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Ancient origin of somatic and visceral neurons
Marc Nomaksteinsky1,2, Stefan Kassabov3, Zoubida Chettouh1,2, Henri-Corto Stoeklé1,2, Laure Bonnaud4,
Gilles Fortin5, Eric R Kandel3,6,7 and Jean-François Brunet1,2*

Abstract

Background: A key to understanding the evolution of the nervous system on a large phylogenetic scale is the
identification of homologous neuronal types. Here, we focus this search on the sensory and motor neurons of
bilaterians, exploiting their well-defined molecular signatures in vertebrates. Sensorimotor circuits in vertebrates are
of two types: somatic (that sense the environment and respond by shaping bodily motions) and visceral (that sense
the interior milieu and respond by regulating vital functions). These circuits differ by a small set of largely dedicated
transcriptional determinants: Brn3 is expressed in many somatic sensory neurons, first and second order (among
which mechanoreceptors are uniquely marked by the Brn3+/Islet1+/Drgx+ signature), somatic motoneurons
uniquely co-express Lhx3/4 and Mnx1, while the vast majority of neurons, sensory and motor, involved in
respiration, blood circulation or digestion are molecularly defined by their expression and dependence on the pan-
visceral determinant Phox2b.

Results: We explore the status of the sensorimotor transcriptional code of vertebrates in mollusks, a
lophotrochozoa clade that provides a rich repertoire of physiologically identified neurons. In the gastropods
Lymnaea stagnalis and Aplysia californica, we show that homologues of Brn3, Drgx, Islet1, Mnx1, Lhx3/4 and Phox2b

differentially mark neurons with mechanoreceptive, locomotory and cardiorespiratory functions. Moreover, in the
cephalopod Sepia officinalis, we show that Phox2 marks the stellate ganglion (in line with the respiratory — that is,
visceral— ancestral role of the mantle, its target organ), while the anterior pedal ganglion, which controls the
prehensile and locomotory arms, expresses Mnx.

Conclusions: Despite considerable divergence in overall neural architecture, a molecular underpinning for the
functional allocation of neurons to interactions with the environment or to homeostasis was inherited from the
urbilaterian ancestor by contemporary protostomes and deuterostomes.

Keywords: Sensory neurons, Motor neurons, Evolution, Transcription factors, Mollusks, Lophotrochozoa, Lymnaea,
Aplysia, Sepia, Phox2, Brn3, Mnx

Background

For several decades, molecular data have been used to

define homologous regions in the nervous system of dis-

tant phyla. More recently, homology search has moved

to the cell level, using conserved neuronal-type specific

molecular signatures [1-5] (and reference [6] for review).

This approach provides a novel window on the complex-

ity of ancestral nervous systems, and sets the stage, with

unprecedented detail, for an understanding of what has

changed or been conserved during their large-scale

evolution. In this paper, we undertake a comparison of

sensorimotor circuits across the protostome/deutero-

stome boundary, which is, thus, informative about the

nervous system of Urbilateria.

Ever since Bichat distinguished the ‘organic’ and ‘ani-

mal’ lives [7], the vertebrate body has been construed as

a dual entity, one part somatic (engaged with the outside

world), the other visceral (concerned with bodily homeo-

stasis). Paralleling this distinction, the sensorimotor cir-

cuits passing through the spinal cord and brainstem are

divided into somatic and visceral. Somatic circuits are

responsible for the somesthetic, visual or auditory per-

ception of the environment and locomotory responses.

The visceral circuits are responsible for sensing parame-

ters of the interior milieu, such as arterial pressure,
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blood gases and various chemosensory modalities in-

cluding taste, and feedback regulation of the cardiovas-

cular, respiratory and digestive organs. Specific anatomic

features and embryonic origins have been progressively

discovered for these circuits. For example, somatic and

visceral neurons in the vertebrate hindbrain are born

and settle at distinct dorso-ventral levels [8]. In the

peripheral nervous system, first-order visceral sensory

neurons emerge from epibranchial placodes, whereas

somatic ones derive from dorso-lateral placodes or the

neural crest [9]. In his landmark monograph on the sub-

ject, A.S. Romer synthesized a century of observations

on the ‘duality’ of the vertebrates, made up of two bodies

(and nervous systems), one visceral and one somatic,

‘imperfectly welded’ on each other [10]. In the past

years, after decades of neglect, the proposed dichotomy

of the vertebrate nervous system has found, piecemeal,

an unexpected molecular basis, in the form of transcrip-

tion factors that globally distinguish somatic from

visceral neurons (Figure 1) and are largely, if not com-

pletely, restricted to them. Most somatic sensory neu-

rons, first- and second-order, express the POU domain

genes Brn3: the touch and pain receptors of the dorsal

root and cranial ganglia, auditory and vestibular neu-

rons, ganglionic cells of the retina, and many relay

sensory neurons of the dorsal horn of the spinal cord —

even if, in the latter, expression is transient and not en-

tirely charted [11,12] (and references therein). Brn3 is

required in all the peripheral cell types, its role in the

central nervous system (CNS) being yet unexplored. Som-

atic motoneurons express and require the combination of

the homeobox genes Mnx1 [13] and Lhx3/4 [14]. Finally,

the vast majority of visceral neurons, sensory and motor,

express and require the homeobox gene Phox2b: visceral

sensory ganglia and their target, the nucleus of the solitary

tract, all autonomic ganglia; visceral motoneurons of the

medulla; branchial motoneurons (respiratory —that is, vis-

ceral— in the ancestral vertebrates) and chemosensory

structures, such as the carotid body and the retrotrapezoid

nucleus [12,15-17]. This simple, non-combinatorial code

provides new tools to probe the ancestry of these broad

neuronal categories.

For this study, we turned to mollusks, for two reasons:

first, they belong to the phylum Lophotrochozoa which,

genetically less derived than Ecdysozoa, is particularly

valuable for comparisons across Bilateria [18]; and sec-

ond, mollusks have been studied by neurophysiologists

for decades and consequently provide a unique cata-

logue of identified neurons with somatic or visceral

functions [19] that allow rigorous tests of association with

specific molecular signatures. Using as model systems two

gastropods —the opisthobranch Aplysia californica and

the pulmonate Lymnaea stagnalis— and the decapodiform

cephalopod Sepia officinalis, we show that physiologically

defined somatic motor and sensory neurons and visceral

motoneurons share, respectively, the Mnx/Lhx3/4, Brn3

and Phox2 transcriptional signature of their vertebrate

counterparts, and we discuss the evolutionary implications

of this conservation across Bilateria.

Results
Shared molecular signature of gastropod and vertebrate

mechanosensory neurons

In vertebrates, the vast majority of sensory neurons that

perceive the environment (with the exception of olfactory

neurons) express paralogues of the POU-IV/Brn3

homeogene family, henceforth collectively called Brn3.

These include mechanoreceptors, proprioceptors, ther-

moreceptors and nociceptors of the dorsal root and

trigeminal ganglia, retinal ganglion cells, vestibular and

cochlear sensory neurons and inner hair cells [11] (and

references therein), as well as many second-order neu-

rons in these somatic sensory pathways [12] (and refer-

ences therein). The evolutionary stability of this genetic

signature across Bilateria has been uncertain so far, based

on the study of model ecdysozoans: mechanoreceptors

have not been reported to express the orthologue of Brn3

in Drosophila, where it labels olfactory neurons ins-

tead [20], and they form only a small fraction of

the 57 neurons that express the Brn3 orthologue in

Caenorhabditis elegans [21]. In the gastropod Haliotis

asinina, expression of Brn3 in patches of larval ectoderm

has been interpreted as marking peripheral sensory

structures [22]. We examined the case of A. californica,

where mechanoreception and nociception are mediated,

at least in part, by clusters of small-size sensory neurons

in several ganglia of the CNS, which synthesize the

neuropeptide sensorin A [23]. We cloned the Aplysia

orthologue of Brn3 [see Additional file 1: Figure S1a] and

found it expressed in the Sensorin+ neuronal clusters and

restricted to them in the CNS (Figure 2a-d,q for the

pleural and cerebral clusters). In another gastropod, the

pulmonate L. stagnalis, similar clusters of small Brn3+

neurons occurred in several ganglia (Figure 2e for the

pleural ganglion), many of which expressed the Lymnaea

orthologue of Sensorin (Figure 2f and Additional file 1:

Figure S2) and are thus most likely homologous to the

mechanoreceptors of Aplysia. To further elucidate

the molecular signature of these cells, we cloned the

Lymnaea orthologues of Drgx [see Additional file 1: Figure

S1b], largely restricted to sensory neurons in vertebrates

[24], and of Islet1 [see Additional file 1: Figure S1c],

expressed in all vertebrate sensory neurons [25] (and mo-

toneurons). Both were coexpressed with Brn3 in Lymnaea

(Figure 2g-j,r) as is the case for their orthologue in the

touch and pain receptors of the mammalian dorsal root

ganglia (Figure 2m-o,s). In addition, Lymnaea sensory

clusters, like their vertebrate counterparts, expressed the
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Figure 1 Somatic and visceral neurons are distinguished by a small set of transcription factors in vertebrates. Schematic of the main
neuronal types that form the sensorimotor circuits in vertebrates, and their molecular code. An exemplar of each category is shown with its
target organ. Magenta: somatic sensory neurons (with a history of Brn3 expression), including somesthetic neurons (mechanoreceptors,
proprioceptors, thermoreceptors and nociceptors) of the trigeminal and dorsal root ganglia, and at least some of their post-synaptic partners in
the nuclei of the trigeminal nerve and dorsal horn of the spinal cord, respectively, retinal ganglionic cells and vestibulo-cochlear neurons, and the
latters’ targets, the hair cells of the inner ear. Blue: somatic motoneurons (with a history of Mnx1 and Lhx3/4 expression) that control bodily
motions. Green: neurons of the visceral sensory pathways and motor outflow (with a history of Phox2b expression): first-order sensory neurons in
epibranchial ganglia and second-order sensory neurons of the nTS; the carotid body; sympathetic, parasympathetic and enteric ganglionic
neurons, and preganglionic neurons to the latter two; and branchiomotor neurons (respiratory in aquatic vertebrates). V, trigeminal nerve; Vm,
motor nucleus of the trigeminal nerve; VIII, vestibulo-cochlear nerve; IX, glossopharyngeal nerve; X, vagal nerve; cb, carotid body; cg, cochlear
ganglion; cn, cochlear nuclei; dh, dorsal horn; dmnX, dorsal motor nucleus of the vagus nerve; drg, dorsal root ganglion; hc, cochlear and
vestibular hair cells; ens, enteric nervous system; mesV, mesencephalic nucleus of the trigeminal nerve; na, nucleus ambiguus; ng, nodose
ganglion; nTS, nucleus of the solitary tract; pg, petrosal ganglion; prV, principal nucleus of the trigeminal nerve; psg, parasympathetic ganglion;
rgc, retinal ganglion cells; sg, sympathetic ganglia; spV, spinal nucleus of the trigeminal nerve; tg, trigeminal ganglion; vg, vestibular ganglion; vh,
ventral horn; vn, vestibular nuclei.
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Figure 2 Transcriptional code of mechanoreceptors in gastropods and vertebrates. (a-d) Whole-mounts of the pleural (a,b) or cerebral
ganglion (c,d) (ventral view) of Aplysia californica (Ac) hybridized with the indicated probes. In the cerebral ganglia, Brn3 is expressed in the
Sensorin+ J and K sensory clusters (white arrowheads) [23] but not in the scattered Sensorin+ cells. Projections from the sensory clusters contain
the Sensorin mRNA and are detected by in situ hybridization [23]. (e-l) Consecutive sagittal sections of the pleural ganglion of Lymnaea stagnalis

(Ls) showing coexpression of the indicated genes. (m-p) Consecutive sagittal sections of a dorsal root ganglion in Mus musculus (Mm) showing
coexpression of the indicated genes. In Lymnaea pleural ganglia, Islet and VGluT are also expressed in large Brn3— neurons at the ventral pole.
(q-s): schematic of the nervous system of Aplysia californica (q), Lymnaea stagnalis (r) and Mus musculus (s). A, anterior; Ab, abdominal ganglion;
C, cerebral ganglion; DRG, dorsal root ganglion; HB, hindbrain; L, left; P, pleural ganglion; Pe, pedal ganglion; PSC, pleural sensory cluster; RP, right
parietal ganglion; SC, spinal cord; T, trigeminal ganglion; V, visceral ganglion. Scale bars, 100 μm (a,b); 200 μm (c,d); 100 μm (e,g,i,k); 100 μm (f,h,j,l);
200 μm (m-p).
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vesicular glutamate transporter VGluT (Figure 2k,l,p), in line

with the glutamatergic phenotype of molluscan mechanore-

ceptors [26]. Thus, the unique Brn3+/Drgx+/Islet+/VGluT+

transcriptional signature of first-order somatic sensory neu-

rons in vertebrates, is also a hallmark of their molluscan

counterparts.

Shared molecular distinction between somatic and

visceral motoneurons in gastropods, cephalopods and

vertebrates

In vertebrates, locomotion depends on somitic muscles,

innervated by spinal cord motoneurons that depend on

the homeogenes Mnx1 [13] and Lhx3/4 [14] and use

acetylcholine as neurotransmitter. In gastropods, the

muscles of locomotion (in the foot and body wall or

attached to the columella) are innervated by the

pedal ganglia [27]. We cloned Ls-Mnx, the Lymnaea

orthologue of Mnx1 [see Additional file 1: Figure S1d]

and found that it was largely restricted to two clusters of

neurons in the pedal ganglia (Figure 3a), which co-

expressed the orthologues of Lhx3/4 (Figure 3c and

Additional file 1: Figure S1e) and the vesicular acetyl-

choline transporter VAChT (Figure 3b,d). At least some

of these cells projected in the pedal nerves, as assessed

by retrograde filling (Figure 3e-g) and most likely are

locomotory neurons. These data extend the observations

that some motoneurons in Drosophila also express Lim3

(the Lhx3/4 orthologue) and Mnx [28,29], that some C.

elegans motoneurons express a Mnx orthologue [30],

and that the Nkx6+ domain of the annelid nerve cord

gives rise to Mnx+/VAChT+ putative motoneurons [31].

Thus, the Mnx+/Lhx3/4+ molecular signature has been

associated with somatic motoneurons since the origin

of bilaterians.

We next examined the visceral nervous system, whose

sensorimotor circuits in vertebrates largely coincide with

the expression pattern of the paralogous homeogenes

Phox2a and Phox2b (hereafter collectively designated

as Phox2) and depend on the latter for their formation

[12,15-17]. Among deuterostomes, we previously found

that the Ciona intestinalis orthologue of Phox2 is specif-

ically expressed in neurons of the cerebral ganglion

of postmetamorphic animals that motorize the respira-

tory and digestive ‘branchial basket’ [2]. Concerning

protostomes, the C. elegans orthologue of Phox2 marks

specifically five neurons [32] whose function is either

unknown (the SIAs) or hard to classify as somatic or vis-

ceral (ALA, involved in behavioral quiescence [33]). The

inconclusiveness of the latter finding is compounded by

the fact that most visceral organs in C. elegans either

lack innervation (such as the intestine) or are missing

altogether (such as a cardiovascular or a respiratory ap-

paratus). In A. californica, several neurons with cardio-

vascular, respiratory or excretory functions have been

identified by size and location in the abdominal gan-

glion. One of the best documented, the multimodal

motoneuron L7, directly innervates the muscles of the

gill, siphon, epineural sheath, heart and abdominal aorta

[34] (and references therein), and serves as premotor

neuron for the branchial ganglion [35]. We cloned

Ac-Phox2, the Aplysia orthologue of Phox2 [see

Additional file 1: Figure S1b] and found it expressed in

L7, recognizable by its large size and position at the left

border of the abdominal ganglion, rostral to the other

large (and also Phox2+) neuron in the region, L11, which

projects in the genital nerve but whose function is

Figure 3 Transcriptional code of putative somatic motoneurons

in the pedal ganglia of Lymnaea stagnalis. Consecutive sagittal
sections (respectively a,b and c,d) through the pedal ganglion
hybridized with the indicated probes. In e, the ganglion was
hybridized with Ls-Mnx after retrograde filling with biocytin through
the three pedal nerves to the foot. The three nerves to the neck and
columella, also involved in locomotion, were not filled. The anterior
cluster of Mnx+ cells is filled, as well as about half of the posterior
cluster. Scale bars, 100 μm.
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unknown (Figures 4a,b and 2q). Among the other

neurons expressing Phox2 was a large cluster occupying

the ‘right upper quadrant’ of the ganglion (Figure 4a,b),

which includes the giant R3-R13 cells [36] that innervate

the heart, major arteries and veins, digestive gland

sheath and kidney [37]. Many neurons that are smaller

than the R3-R13 cells were also positive for Phox2 in this

region. These might correspond to the extra cells found

to share with R3-R13 electrical activity [38], immunore-

activity for the cardiomodulator peptide NdWFamide

[39] and, thus, possibly a function. A giant Phox2+ cell

located close to the branchial nerve corresponded to

R14 (Figure 4a), which shares its targets with the R3-R13

group [37]. The R3-R14 neurons are thought to modu-

late heart beat frequency and local aspects of circulatory

physiology using, among others, the peptide HRBP [40]

as neurotransmitter. The kidney also receives input from

giant neurons of the ‘left upper quadrant’. Among those,

L5 is uniquely identified by expression of the peptide en-

coding the LUQ-1 gene [41], allowing us to show on

consecutive sections that it was Phox2+ (Figure 4c,d). In

Lymnaea, large ‘Light Yellow Cells’ (LYCs) [42] are con-

sidered homologous to the R3-R14 neurons on the basis

of their size, color, location, synthesis of a peptide simi-

lar to HRBP [43] and projections to the heart, aorta, kid-

ney, and connective tissue of the CNS [44]. We cloned

Lymnaea Phox2 [see Additional file 1: Figure S1b] and

found that it was expressed in all LYCs of the ventro-

lateral lobe of the right parietal ganglion, identified by

their position and expression of the LYC pro-peptide

(Figures 4e,f and 2r). Retrograde filling showed that they

projected in the right parietal nerves (Figure 4g), which

innervate the mantle cavity and pneumostome [45],

suggesting an additional role in ventilation.

As a further test of the vertebrate-like molecular sig-

nature of visceral and somatic motoneurons in mollusks,

we explored a second molluscan clade, Cephalopoda.

In decapodiform cephalopods (squid and cuttlefish),

the brachial ganglion and anterior part of the pedal

ganglion contain motoneurons for the prehensile and

locomotory arms, while the palliovisceral ganglion

contains motoneurons for the visceral mass [46,47]. We

cloned the orthologues of Mnx and Phox2 in S. officinalis

[See Additional file 1: Figure S1b,d] and found that Mnx,

but not Phox2, was expressed throughout the anterior

pedal lobe (Figure 5a-c) while Phox2, but not Mnx, was

expressed in the palliovisceral ganglion (Figure 5a-c).

Some of the palliovisceral ganglionic neurons are pre-

synaptic to the motoneurons of the mantle, which make

up most of the stellate ganglion, a synapomorphy of this

clade. Phox2, but not Mnx, was expressed in most stellate

ganglionic neurons (Figure 5d-f). Thus, mantle motoneu-

rons, which control water flow over the gills, express

Phox2, like the branchial motoneurons that perform the

same function in fish [16,48]. Apart from their respiratory

function, motoneurons to the mantle (whose axons fuse to

form the so-called ‘giant nerve fibers’— reference 49 and

Figure 5g) allow rapid water ejection and jet-propulsion of

Figure 4 Expression of Phox2 in identified visceral motoneurons in gastropods. (a-d) Abdominal ganglion of A. californica hybridized on
whole-mounts (a: dorsal view, b: ventral view) or transverse sections (c,d) with the indicated probes. In a, the giant R2 neuron is unlabeled. Red
arrowheads in c,d: small neurons co-expressing Phox2 and LUQ-1. (e-g) Consecutive sagittal sections of the right parietal ganglion of L. stagnalis
hybridized with the indicated probes, after it was filled with biocytin through the internal and external right parietal nerves (g). A, anterior; D,
dorsal; L, left; P, posterior; LUQ, left upper quadrant; R, right; LYCP, LYC pro-peptide; RUQ: right upper quadrant; V, ventral. Scale bars, 100 μm (a,b);
100 μm (c,d); 200 μm (e-g).
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the animal. The molecular identity of these escape moto-

neurons thus correlates with the ancestral function of the

target organ (respiratory, that is, visceral) rather than with

its additional, derived function (locomotory, that is, som-

atic). A conceptually similar but inverse situation can be

described in terrestrial (that is, air breathing) vertebrates,

whose respiratory motoneurons (projecting to the inter-

costal, abdominal and diaphragmatic muscles) are somatic,

that is, have kept the identity matching the embryonic ori-

gin (somitic) and ancestral function (locomotory, except

for the diaphragm of mammals) of their target muscles.

Hence, molluscan motoneurons that innervate the

viscera are distinguished from those that innervate the

locomotory muscles by the same transcriptional code

(respectively Phox2 and Mnx/Lhx3/4) as their verte-

brate counterparts.

Discussion
We have shown that molecular signatures for neurons

with somatic (that is, relational) versus visceral (that is,

homeostatic) functions are conserved between verte-

brates and mollusks. Visceral motoneurons, (such as

Figure 5 Expression of Phox2 and Mnx in the subesophageal and stellate ganglia of Sepia officinalis. (a-f) Consecutive sagittal sections
through the subesophageal ganglonic mass (a-c) or a stellate ganglion (d-f) hybridized with the indicated probes. Synaptotagmin 1/2/5 (So-Syt) is
used as a pan-neuronal marker (a,d and Additional file 1: Figure S1f). Apart from the expressions described in the text, the brachial ganglion contains
So-Mnx+ neurons, in line with its role in movement of the arms, but also So-Phox2+ neurons in its posterior wall, whose function has not been
described so far. (g) Drawing, reproduced with permission from Figure thirteen of reference [49], showing the way in which the axons of stellate
ganglion neurons progressively fuse to form the third order giant fibers (gf3) that allow jet-propulsion. (h) Schematic of the central nervous system and
stellate ganglion of Sepia. br, brachial ganglion; D, dorsal; P, posterior; pa, anterior pedal ganglion; pp, posterior pedal ganglion; pv, palliovisceral
ganglion; so, supraesophageal mass; st, stellate ganglion. Scale bars, 500 μm (a-c); 200 μm (d-f).
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cardiorespiratory neurons) express the orthologue of the

vertebate pan-visceral determinant Phox2b in opistho-

branch and pulmonate gastropods and a decapodiform

cephalopod. No other transcription factor or neurotrans-

mitter phenotype marks these neurons, specifically or

exhaustively, in vertebrates, precluding a more complex

signature. However, Phox2b expression is highly selective

for visceral neurons (both motor and sensory) in verte-

brates [16] and, thus, in combination with hodological

criteria, constitutes a strong argument for homology.

Neurons with modalities clearly equivalent to those of

visceral sensory neurons in vertebrates (which monitor

taste or blood pressure for example) are not described to

our knowledge in mollusks, precluding exploration of

this broad neuronal identity. Of note, in vertebrates, the

viscerosensory phenotype is imposed by Phox2b on a

somatosensory default identity [12], suggesting that the

former is evolutionarily more recent than the latter. Loco-

motory (somatic) motor neurons express the orthologues

of the homeobox genes Mnx1 and Lhx3/4 and VAChT in

both gastropods and cephalopods, like their counterparts

in the spinal cord of vertebrates. Finally, somatic sensory

neurons (such as mechanoreceptors), characterized in gas-

tropods by previous electrophysiological studies or expres-

sion of the peptide sensorin A, selectively express the

orthologues of the homeodomain genes Brn3, Drgx, and

Islet1 and VGluT, like their physiological counterparts in

the dorsal root and trigeminal ganglia of vertebrates.

What evolutionary relationship can explain the conser-

vation of molecular signatures in neurons with visceral

versus somatic functions between deuterostomes and

protostomes? The simplest hypothesis is that the cells

are phylogenetically homologous, that is, one could trace

their ancestry to an original neuron or neuronal cluster

in the common ancestor, as was proposed for ciliary

photoreceptors in annelids and vertebrates [1] or for

branchial motoneurons in vertebrates and urochordates

[2]. This might also be the case for somatic motoneu-

rons in vertebrates and lophotrochozoans: their distribu-

tion is spatially discrete in each phylum and reconcilable

between phyla. In vertebrates, locomotory Mnx+ neu-

rons are born in a ventral Nkx6.2+ domain of the spinal

cord, topologically and molecularly similar to the ventral

domain of the nerve cord of annelids, which produces

Mnx+/VAChT+ neurons, presumably motor [31]. In mol-

lusks, they are restricted to the pedal ganglia, conceiv-

ably homologous to the ventral nerve cord of annelids.

On the other hand, phylogenetic homology between

vertebrates and mollusks is unlikely, at least in most

cases, for somatic sensory neurons and visceral motor

neurons, due to their anatomical distribution, wide-

spread in each species (Figures 1, 3, 4) and hard to

reconcile between them. Moreover, Phox2 is expressed

in synapomorphic structures of vertebrates (the neural

crest-derived autonomic ganglia) and cephalopods (the

stellate ganglion). In this case, the most likely evolution-

ary scenario is that, in the last common ancestor, a ‘sem-

inal regulatory interaction’ [50] arose between Brn3 and

the somatic sensory phenotype and between Phox2 and

the visceral phenotype. Although no target gene has

been uncovered yet that would explain the physiological

dichotomy these transcription factors specify, one can

hypothesize, for example, that they direct axonal projec-

tions towards somatic versus visceral targets. Subse-

quently, this regulatory interaction would have been

conserved, while Brn3 and Phox2 acquired additional

expression sites, giving rise to novel groups of cells of

the same broad type along each evolutionary lineage.

According to this view, the relationship between the dif-

ferent kinds of somatosensory neurons or visceromotor

neurons would be neither of phylogenetic homology

(between species) nor of ‘sister cell types’ (within a

species [6]), but instead, both between and within species,

of ‘deep’ [51,52] or ‘generative’ [53] homology, akin to that

proposed for bilaterian appendages.

Conclusions

Regardless of the exact nature of what has been con-

served across the protostome-deuterostome boundary,

either neuronal groups or regulatory links between

transcription factors and neuronal traits, our data

show that the viscerosomatic duality of the nervous

system, as described in vertebrates, was already part of

the urbilaterian body plan. Some of its components

might be even more ancient, as suggested by expression of

a Brn3 orthologue in the sensory ‘rhopalia’ of scyphozoan

and cubozoan jellyfish [54]. To our knowledge, Mnx has

not been analyzed in the nervous system of cnidarians.

Finally, no straightforward orthologue of Phox2 emerges

from sequence analysis of paired-like homeobox genes in

Cnidaria [see Additional file 1: Figure S1b], which compli-

cates the search for a pre-bilaterian origin of the visceral

nervous system.

Methods

Tissue processing

Ganglia from adult A. californica (100 to 150 g) were

dissected in artificial seawater (460 mM NaCl, 10 mM

KCl, 55 mM MgCl2, 11 mM, CaCl2, 10 mM (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),

pH 7.6), protease digested for two hours at 37°C, fixed

with 4% paraformaldehyde (4% PFA) in phosphate buff-

ered saline (PBS) overnight at 4°C, desheathed and

dehydrated in ethanol. S. officinalis fertilized eggs were

removed from their envelopes in artificial seawater and

fixed overnight with 4% PFA when they reached stage 29

[55], dechorionated, fixed again with 4% PFA for a whole

day and dehydrated in methanol. Samples destined to be
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sectioned were rehydrated in PBST (PBS, 0.1% Tween-

20), incubated overnight at 4°C in (PBS, 15% sucrose),

incubated for 50 minutes at 65°C in gelatine (PBS, 7.5%

gelatine, 15% sucrose, pH 7.2), embedded in gelatine,

frozen for one minute at −50°C in isopentane and kept

at −80°C until sectioning. Ganglia from adult L. stagnalis

(20 to 40 mm) specimens were dissected in a physiological

solution (40 mM NaCl, 1.7 mM KCl, 1.5 mM MgCl2, 4.1

mM CaCl2, 10 mM HEPES, pH7.9), fixed with 4% PFA

and processed for gelatine embedding as described above.

cDNA from Rattus norvegicus Drgx, R. norvegicus Islet1

and R. norvegicus VGluT2 sequences and a mouse anti-

Brn3a monoclonal antibody (MAB1585 Millipore, Biller-

ica, MA, USA) were used for mice procedures.

In situ hybridization on sections

Frozen sections (12 μm) were thawed and air dried,

washed briefly in PBST, treated 2 × 10 minutes with RIPA

buffer (150 mM NaCl, 1% NP-40, 0.5% Na deoxycholate,

0.1% SDS, 1 mM ethylenediaminetetraacetic acid (EDTA),

50 mM Tris pH 8.0), postfixed with 4% PFA for 15 mi-

nutes, washed 3 × 5 minutes in PBST, acetylated with

(100 mM triethanolamine, pH 8.0, 0.25% acetic anhyd-

ride) for 15 minutes on a rocker table and washed 3 × 5

minutes in PBST. Endogenous alkaline phosphatases were

inactivated by a 60-minute incubation in PBS at 80°C.

The slides were then prehybridized for 60 minutes in

hybridization solution (50% formamide, 5X SSC, 5X

Denhardt’s, 500 μg/mL herring sperm DNA, 250 μg/mL

yeast RNA) at 65°C and hybridized with the digoxigenin-

labeled RNA (Roche, Penzberg, Germany) probe (500 ng/

mL) overnight at the same temperature. The slides were

washed twice in 50% formamide, 2X SSC, 0.1% Tween-20)

for 60 minutes and in 0.2X SSC at 65°C for 60 minutes.

The slides were then rinsed 3 × 10 minutes in buffer 1

(100 mM maleic acid, pH 7.5, 150 mM NaCl, 0.1%

Tween-20), blocked in buffer 2 (buffer 1, 10% sheep

serum) for 60 minutes and incubated overnight at 4°C

with alkaline phosphatase-coupled anti-DIG antibody

(Roche) diluted 1/2000 in buffer 2. The slides were

washed 2 × 10 minutes in buffer 1, incubated for 30 mi-

nutes in buffer 3 (100 mM Tris, pH 9.5, 100 mM NaCl,

50 mM MgCl2, 0.1% Tween-20) and the signal was

revealed in filtered buffer 4 (3.5 μL NBT (4-nitroblue

tetrazolium chloride) (Roche) 100 mg/mL), 3.5 μL BCIP

((5-bromo-4-chloro-3-indoylphosphate) (Roche) 50 mg/

mL) in buffer 3). The slides were washed 3 × 5 minutes

in PBST and then postfixed overnight with 4% PFA,

washed briefly in PBST and then either washed in water

and mounted in Aquatex (Merck) or, when nerves had

been retrogradely filled, treated as follows: sections

were permeabilized 2 × 10 minutes in PBS, 0.3% Triton

X-100, blocked 20 minutes in blocking solution (PBS,

10% fetal calf serum, 0.1% Triton X-100), incubated for

two hours in the dark with ExtrAvidin-fluorescein

isothiocyanate (FITC, Sigma, Saint-Quentin Fallavier,

France) diluted 1/400 in blocking solution, washed 3 ×

10 minutes in PBST in the dark and mounted in Mowiol

(Calbiochem, Darmstadt, Germany).

In situ hybridization on whole-mounts

The dehydrated desheathed CNS were progressively

rehydrated in PBST, incubated for 20 minutes in PBS,

0.3% Triton X-100, rinsed in PBST, permeabilized with

PBST, 10 mg/mL Proteinase K for 60 minutes, washed

2 × 5 minutes in PBST, postfixed in 4% PFA for 30 mi-

nutes, washed 2 × 5 minutes in PBST, incubated for 10

minutes in 100 mM triethanolamine, pH 8.0, acetylated

2 × 10 minutes with 100 mM triethanolamine, pH 8.0,

0.25% acetic anhydride, washed 2 × 5 minutes in PBST,

incubated at 80°C in PBS for 60 minutes, rinsed in PBST,

prehybridized for 60 minutes in hybridization buffer

(50% formamide, 1.3X SSC, 5 mM EDTA, 50 μg/mL

yeast RNA, 2% Tween-20, 0.5% CHAPS) at 65°C and hy-

bridized overnight with the probe (200 ng/mL) at the

same temperature. The samples were rinsed twice and

washed 2 × 30 minutes in prewarmed hybridization so-

lution at 65°C. Then they were washed for 10 minutes at

room temperature in a 1:1 mixture of hybridization solu-

tion and buffer 1, 60 minutes in buffer 1, blocked 60 mi-

nutes in buffer 1/ 20% FCS, incubated overnight at 4°C

with alkaline phosphatase-coupled anti-DIG antibody

(Roche) diluted 1/2000 in buffer 1/ 2% FCS, rinsed three

times and washed 3 × 60 minutes in buffer 1, then left for

two days in buffer 1, incubated 2 × 30 minutes in buffer 3,

revealed in the dark with filtered NBT/BCIP (Sigma),

washed in the dark 3 x 10 minutes with PBST, postfixed

overnight with 4% PFA, rinsed in PBST and kept at 4°C in

Tissue-TekWoptimal cutting temperature (O.C.T.) embed-

ding medium (Sakura, Tokyo, Japan). Except for revela-

tion, all steps were performed with agitation.

Immunofluorescence for detection of mouse Brn3a

Sections were dried, washed for 5 minutes in PBS,

permeabilized 2 × 10 minutes in PBS/ 0.3% Triton

X-100, blocked for 20 minutes in blocking solution

(PBS, 10% FCS, 0.1% Triton X-100), incubated overnight

at 4°C with the mouse anti-Brn3a monoclonal antibody

(MAB1585) diluted 1/200 in blocking solution, washed

3 × 10 minutes in PBST, incubated for 2 hours with the

fluorescent goat anti-mouse Cy3-coupled secondary anti-

body (115-165-003 Jackson ImmunoResearch, Newmarket,

UK), washed 3 × 10 minutes in PBST in the dark and

mounted in Mowiol (Calbiochem). The image was

converted to gray scale, inverted and superimposed on

a Nomarski photomicrograph in Photoshop CS3.
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Cloning of orthologues

Starting with total RNA extracted using RNeasy Lipid

Tissue Mini Kit (Qiagen), fragments of newly cloned

cDNAs were amplified by PCR and rapid amplification of

cDNA ends-PCR (RACE-PCR) as described previously

[56]. Orthology was assigned by phylogenetic analysis

(see below and Additional file 1: Figure S1). Ls-VAChT

and Ls-VGluT were PCR-amplified using oligonucleotides

derived from the GenBank sequences (accession numbers:

AF484093 and AB469850, respectively).

Nerve backfilling

The ganglia of a 20 to 40 mm Lymnaea stagnalis speci-

men were dissected in a 1:1 mixture of physiological

medium with Leibovitz's L15 medium (21083–027, Life

technologies, Saint Aubin, France) complemented with

50 U/mL pennicilin, 50 μg/mL streptomycin and at the

final concentration of 0.3 M glucose, cutting short all

nerves except those of interest. The preparation was

pinned at the bottom of a sylgard dish where two com-

partments were delineated with Vaseline, separating the

ganglia from the distal part of the nerves to be

backfilled. The nerve compartment was emptied, filled

with distilled water (dH2O), nerves were recut and, after

a 10-minute incubation, dH2O was replaced by a satu-

rated solution of biocytin (Sigma) in dH2O. After 24

hours at room temperature and in the dark, the ganglia

were fixed overnight at 4°C in 4% PFA and processed for

in situ hybridization and biocytin revelation using

Extravidin-FITC (see above).

Phylogenetic analyses

Gene orthologies were assessed using protein sequences

aligned with ClustalX2 [57] and the software PhyML

[58] with 1,000 bootstrap replicates and the model sug-

gested by ProtTest 2.4 [59]. The closest groups of homeo-

genes were used as outgroups [60]. Trees were drawn with

Dendroscope v3.0.14 [61].

Ethical approval

Experiments on mouse embryos have been approved by

The Research Ethic committee « Charles Darwin », Paris

(approval number Ce5/2012/064).

Additional file

Additional file 1: Figure S1. Support for orthology assignment of the
twelve sequences cloned in this study. Figure S1 shows six phylogenetic
trees for genes shared among Bilateria. Figure S2 shows amino acid
sequence alignment between the Aplysia and Lymnaea Sensorin genes.
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