Kobayashi M, Aida K, Stacey NE (1991) Induction of testis development by

implantation of 11-ketotestosterone in female goldfish. Zool Sci 8: 389–393.

17. Amer MA, Miura T, Miura C, Yamauchi K (2001) Involvement of sex steroid

hormones in the early stages of spermatogenesis in Japanese huchen (Hucho

perryi ). Biol Reprod 65: 1057–1066.

18. Cavaco JE, Vilrokx C, Trudeau VL, Schulz RW, Goos HJ (1998) Sex steroids

and the initiation of puberty in male African catfish (Clarias gariepinus).

Am J Physiol 275: R1793–1802.

19. Leal MC, de Waal PP, Garcia-Lopez A, Chen SX, Bogerd J, et al. (2009)

Zebrafish primary testis tissue culture: an approach to study testis function ex

vivo. Gen Comp Endocrinol 162: 134–138.

20. De Clercq L, Remacle C, Demal J (1977) Gonads of Carassius auratus (teleosts)

in organ culture: a new technique and the effects of testosterone. In Vitro 13:

85–90.

21. Cochran RC (1992) In vivo and in vitro evidence for the role of hormones in fish

spermatogenesis. J Exp Zool 261: 143–150.

22. Cavaco JE, Bogerd J, Goos H, Schulz RW (2001) Testosterone inhibits 11-

ketotestosterone-induced spermatogenesis in African catfish (Clarias gariepinus).

Biol Reprod 65: 1807–1812.

23. Rolland AD, Lareyre JJ, Goupil AS, Montfort J, Ricordel MJ, et al. (2009)

Expression profiling of rainbow trout testis development identifies evolutionary

conserved genes involved in spermatogenesis. BMC Genomics 10: 546.

24. Fostier A, Billard R, Breton B, Legendre M, Marlot S (1982) Plasma 11-

oxotestosterone and gonadotropin during the beginning of spermiation in

rainbow trout (Salmo gairdneri R.). Gen Comp Endocrinol 46: 428–434.

25. Rescan PY, Montfort J, Ralliere C, Le Cam A, Esquerre D, et al. (2007)

Dynamic gene expression in fish muscle during recovery growth induced by a

fasting-refeeding schedule. BMC Genomics 8: 438.

26. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.

27. Chalmel F, Primig M (2008) The Annotation, Mapping, Expression and

Network (AMEN) suite of tools for molecular systems biology. BMC

Bioinformatics 9: 86.

Androgen-Regulated Genes in Trout Testis

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e53302



28. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:
Article3.

29. Gomez JM, Loir M, Le Gac F (1998) Growth hormone receptors in testis and

liver during the spermatogenetic cycle in rainbow trout (Oncorhynchus mykiss).
Biol Reprod 58: 483–491.

30. Gomez JM, Weil C, Ollitrault M, Le Bail PY, Breton B, et al. (1999) Growth
hormone (GH) and gonadotropin subunit gene expression and pituitary and

plasma changes during spermatogenesis and oogenesis in rainbow trout

(Oncorhynchus mykiss). Gen Comp Endocrinol 113: 413–428.
31. Loir M (1999) Spermatogonia of rainbow trout: I. Morphological characteriza-

tion, mitotic activity, and survival in primary cultures of testicular cells. Mol
Reprod Dev 53: 422–433.

32. Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, et al. (2008) The
UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36: D773–

779.

33. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, et al. (2006)
TRANSFAC and its module TRANSCompel: transcriptional gene regulation in

eukaryotes. Nucleic Acids Res 34: D108–110.
34. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, et al. (2003)

MATCH: A tool for searching transcription factor binding sites in DNA

sequences. Nucleic Acids Res 31: 3576–3579.
35. Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE (2000)

Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26:
225–228.

36. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast

genomes. Genome Res 15: 1034–1050.

37. de Waal PP, Wang DS, Nijenhuis WA, Schulz RW, Bogerd J (2008) Functional
characterization and expression analysis of the androgen receptor in zebrafish

(Danio rerio) testis. Reproduction 136: 225–234.
38. Galas JF, Hejmej A, Glogowski J, Bilinska B (2009) Morphological and

functional alterations in testes and efferent ducts of homogametic rainbow trout

Oncorhynchus mykiss Walbaum. Ann N Y Acad Sci 1163: 398–401.
39. Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, et al. (2010)

Control of puberty in farmed fish. Gen Comp Endocrinol 165: 483–515.
40. Schulz RW, de Franca LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, et al.

(2010) Spermatogenesis in fish. Gen Comp Endocrinol 165: 390–411.
41. Baron D, Montfort J, Houlgatte R, Fostier A, Guiguen Y (2007) Androgen-

induced masculinization in rainbow trout results in a marked dysregulation of

early gonadal gene expression profiles. BMC Genomics 8: 357.
42. Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM (1990) Activin

stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from
immature rat testis. Endocrinology 127: 3206–3214.

43. Miura T, Miura C, Yamauchi K, Nagahama Y (1995) Human recombinant

activin induces proliferation of spermatogonia in vitro in the Japanese eel
Anguilla japonica. Fish Sci 61: 434–437.

44. Adams IR, McLaren A (2002) Sexually dimorphic development of mouse
primordial germ cells: switching from oogenesis to spermatogenesis. Develop-

ment 129: 1155–1164.

45. Vizziano D, Randuineau G, Baron D, Cauty C, Guiguen Y (2007)

Characterization of early molecular sex differentiation in rainbow trout,

Oncorhynchus mykiss. Dev Dyn 236: 2198–2206.

46. Miura T, Miura C, Konda Y, Yamauchi K (2002) Spermatogenesis-preventing

substance in Japanese eel. Development 129: 2689–2697.

47. Skaar KS, Nobrega RH, Magaraki A, Olsen LC, Schulz RW, et al. (2011)

Proteolytically activated, recombinant anti-mullerian hormone inhibits andro-

gen secretion, proliferation, and differentiation of spermatogonia in adult

zebrafish testis organ cultures. Endocrinology 152: 3527–3540.

48. Alavi SM, Cosson J (2006) Sperm motility in fishes. (II) Effects of ions and

osmolality: a review. Cell Biol Int 30: 1–14.

49. Marshall WS, Bryson SE, Idler DR (1993) Gonadotropin action on brook trout

sperm duct epithelium: ion transport stimulation mediated by cAMP and Ca2+.

Gen Comp Endocrinol 90: 232–242.

50. Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, et al.

(2008) The fate of the duplicated androgen receptor in fishes: a late

neofunctionalization event? BMC Evol Biol 8: 336.

51. Takeo J, Yamashita S (1999) Two distinct isoforms of cDNA encoding rainbow

trout androgen receptors. J Biol Chem 274: 5674–5680.

52. Fitzpatrick MS, Gale WL, Schreck CB (1994) Binding characteristics of an

androgen receptor in the ovaries of coho salmon, Oncorhynchus kisutch. Gen

Comp Endocrinol 95: 399–408.

53. Woods M, Kumar A, Barton M, Woods A, Kookana R (2009) Localisation of

estrogen responsive genes in the liver and testis of Murray rainbowfish

Melanotaenia fluviatilis exposed to 17beta-estradiol. Mol Cell Endocrinol 303:

57–66.

54. Dickey JT, Swanson P (1998) Effects of sex steroids on gonadotropin (FSH and

LH) regulation in coho salmon (Oncorhynchus kisutch). J Mol Endocrinol 21:

291–306.

55. Khan IA, Hawkins MB, Thomas P (1999) Gonadal stage-dependent effects of

gonadal steroids on gonadotropin II secretion in the Atlantic croaker

(Micropogonias undulatus). Biol Reprod 61: 834–841.

56. Schulz RW, Vischer HF, Cavaco JE, Santos EM, Tyler CR, et al. (2001)

Gonadotropins, their receptors, and the regulation of testicular functions in fish.

Comp Biochem Physiol B Biochem Mol Biol 129: 407–417.

57. Wu Y, Zhao W, Zhao J, Pan J, Wu Q, et al. (2007) Identification of androgen

response elements in the insulin-like growth factor I upstream promoter.

Endocrinology 148: 2984–2993.

58. Lareyre JJ, Reid K, Nelson C, Kasper S, Rennie PS, et al. (2000)

Characterization of an androgen-specific response region within the 59 flanking

region of the murine epididymal retinoic acid binding protein gene. Biol Reprod

63: 1881–1892.

59. Barbulescu K, Geserick C, Schuttke I, Schleuning WD, Haendler B (2001) New

androgen response elements in the murine pem promoter mediate selective

transactivation. Mol Endocrinol 15: 1803–1816.

60. Adler AJ, Scheller A, Hoffman Y, Robins DM (1991) Multiple components of a

complex androgen-dependent enhancer. Mol Endocrinol 5: 1587–1596.

Androgen-Regulated Genes in Trout Testis

PLOS ONE | www.plosone.org 13 January 2013 | Volume 8 | Issue 1 | e53302


