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a b s t r a c t

Asymmetric meiotic divisions in mammalian oocytes rely on the eccentric positioning of the spindle

and the remodeling of the overlying cortex, resulting in the formation of small polar bodies. The

mechanism of this cortical polarization, exemplified by the formation of a thick F-actin cap, is poorly

understood. Cdc42 is a major player in cell polarization in many systems; however, the spatio-temporal

dynamics of Cdc42 activation during oocyte meiosis, and its contribution to mammalian oocyte

polarization, have remained elusive. In this study, we investigated Cdc42 activation (Cdc42–GTP),

dynamics and role during mouse oocyte meiotic divisions. We show that Cdc42–GTP accumulates in

restricted cortical regions overlying meiotic chromosomes or chromatids, in a Ran–GTP-dependent

manner. This polarized activation of Cdc42 is required for the recruitment of N-WASP and the

formation of F-actin-rich protrusions during polar body formation. Cdc42 inhibition in MII oocytes

resulted in the release of N-WASP into the cytosol, a loss of the polarized F-actin cap, and a failure to

protrude the second polar body. Cdc42 inhibition also resulted in central spindle defects in activated

MII oocytes. In contrast, emission of the first polar body during oocyte maturation could occur in the

absence of a functional Cdc42/N-WASP pathway. Therefore, Cdc42 is a new protagonist in chromatin-

induced cortical polarization in mammalian oocytes, with an essential role in meiosis II completion,

through the recruitment and activation of N-WASP, downstream of the chromatin-centered Ran–GTP

gradient.

& 2013 Elsevier Inc. All rights reserved.
Introduction

To become functional gametes competent for fertilization and
preimplantation embryonic development, mammalian oocytes
execute two rounds of asymmetric meiotic divisions, resulting
in the formation of a large oocyte, which retains most of the
maternal stores, and two small polar bodies. During the first
meiotic division, homologous chromosomes are segregated, and
genetic diversity is created through the resolution of the chias-
mata (Holt and Jones, 2009). During the second meiotic division,
which in mammals is completed only after fertilization, sister
chromatids are segregated in a manner that resembles mitotic cell
division (Perry and Verlhac, 2008).

The strong asymmetry of oocyte meiotic divisions is driven by
spindle positioning in the vicinity of the cortex. During meiosis I (MI),
the first meiotic spindle forms in the centre of the oocyte and
ll rights reserved.
migrates along its long axis towards the nearest cortical region
(Verlhac et al., 2000). Recent studies have revealed the key role of
cytoplasmic actin filaments nucleated by Formin-2 (Fmn2) and Spire-
type actin nucleators, in driving spindle migration (Azoury et al.,
2008; Li et al., 2008; Schuh and Ellenberg, 2008; Pfender et al., 2011).
When homologous chromosome separation is initiated, the MI
spindle has reached a subcortical location, resulting in a first asym-
metric division and the extrusion of one set of chromosomes in the
first polar body (PB1). The chromosomes that are retained in the
oocyte then promote the assembly of the Metaphase II (MII) spindle,
which remains anchored to the cortex of the ovulated oocyte. Upon
fertilization, meiosis resumes and a second asymmetric cell division
leads to the extrusion of the second polar body (PB2), containing one
set of segregated chromatids.

Eccentric spindle positioning, which is instrumental in the
asymmetric division process, triggers a profound remodeling of
the overlying cortical region (hereafter referred to as the polar-
ized cortex), including disappearance of membrane microvilli,
formation of a thick F-actin cap and polarized accumulation of
myosin II, PAR3, PAR6 and activated Rac GTPase (Longo and Chen,
1985; Maro et al., 1986; Simerly et al., 1998; Vinot et al., 2004;
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Duncan et al., 2005; Deng et al., 2007; Halet and Carroll, 2007).
The mechanism and role of this cortical remodeling are not
completely understood. Early studies have revealed the unique
ability of meiotic chromosomes to induce cortical remodeling in a
microtubule-independent manner (Longo and Chen 1985; Maro
et al. 1986), and a recent report has uncovered the instrumental
role of the GTPase Ran in this process (Deng et al., 2007). Ran is
activated (Ran–GTP) by the GTP/GDP exchange factor RCC1,
which is bound to chromatin, resulting in the generation of a
Ran–GTP gradient centered on the meiotic chromosomes
(Dumont et al., 2007). This diffusible Ran–GTP signal is necessary
for meiotic chromosomes to induce, at a distance, remodeling of
the nearby cortex, such as formation of the F-actin cap (Deng
et al., 2007). However, the molecular cascade initiated by Ran to
polarize the oocyte is poorly understood.

In other systems, from budding yeast to mammalian epithelia,
cell polarization is frequently associated with polarized activation
of the Rho GTPase Cdc42 (Heasman and Ridley, 2008). Interest-
ingly, N-WASP, a Cdc42 effector involved in actin filament
nucleation and branching (Miki et al., 1996; Rohatgi et al.,
1999), was recently reported to accumulate in the polarized
cortex of mouse MII oocytes (Yi et al., 2011). In addition, the
Arp2/3 complex, a major actin filament nucleator and down-
stream effector of N-WASP, was shown to localize at the polarized
cortex and to be required for the formation of the F-actin cap
overlying the meiotic spindle (Yi et al., 2011; Sun et al., 2011).
Overall, these findings point to a possible role for Cdc42 as the
upstream activator of the N-WASP/Arp2/3 machinery in oocyte
polarization. However, evidence for a polarized activation of
Cdc42 in mammalian oocytes is currently missing.

To examine a possible role for Cdc42 activation in oocyte
polarization, we employed a genetically-encoded fluorescent
probe based on the Cdc42-binding domain of WASP (EGFP–
wGBD; Benink and Bement, 2005) to detect active, GTP-bound
Cdc42 in live mouse oocytes. We show that Cdc42–GTP accumu-
lates, in a polarized fashion, in the cortex overlying the meiotic
spindle, during both meiosis I and II. Furthermore, we found that
the polarized activation of Cdc42 is driven by the Ran–GTP
gradient generated by meiotic chromosomes, from metaphase
through anaphase. In addition, we demonstrate that Cdc42
inhibition results in N-WASP detaching from the cortex, and the
loss of the F-actin cap. We further show that this Cdc42/N-WASP/
F-actin cascade is required for membrane protrusion and cytokin-
esis during polar body formation in meiosis II, but seems
dispensable for emission of the first polar body. A defect in
central spindle formation, associated with chromatid scattering,
was also observed in activated MII oocytes lacking Cdc42 activa-
tion. Therefore, Cdc42 is a new protagonist in the molecular
cascade leading to mammalian oocyte polarization and asym-
metric division, lying downstream of the cytoplasmic Ran–GTP
gradient, and upstream of N-WASP activation at the cortex.
Materials and methods

Oocyte collection and culture

MF1 mice (4–6 week-old) or OF-1 mice (8–10 week-old) were
injected with 7–10 IU PMSG (Intervet, Milton Keynes, England, or
Sigma, Lyon, France) for priming, followed 48 h later by 5–7.5 IU
hCG (Intervet, Milton Keynes, England or Sigma, Lyon, France) to
induce ovulation. GV and MII oocytes were collected from antral
follicles and oviducts, respectively, and recovered in M2 medium.
Oocytes were maintained at the GV stage by supplementing M2
medium with 250 mM dibutyryl-cAMP. For in vitro maturation,
GV oocytes were cultured in M16 medium in a 5% CO2 incubator.
To trigger oocyte activation and emission of the second polar
body in a synchronized manner, MII oocytes were incubated for
8 min in M2 medium containing 7% ethanol, followed by wash, as
described previously (Rogers et al., 2006). Ethanol treatment
results in a single prolonged rise in cytosolic Ca2þ concentration,
which recapitulates the events provoked by fertilization (Rogers
et al., 2006). All reagents and media were from Sigma (Dorset,
England, or Lyon, France), unless otherwise stated.
Expression of EGFP–wGBD, Cdc42T17N, Cdc42Q61L, Rac1Q61L and

RanT24N

Plasmids encoding the Cdc42–GTP probe EGFP–wGBD (a gener-
ous gift from Bill Bement) and dominant-negative Cdc42T17N
(obtained from Gary Bokoch via Addgene, plasmid 12973) were
subcloned in pcDNA3.1. EGFP–Cdc42Q61L in pcDNA3 and EGFP–
Rac1Q61L in pcDNA3 were obtained from Gary Bokoch (Addgene,
plasmids 12981 and 12986). After plasmid linearization, cRNAs
were prepared in vitro using the mMessage mMachine T7 Ultra kit
(Ambion) and pressure-injected in GV or MII oocytes. Expression of
the EGFP–wGBD probe was not associated with significant
dominant-negative phenotype in previous studies (Kim et al.,
2000; Cannon et al., 2001; Benink and Bement, 2005; Ma et al.,
2006; Zhang et al., 2008), nor in the present study. To inhibit Ran
function, oocytes were injected with purified RanT24N protein
(Cytoskeleton, Denver, CO, USA; 0.5 mg/ml in the pipette). Control
oocytes were injected with an equivalent amount of water.
Immunostaining and F-actin staining

Oocytes were fixed in paraformaldehyde (3.7% in PBS) for 30 min
and permeabilized with Triton X100 (0.25% in PBS) for 20 min. After a
3-hour incubation in a block solution consisting of 3% BSA in PBS,
oocytes were incubated with primary antibodies at 4 1C overnight,
washed three times, then incubated with the secondary antibodies for
1 h at 37 1C. The following primary and secondary antibodies were
used: N-WASP 30D10 (1:100; rabbit monoclonal, Cell Signaling
Technology, Boston, MA, USA), alpha-tubulin (1:200; mouse mono-
clonal, Abcam, Paris, France), Alexa Fluor 488 Goat anti-mouse IgG,
Alexa Fluor 488 Goat anti-rabbit IgG, and Alexa Fluor 555 Goat anti-
rabbit IgG (all 1:1000; Life Technologies, Saint Aubin, France). To label
F-actin, permeabilized oocytes were incubated for 5 min in PBS
containing Alexa Fluor 546 Phalloidin (5 U/ml; Life Technologies),
followed by wash. Chromatin was labeled with To-Pro-3 (5 mM; Life
Technologies) in fixed oocytes, and with Hoechst 33342 (5 mg/ml; Life
Technologies) in live oocytes.
Image acquisition and analysis

Oocytes were placed on glass-bottom dishes (MatTek, Ashland,
MA, USA) and imaged using either an LSM510meta confocal
microscope (Carl Zeiss Ltd.) equipped with 365, 488 and 543-nm
laser lines, or a Leica SP5 confocal microscope equipped with 488,
561 and 633-nm laser lines. For live oocyte imaging, temperature
was maintained at 37 1C using an incubator fitted on the
LSM510meta confocal microscope, or using a stage top incubator
(model INUBG2E-GSI, Tokai Hit, Shizuoka-ken, Japan) fitted on the
Leica SP5 confocal microscope. Images were processed using
MetaMorph (Molecular Devices, Wokingham, UK). Fluorescence
profiles were generated with the linescan function in MetaMorph.
Fluorescence intensities were expressed as mean7S.E.M. and
statistical analysis (t-test) was performed using GraphPad QuickCalcs
(graphpad.com).
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Results

Cdc42 is activated in cortical regions overlying meiotic chromosomes

To examine Cdc42 activation, mouse oocytes were injected
with cRNA encoding the Cdc42–GTP probe EGFP–wGBD (Benink
and Bement, 2005). In previous studies, this probe was success-
fully used to detect localized Cdc42 activation in cancer cells (Kim
et al., 2000), T cells (Cannon et al., 2001), and in the cortex of
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Xenopus oocytes during wound healing or polar body emission
(Benink and Bement, 2005; Ma et al., 2006; Zhang et al., 2008).
In mouse oocytes arrested at the MII stage, the probe accumulated in
a restricted cortical area overlying the MII spindle (Fig. 1A, top
panels, arrow). This polarized distribution generated a sharp spike
on a linescan fluorescence profile (Fig. 1A, bottom panel, arrow),
reaching a fluorescence intensity more than two-fold higher than
in the opposite cortex (average fold-increase in fluorescence
intensity against the opposite cortex: 2.1870.38, n¼16; Fig. 1B).
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Inhibition of Cdc42 activation via the co-injection of cRNA
encoding dominant-negative Cdc42T17N (Symons et al., 1996; Na
and Zernicka-Goetz, 2006) resulted in partial or complete spindle
detachment from the cortex, associated with a substantial reduc-
tion of the Cdc42–GTP cap, in a significant number of MII oocytes
(n¼7/18; data not shown). A similar spindle detachment was
recently reported in oocytes treated with the Arp2/3 complex
inhibitor CK-666, or following N-WASP knockdown (Yi et al.,
2011). Spindle detachment effectively distances the chromatin
from the cortex with the result that the chromatin-induced
polarization is lost or reduced. To continue investigating the
mechanism of Cdc42 action on cortical polarity, we therefore
focussed on oocytes where the MII spindle had remained corti-
cally-anchored, as exemplified in Fig. 1A (see also Fig. 3A). In
these oocytes, Cdc42 inhibition (3–4 h following injection of cRNA
encoding Cdc42T17N) resulted in the suppression of the cortical
Cdc42–GTP cap (Fig. 1A, middle panels), and a flat fluorescence
profile (fold-increase in fluorescence intensity: 1.0170.19,
n¼12; Fig. 1A, bottom, and B).

To investigate the dynamics of Cdc42 activation during meio-
sis, we examined the distribution of the Cdc42–GTP probe in GV-
arrested oocytes, and in oocytes undergoing maturation in vitro,
following spontaneous meiosis resumption. In GV-stage oocytes,
and in prometaphase I oocytes with a centrally-located spindle
(GVBDþ5 h), the probe remained cytosolic and no cortical accu-
mulation could be detected (Fig. 1C). The probe was also enriched
in the GV; however, this accumulation was insensitive to Cdc42
inhibition (data not shown), arguing for a non-specific phenom-
enon. After the spindle had reached the cortex and the metaphase
I–anaphase I transition occurred, a distinct Cdc42–GTP cap could
be detected in the cortical region overlying the segregated
homologs (Fig. 1Di, arrow). During polar body protrusion
(Fig. 1Dii) and until after cytokinesis (Fig. 1Diii), Cdc42–GTP
remained enriched in the cortex of the first polar body. In the
same way, in MII oocytes activated with ethanol to trigger
anaphase II parthenogenetically, Cdc42–GTP accumulated in the
two cortical protrusions overlying the two sets of segregated
chromatids (Fig. 1E, top panels). At later stages, a single cortical
protrusion remained and formed the second polar body, the
cortex of which was enriched in Cdc42–GTP (Fig. 1E, bottom
panels).

Altogether, these data suggest that in mouse oocytes under-
going the first or second meiotic division, Cdc42 is activated
selectively in cortical regions overlying meiotic chromosomes or
chromatids, with exactly the same dynamics as formation of the
F-actin cap. This distribution is reminiscent of the polarized
localization of the Rac–GTP probe PAK–PBD–YFP in regions over-
lying chromatin in mouse oocytes (Halet and Carroll, 2007).
Oocytes expressing both EGFP–wGBD and PAK–PBD–mCherry
exhibited strong co-localization of the two probes in the cortex
overlying the MII spindle, and in the cortex overlying the
chromatid cluster in PB2 (Fig. S1). These data suggest that oocyte
polarization is associated with the activation of both Rac and
Cdc42 in the cortex overlying meiotic chromatin.

Polarized Cdc42 activation is driven by the Ran–GTP gradient

The above data indicate that Cdc42 activation occurs when
meiotic chromatin is localized in the vicinity of the cortex. This is
reminiscent of the chromatin-induced F-actin cap formation,
which requires the chromatin-centered Ran–GTP gradient
(Longo and Chen, 1985; Maro et al., 1986; Deng et al., 2007). To
address a direct role for meiotic chromatin in inducing Cdc42
activation, we treated MII oocytes with the microtubule poison
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nocodazole, a procedure which results in the formation of
chromosome clusters closely associated with the cortex (Maro
et al., 1986). As seen in Fig. 2A, a Cdc42–GTP cap was maintained
in the cortex overlying the MII chromosome clusters (fold-
increase in fluorescence intensity against the opposite cortex
devoid of clusters: 2.6770.72, n¼9; Fig. 2B), arguing for a direct
relationship between chromosome positioning and Cdc42 activa-
tion in the nearby cortex. This chromatin-induced Cdc42
activation was prevented by co-expression of Cdc42T17N (data
not shown). To investigate the contribution of the Ran GTPase,
we inhibited Ran–GTP production by injecting oocytes with purified
dominant-negative RanT24N (Dasso et al., 1994). Because inter-
fering with Ran function disturbs MII spindle integrity (Dumont
et al., 2007a), and therefore could affect chromosome positioning,
we used nocodazole-treated oocytes to ensure that chromosome
clusters remained apposed to the cortex. In these conditions,
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the Cdc42–GTP cap was abolished, despite the close proximity
between chromatin clusters and the oocyte cortex (fold-increase
in fluorescence intensity against the opposite cortex: 0.9570.24,
n¼10; Fig. 2A and B). These data suggest that Cdc42 activation is
controlled by the Ran–GTP gradient emanating from chromatin,
providing an explanation for the restricted distribution of Cdc42–
GTP in cortical regions overlying meiotic chromosomes.

Cdc42–GTP recruits N-WASP to the polarized cortex

The polarized accumulation of Cdc42–GTP in the oocyte cortex
and in protruding polar bodies, suggests a contribution of the
GTPase to cortical polarization, which is exemplified by the
formation of an F-actin cap. In this regard, N-WASP is a strong
candidate as a Cdc42 effector, since it links Cdc42 activation to
actin filament nucleation and branching, via the activation of the
Arp2/3 complex (Rohatgi et al., 1999). Consistent with a recent
study (Yi et al., 2011), immuno-labeling experiments revealed a
prominent accumulation of endogenous N-WASP in the cortex
overlying the MII spindle, co-localized with the F-actin cap
(Fig. 3A, upper panel). Remarkably, inhibition of Cdc42 activation
with Cdc42T17N abolished the cortical localization of N-WASP
(Fig. 3A, lower panel, and B). Interestingly, the loss of cortical
N-WASP was accompanied by a selective loss of the F-actin cap,
while the basal cortical F-actin layer remained unaffected (Fig. 3A,
lower panel, and B).

To confirm a key role for Cdc42–GTP in controlling N-WASP
localization, we examined whether constitutively-active Cdc42
could affect N-WASP distribution. We expressed constitutively-
active Cdc42Q61L tagged with EGFP (EGFP–Cdc42Q61L) in MII
oocytes. As shown in Fig. 3C (representative of 12 similar
observations), the constitutively-active GTPase was broadly dis-
tributed around the oocyte cortex, and was also detectable on
cytoplasmic vesicles, presumably of endocytic origin (open arrow-
head). Endogenous N-WASP co-localized with EGFP–Cdc42Q61L both
in the cortex and on the cytoplasmic vesicles (Fig. 3C). This
colocalization is highlighted in the linescan fluorescence profile
displayed in Fig. 3C, which passes through a cytoplasmic vesicle
(open arrowhead). In contrast, in control oocytes injected with
cRNA encoding EGFP alone, N-WASP localized exclusively to the
polarized cortex and was not detected in the rest of the cortex,
nor on cytoplasmic structures (Fig. 3D; representative of 15
similar observations). We also tested if active Rac was a binding
partner for endogenous N-WASP. As shown in Fig. 3E (represen-
tative of 10 similar observations), N-WASP localized exclusively
to the polarized cortex in MII oocytes expressing constitutively-
active EGFP–Rac1Q61L. Though constitutively-active Rac1 distrib-
uted all over the cortex and on cytoplasmic vesicles, as seen with
Cdc42Q61L, these structures were not associated with an enrich-
ment in N-WASP in the case of RacQ61L (see the fluorescence
profile in Fig. 3E, where the closed arrowhead points at the
opposite cortex, and the open arrowhead points at a cytoplasmic
vesicle). Together, these data suggest that in mouse oocytes,
active Cdc42 is the preferred binding partner for driving N-
WASP localization.

Since Cdc42 acts in synergy with the phosphoinositide PIP2 to
localize and activate N-WASP (Prehoda et al., 2000; Rohatgi et al.,
2000; Padrick and Rosen, 2010), the accumulation of N-WASP in
the polarized cortex could be a consequence of a local enrichment
in this phosphoinositide species. However, we have shown in a
previous study that PIP2 is not enriched in the polarized cortex of
MII oocytes. Rather, the amicrovillar polarized cortex shows a
relatively low PIP2 abundance compared with the rest of the
cortex, rich in microvilli (Halet et al., 2002). Therefore, we propose
that polarized Cdc42–GTP is the major determinant of N-WASP
distribution and activation in the mammalian oocyte cortex.
A polarized Cdc42/N-WASP/F-actin cascade is activated in meiosis I,

but is dispensable for PB1 emission

In order to investigate whether the proposed Cdc42/N-WASP
pathway contributes to the establishment of oocyte polarization,
we examined N-WASP distribution at successive stages of oocyte
maturation. In GV-stage oocytes, and in prometaphase I oocytes
with a centrally-located spindle, N-WASP was essentially cytoso-
lic and no cortical accumulation was detectable (Fig. 4Ai and ii).
This is consistent with the finding that these oocytes also lack any
detectable Cdc42 activation at the cortex (Fig. 1C). Also in
agreement with these findings is the observation that cortical
F-actin staining was uniformly distributed in the oocyte cortex
(Fig. 4Ai and ii). In contrast, as the MI spindle reached the cortex
(GVBDþ7/8 h, late prometaphase I), N-WASP started to accumu-
late in the cortical region overlying the spindle, coincident with
the formation of a polarized actin cap (Fig. 4Aiii, arrowhead).
During PB1 protrusion (Fig. 4Aiiii, early anaphase I), until after
complete PB1 emission (Fig. 4Av, late anaphase I), N-WASP
remained exclusively enriched in the cortex of the polar body,
co-localized with a dense F-actin staining. These data suggest
that, similar to our observations in MII-arrested oocytes (Fig. 3),
meiotic chromosomes are capable of inducing, at a distance,
N-WASP accumulation in the overlying cortex. This is consistent
with our finding that Cdc42–GTP accumulates selectively in the
cortex overlying the chromosomes during meiosis I (Fig. 1D).

In the light of these findings, we examined the effects of
Cdc42 inhibition on the rate of PB1 emission in oocytes under-
going in vitro maturation. Consistent with previous studies
(Na and Zernicka-Goetz, 2006; Cui et al., 2007; Bielak-
Zmijewska et al., 2008), we found that 48% (n¼49/103 oocytes)
of oocytes expressing Cdc42T17N failed to emit PB1 following a
16-hour culture period. Staining for chromosomes and tubulin
revealed that the spindle was centrally-located (data not
shown), consistent with the defect in spindle migration pre-
viously reported (Na and Zernicka-Goetz, 2006; Cui et al., 2007).
Another 18% (n¼19/103) cleaved symmetrically to produce a
polar body indistinguishable from the oocyte. The remaining 34%
(35/103 oocytes) matured to MII and extruded a small polar
body. During the same culture period, 92% (44/48 oocytes) of
control, water-injected oocytes, extruded a small PB1 and
arrested at MII (data not shown).

The observation that a third of oocytes expressing Cdc42T17N
succeeded to emit a small PB1 was puzzling, as it suggested that
Cdc42 was not inhibited. To investigate this issue, oocytes
expressing Cdc42T17N were fixed at the time of polar body
emission (GVBDþ7.5/8 h, as determined using time-matched
control oocytes) and processed for N-WASP immuno-staining.
As mentioned above, a significant proportion of these oocytes
(n¼9/25, 36%) exhibited a centrally-located MI spindle (as evi-
denced by chromosome labeling), and lacked any cortical N-WASP
(Fig. 4Bi). The remaining oocytes (n¼16/25) had proceeded to
anaphase I and were observed at early (Fig. 4Bii) or late (Fig. 4Biii)
stages of PB1 emission. Interestingly, N-WASP was virtually
depleted from the cortex of these protruding polar bodies, despite
close apposition of chromosomes to the cortex (Fig. 4Bii,iii). The
enrichment in polymerized F-actin was also substantially
decreased (Fig. 4Bii and iii). To quantify these data, we performed
linescan fluorescence intensity measurements (like those shown in
Fig. 1) along the axis of the anaphase I spindle, and we measured
the increase in N-WASP or F-actin staining in the cortex of the
polar body, relative to the opposite oocyte cortex. These measure-
ments, summarized in the bar chart in Fig. 4C, revealed a four-fold
decrease in N-WASP accumulation, and a two-fold decrease in
F-actin staining in the cortex of the protruding polar bodies,
following Cdc42 inhibition.
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Fig. 4. Cdc42 controls N-WASP and F-actin accumulation in the polar body in meiosis I. (A) N-WASP (immuno-staining) and F-actin (Alexa Fluor 546-phalloidin staining)

distribution was examined at successive stages of meiosis resumption: GV arrest (i), prometaphase I (GVBDþ5 h, ii), late prometaphase I (GVBDþ7/8 h, iii), early anaphase I

(iiii), late anaphase I (v). Note the enrichment of N-WASP and F-actin in the cortex overlying meiotic chromosomes (arrowhead in iii) and in the cortex of the protruding first

polar body (iiii, v). (B) Oocytes expressing Cdc42T17N were examined at 7.5/8 h post-GVBD. Thirty-six per cent of these oocytes exhibited a centrally-located spindle apparatus

(i) and lacked any cortical N-WASP. The remaining oocytes had reached anaphase I, and were observed at early (ii) or late stages (iii) of polar body protrusion. Note the

decrease in N-WASP and F-actin staining in the protruding polar bodies (see Aiiii and Av for a comparison). Magnified images of N-WASP immuno-labeling in the polar body

region are shown on the right. (C) Bar chart displaying the fold-increase in N-WASP (green bars) or F-actin (red bars) fluorescence in the cortex of the protruding PB1, relative

to the opposite cortex. The data are based on fluorescence profiles generated across the oocyte diameter, as shown by the white boxes in Aiiii, v and Bii, iii. Data from oocytes at

early anaphase I and late anaphase I were pooled to generate the bar graph. Control oocytes are in dark green/red; oocytes expressing Cdc42T17N are in light green/pink.
n: Po0.001. Confocal images are representative of 9–16 similar observations. Bar: 10 mm.
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To ensure that Cdc42T17N was effectively expressed in mouse
oocytes undergoing PB1 emission, the amount of Cdc42 protein
was quantified in oocyte lysates using the Western blot techni-
que. These experiments revealed that injected oocytes expressed
a �7-fold excess of Cdc42T17N over endogenous Cdc42, at the
time of PB1 formation (GVBDþ7 h; Fig. S2). In comparison, MII
oocytes expressing the Cdc42T17N cRNA for three hours con-
tained a �three-fold excess of Cdc42T17N over endogenous
Cdc42 (Fig. S2), which is sufficient to prevent N-WASP activation
and formation of the F-actin cap (Fig. 3A). Therefore, it can be
argued that oocytes examined at GVBDþ7 h express sufficient
levels of Cdc42T17N to fully inhibit Cdc42 signaling.

Altogether, these results suggest that Cdc42 inhibition is
effective, and precludes N-WASP recruitment at the cortex, in
oocytes undergoing PB1 protrusion. These data therefore argue
for the existence of a compensatory mechanism driving polar
body protrusion in the absence of a functional Cdc42/N-WASP
pathway. Alternatively, a minute amount of cortical N-WASP and
a highly diminished F-actin cap may suffice to support polar body
protrusion in meiosis I.
Cdc42 inhibition in activated oocytes prevents emission of PB2 and

induces central spindle defects

We next investigated N-WASP dynamics and the relevance of
the Cdc42/N-WASP/F-actin cascade during PB2 emission in acti-
vated MII oocytes. In control conditions, N-WASP accumulated
symmetrically in cortical protrusions overlying the two sets of
segregated chromatids, and later became restricted to the polar
body-forming protrusion (Fig. 5Ai–iii; n¼10–12 similar observa-
tions). Polarized F-actin co-localized with N-WASP and followed
essentially the same dynamics (Fig. 5Ai–iii). At the pronuclear
stage (�5 h post-activation), F-actin was uniformly distributed in
the oocyte cortex, and N-WASP was cytosolic in the oocyte
(Fig. 5Aiiii; representative of 11 similar observations). These data
are consistent with a chromatin-centered diffusible signal driving
N-WASP accumulation in the cortex overlying the chromatids. In
support of this model, and in agreement with a recent study (Yi
et al., 2011), nocodazole-induced chromosome clusters induced
N-WASP and F-actin caps in the nearby cortex, that were
inhibited by dominant-negative RanT24N (data not shown).
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Fig. 5. Cdc42 activation is required for PB2 emission in activated oocytes. (A) Ethanol-activated MII oocytes were examined for F-actin and N-WASP staining at successive

stages of PB2 emission: early anaphase II (i), PB2 protrusion (ii), late anaphase II (fully emitted PB2, iii), and pronuclear stage (iiii). Note the enrichment of N-WASP in

F-actin-rich cortical protrusions overlying the chromatid masses in (i) and (ii). (B) MII oocytes expressing Cdc42T17N were activated with ethanol and examined for F-actin

and N-WASP staining at early anaphase II (i and ii) and at the time of pronucleus formation (iii, iiii). Note the absence of cortical N-WASP at all stages, and the lack of polar

body protrusion. In (ii), note the perpendicular orientation of the spindle apparatus and the chromatid scattering (arrowhead). Bar: 10 mm.
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post-activation. At 5 h post-activation, the majority of oocytes expressing Cdc42T17N were binucleated (left image) or blocked in meiosis with a distorted spindle (right
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Overall, these data suggest that N-WASP and F-actin dynamics in
anaphase II are controlled by the Ran–GTP gradients emanating
from each set of segregated chromatids.

In oocytes expressing Cdc42T17N, the great majority (47/55
oocytes; 85%) failed to extrude a polar body in the two hours
following ethanol activation (against 94% of PB2 emission in
control oocytes). Examination of N-WASP dynamics revealed that
the Cdc42 effector remained cytosolic throughout the activation
process, and F-actin-rich protrusions were absent, despite close
apposition of chromatids to the cortex (Fig. 5Bi, n¼14; see
Fig. 5Ai for a comparison with controls). Some oocytes (n¼4)
showed anaphase figures oriented perpendicular to the cortex,
which could be due to the MII spindle detaching from the cortex
before the oocytes were challenged with ethanol. In these
oocytes, the chromatid mass apposed to the oocyte cortex also
failed to induce the recruitment of N-WASP and the formation of
an F-actin-rich protrusion (Fig. 5Bii, n¼4; see Fig. 5Aii for a
comparison). These observations suggest that Cdc42 signaling
was effectively inhibited by Cdc42T17N, precluding N-WASP
binding to the cortex and the formation of F-actin-rich protru-
sions in anaphase II, ultimately resulting in a failure to emit PB2.

Activated MII oocytes expressing Cdc42T17N were next exam-
ined for pronucleus formation five hours after activation. A
majority of these oocytes (13/22 oocytes; 59%) were binucleated,
indicating that, consistent with a failure to form F-actin-rich
protrusions necessary for PB2 formation, these oocytes failed to
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undergo cytokinesis (Fig. 5Biii). Another third of the oocytes
(8/22; 36%) failed to exit meiosis and to form pronuclei, but
instead exhibited chromatid scattering across the cytosol
(Fig. 5Biiii). To examine the integrity of the spindle, oocytes
injected with water (controls) or expressing Cdc42T17N were
processed for tubulin immuno-staining. In controls, the robust
central spindle formed in anaphase remained strictly bipolar for
the duration of the PB2 emission process (Fig. 6A top row,
EtOHþ1–2 h), and 86% (n¼45/52 oocytes) of oocytes examined
at 5 h post-activation exhibited a second polar body and a single
pronucleus (Fig. 6A top row, EtOHþ5 h). In oocytes expressing
Cdc42T17N, chromatid scattering and spindle distorsion were
apparent in a fraction of oocytes (n¼9/30) examined 1–2 h
following ethanol activation (Fig. 6A bottom row; EtOHþ1–2 h;
see also Fig. 5Bii, arrowhead). At 5 h post-activation (Fig. 6A
bottom row, EtOHþ5 h), Cdc42T17N-expressing oocytes were
mainly binucleated (n¼15/28) or arrested in meiosis with a
distorted spindle and scattered chromatids (n¼9/28). Thus, in
addition to causing defective cortical polarization and a failure to
emit PB2, Cdc42 inhibition also interfered with the formation of a
functional central spindle capable of supporting chromatid seg-
regation and cytokinesis during meiosis resumption in activated
oocytes.
Discussion

The development of an F-actin cap in the cortex overlying the
metaphase spindle is a conserved feature of oocyte polarization in
mammals, amphibians and lower invertebrates (Longo and Chen,
1985; Maro et al., 1986; Sardet et al., 1992; Zhang et al., 2008).
In mouse oocytes, the thick F-actin cap overlying the MII spindle
was first described over 25 years ago (Longo and Chen, 1985;
Maro et al., 1986), but it is only recently that mechanistic insights
were provided, through the finding that the F-actin cap is induced
by the Ran–GTP gradient generated by meiotic chromosomes
(Deng et al., 2007). The same group has recently reported that the
machinery for actin filament nucleation, comprising the Arp2/3
complex and its upstream regulator N-WASP, also localized in the
polarized cortex in a Ran–GTP-dependent manner, and was
responsible for generating a flow of actin filaments and cytoplas-
mic streaming necessary to maintain the MII spindle in its
eccentric location (Yi et al., 2011). Therefore, the next challenge
in our understanding of mammalian oocyte polarization and
spindle positioning, is to identify the mechanism by which
Ran–GTP promotes the polarized activation of the N-WASP/
Arp2/3 machinery in the oocyte cortex (Verlhac, 2011).

We now introduce Cdc42 as a new protagonist in the mole-
cular cascade leading to oocyte polarization. Through the direct
monitoring of Cdc42–GTP, we describe for the first time the
polarized activation of Cdc42 in the cortex overlying the meiotic
spindle in mouse oocytes (Fig. 1). Our data suggest that the
polarized activation of Cdc42 is driven by the Ran–GTP gradient
emanating from meiotic chromosomes, and serves to recruit
N-WASP at the cortex to build the F-actin cap. According to the
current model, N-WASP activation most certainly involves coin-
cident binding to Cdc42–GTP and PIP2 in the plasma membrane,
to relieve autoinhibition (Padrick and Rosen, 2010). However, a
direct contribution of PIP2 in the polarized recruitment of
N-WASP is unlikely, since our previous work has shown that
PIP2 is not enriched in the polarized cortex of MII oocytes (Halet
et al., 2002). Thus, we propose the following signaling cascade for
mouse oocyte polarization:

Chromosomes-Ran-Cdc42-N-WASP�Arp2=3-F-actin cap
The same signaling cascade operates during anaphase, resulting
in the formation of F-actin-rich protrusions overlying the segre-
gated chromosomes (anaphase I) or chromatids (anaphase II).
Experiments using Cdc42T17N to disrupt Cdc42 activation and
N-WASP localization, suggest that this signaling cascade is essen-
tial for the emission of PB2 in activated MII oocytes. One attractive
hypothesis is that N-WASP-driven actin filament nucleation and
branching provides the protrusive force necessary for membrane
deformation around the segregated chromatids, to form the polar
body (Condeelis, 1993; Pollard and Borisy, 2003). Considering that
cortical tension, which is dependent on F-actin, is increased almost
3-fold in the polarized amicrovillar cortex of MII oocytes (Jégou
et al., 2008; Larson et al., 2010), it is tempting to assume that the
polarized Cdc42–GTP/N-WASP pathway also serves to prevent the
collapse of the second polar body, by maintaining a thick cortical
F-actin layer and increased cortical rigidity in the protruded
membrane. Further investigations will be necessary to elucidate
how the actin filaments forming the polarized F-actin cap in MII
oocytes can fulfill these multiple roles – i.e., actin flow, cortical
tension and membrane protrusion – and how this is regulated in
space and time during the meiotic cell cycle.

There is increasing evidence that Cdc42, beyond its ubiquitous
function as a regulator of actin dynamics, could be involved in
spindle and chromosome dynamics during the cell cycle. In mitosis,
Cdc42 inhibition was shown to result in abnormal chromosome
segregation, due to defective kinetochore–microtubule attachments
and chromosome congression in metaphase (Yasuda et al., 2004;
Oceguera-Yanez et al., 2005). Consistent with a role for Cdc42 in
regulating spindle dynamics, Cui et al. (2007) reported that
injection of siRNA against Cdc42 resulted in spindle defects in
MII oocytes. Apart from occasional spindle detachment, we did
not notice obvious defects in spindle shape or chromosome
alignment in MII oocytes, following acute Cdc42 inhibition with
Cdc42T17N (Figs. 1, 3 and 6). However, we cannot exclude the
possibility that chromosome attachment to kinetochore micro-
tubules was defective, but remained unnoticed. The integrity of
the central spindle in activated oocytes was, however, strongly
affected (Fig. 6). Though the molecular basis of this defect is
unknown at this time, these data point at a possible role for Cdc42
in promoting central spindle assembly and/or stability in ana-
phase II. Interestingly, spindle distorsion during anaphase II, and a
failure to exit meiosis, were also reported in oocytes with decreased
cortical tension, consecutive to expression of dominant-negative
radixin (Larson et al., 2010). Thus, central spindle distorsion in
anaphase II could represent a stereotypical response to defective
cortical remodeling and unbalanced cortical forces during PB2
emission.

Inhibition of Cdc42 signaling using dominant-negative or
constitutively-active Cdc42 mutants, RNA interference or treat-
ment with Toxin B, has previously been shown to decrease the
rate of polar body emission during the first meiotic division (Na
and Zernicka-Goetz, 2006; Cui et al., 2007; Bielak-Zmijewska
et al., 2008). In all these studies however, inhibition was incom-
plete, as a substantial proportion (30–40%) of oocytes still
managed to emit PB1, raising the idea of a compensatory
mechanism. In the present study, we confirm the partial inhibi-
tory effect of Cdc42T17N on PB1 emission, possibly due to spindle
migration defects (Na and Zernicka-Goetz, 2006). We further
show that the remaining oocytes, which succeeded in protruding
PB1, could do so in the absence of N-WASP activation at the
polarized cortex (Fig. 4). Therefore, the requirement for Cdc42/N-
WASP activation is not as stringent during PB1 emission as it is
during PB2 emission, and we suggest that an alternative mechan-
ism supports membrane deformation and PB1 protrusion in the
absence of Cdc42/N-WASP signaling. It is noteworthy that, con-
trary to the F-actin cap, the basal cortical F-actin layer is
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independent of Cdc42 (this study), N-WASP (Yi et al., 2011) or
Arp2/3 activation (Yi et al., 2011; Sun et al., 2011). Therefore,
alternative protrusive forces may be provided by actin fila-
ments generated by a machinery other than N-WASP/Arp2/3.
The Fmn2-nucleated cytoplasmic actin cables, which drive
meiotic spindle migration towards the cortex, have been
suggested to generate pushing forces, and therefore could
possibly contribute to membrane deformation in anaphase I
(Li et al., 2008; Azoury et al., 2011). Fmn2-nucleated actin
filaments may also occur at the cortex and participate in PB1
protrusion, since Fmn2 was shown to localize at the oocyte
cortex (Azoury et al., 2011). Inflation of the polar body may
also be facilitated by elevated hydrostatic pressure in the
vicinity of the polar body-forming area, consecutive to elevated
acto–myosin contractility during anaphase (Condeelis, 1993;
Charras et al., 2005). In contrast, the contribution of other Rho
GTPases is unlikely, since PB1 emission can still occur in
oocytes treated with toxin B, a broad inhibitor of Rho GTPases
(Bielak-Zmijewska et al., 2008). The existence of an alternative
mechanism independent of Cdc42/N-WASP is also supported by
the work of Dumont et al. (2007), who demonstrated that PB1
emission was unaffected by the inhibition of Ran during
meiosis I. According to our model, polarized activation of the
Cdc42/N-WASP/F-actin pathway should be absent, or strongly
diminished, in these oocytes. Our data suggest however that
the lack of Cdc42/N-WASP signaling in activated MII oocytes
cannot be compensated for by alternative mechanisms.

In a search for the mechanism coupling spindle positioning to
polar body formation in Xenopus eggs, Ma et al. (2006) described
a localized activation of Cdc42 at the site where the spindle pole
interacts with the cortex during meiosis I. This localized activa-
tion of Cdc42 was strictly dependent on the perpendicular
orientation of the spindle relative to the cortex, and it was
suggested that spindle pole-associated proteins may promote
Cdc42 activation at the cortex (Zhang et al., 2008). Our data in
mouse oocytes contrast with the frog egg model. Firstly, we
observed a robust activation of the Cdc42/N-WASP/F-actin path-
way in metaphase II-arrested oocytes, where the spindle lies
parallel to the cortex. Secondly, we show that the spatial cue for
polarized Cdc42 activation is provided by the chromosome-
centered Ran–GTP gradient, in a microtubule-independent manner.
Thus, amphibian and mammalian oocytes have developed distinct
strategies for controlling the polarized activation of Cdc42 neces-
sary for polar body protrusion. Consistent with a Ran-dependent,
but microtubule-independent mechanism in mouse oocytes,
sperm chromatin, which is not associated with microtubules, is
also capable of inducing polarization of the nearby cortex in
fertilized mouse oocytes, associated with the protrusion of the so-
called fertilization cone (Simerly et al., 1998; Deng and Li, 2009).
We speculate that protrusion of the fertilization cone also
proceeds via the localized activation of the Cdc42/N-WASP/F-actin
pathway, under the control of the Ran–GTP gradient generated by
paternal chromatin.

Altogether, the results presented above support a key role for
Cdc42 in the molecular cascade leading to mouse oocyte polar-
ization and protrusion of the second polar body. We have shown
that Cdc42 is activated in a polarized fashion in the oocyte cortex,
under the control of the chromatin-driven Ran–GTP gradient.
Cdc42 activation is essential for polarized N-WASP recruitment
and the building of the F-actin caps overlying the clusters of
meiotic chromosomes or chromatids. The mechanism by which
Ran–GTP promotes Cdc42 activation is still elusive at this point,
and deserves further investigations. It may involve the release of a
cargo protein complexed with importins, and/or the polarized
recruitment and activation of a yet-to-be identified Cdc42–GTP/
GDP exchange factor.
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