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ABSTRACT 

The visualization of bioprosthesis leaflet morphology might help to better understand the 

underlying mechanism of dysfunction in degenerated aortic bioprosthesis. Because today such 

visualization of bioprosthesis leaflet morphology is intricate to impossible with other imaging 

techniques, we hypothesized that the processing of multi-detector CT images would allow 

better visualization of the prosthetic valve leaflets after biological aortic valve replacement. 

The purpose of our study was to prospectively evaluate patients with a degenerated aortic 

bioprosthesis, waiting for reoperation, by using 64-slice CT to evaluate prosthetic leaflets 

morphology. A semi-automatic segmentation of pre-operative tomodensitometric images was 

conducted, using 2 different implementations of the region growing algorithm. Here we report 

all segmentation steps (selection of the region of interest, filtering, segmentation). Studied 

degenerated aortic bioprostheses were represented by two Carpentier-Edwards Supra Annular 

Valve (porcine leaflets), one Edwards Perimount (pericardial leaflets) and one Medtronic 

Mosaic (porcine leaflets). Both segmentation methods (Isotropic Region Growing and Stick 

Region Growing) allowed a semi-automatic segmentation with 3D reconstruction of all 

bioprosthetic components (stent, leaflets, degeneration/calcifications). Explanted 

bioprosthesis CT images were also processed and used as reference. Segmentation results 

were compared by means of quantitative criteria. Semi-automatic segmentation using region 

growing algorithm seems to provide an interesting approach for the morphological 

characterization of degenerated aortic bioprostheses. We believe that in the next future CT 

scan images segmentation may play an important role to better understand the mechanism of 

dysfunction in failing aortic bioprostheses. Moreover, bioprostheses 3D reconstructions could 

be integrated into preoperative planning tools to optimize valve-in-valve procedure. 

 



INTRODUCTION 

During the last decade, the relative use of bioprosthetic aortic valves has clearly increased. 

Improvements in surgical techniques and valve durability are likely to have fueled this 

increase. On the other hand, the mortality risk of redo aortic valve surgery has similarly 

decreased. Together with the best postoperative quality of life, these good surgical results 

contribute to the large diffusion of bioprostheses implantation even in younger patients. This 

phenomenon, associated to the increased life expectancy in industrialized countries, will 

probably show its consequences in the next years when a large number of elderly patients 

with associated comorbidities will need a re-intervention for bioprosthesis degeneration. With 

the introduction of the transcatheter aortic valve to treat native aortic valve stenosis in high or 

prohibitive surgical risk patients through a less invasive technique, medical community has 

discovered a seducing but still emergent option to treat bioprosthesis failure in the same kind 

of patients. Transcatheter valve implantation avoids re-sternotomy and cardiopulmonary 

bypass and can potentially reduce resource utilization by accelerating patient recovery and 

reducing hospital stay. The major failure mechanism for bioprostheses is represented by 

leaflet degeneration and the current reference standard for follow-up in patients after aortic 

valve replacement remains trans-thoracic echocardiography, with trans-esophageal 

exploration in case of questionable findings at trans-thoracic. Echocardiography represents the 

gold standard for functional assessment of bioprostheses. However, both trans-thoracic and 

trans-esophageal echocardiography have limited usefulness for morphological assessment, 

especially concerning bioprosthetic leaflets, because of their thickness and the acoustic 

shadowing from stent or suture ring that often prevents their good visualization. Furthermore, 

given their two-dimensional imaging nature, it is generally impossible to directly image the 

leaflets that are not oriented in the imaging plane. Even the new 3D echocardiography has, for 



the moment, limited application on the aortic bioprostheses also because of the anterior 

position. 

During the last years, multi-detector computed tomography (CT) has shown its potential to 

provide precise diagnostic information in different cardiac clinical situations, such as 

noninvasive evaluation of coronary disease [1–6], ventricular morphology and function [7], 

and myocardial viability [8–10]. Multi-detector CT can also help visualize the morphology 

and motion of native and diseased stenotic aortic valves and precisely measure aortic valve 

opening areas. Several studies [11–17] suggest that multi-detector CT can also help assess 

mechanism of dysfunction in mechanical prosthetic heart valve disorders. 

In clinical practice CT scan images normally allow a tridimensional reconstruction of the 

structures of interest, thanks to their high spatial resolution. The 3D analysis improves the 

users understanding and facilitates the planning of surgical/interventional procedures. 

In this context, the starting idea of this research work was that the tridimensional 

reconstruction of bioprosthetic structures, in particular of prosthetic leaflets, could make 

easier the morphological analysis of degenerated bioprostheses during normal follow-up and 

be used for patients’ selection, improved planning and simulation of valve-in-valve procedure 

in the future. Currently, the available softwares to analyze and process CT scan images do not 

allow an efficient and effective tridimensional reconstruction of the bioprosthetic leaflets: 

bovine pericardium and porcine valve leaflets are in fact too thin and CT images are also 

altered by noise, stent metal artifacts and heart beat. This makes difficult the automatic 

analysis with available tools and new methods to process these high resolution images have to 

be considered. 

We hypothesized that multi-detector CT would allow better visualization of the prosthetic 

valve leaflets after biological aortic valve replacement. Accordingly, the purpose of our study 



was to prospectively evaluate patients with a degenerated aortic bioprosthesis, waiting for 

reoperation, by using 64-slice CT to morphologically analyze bioprosthetic leaflets. 

 

METHODS 

Study Protocol 

The study protocol was approved by the institutional review board. Written informed consent 

was obtained from patient after they were explained about the radiation exposure. Patients 

with a failing aortic bioprosthesis and waiting for reoperation at our institution were included 

in the study. All patients were in stable hemodynamic condition. Exclusion criteria were as 

follows: urgent operation (hemodynamic instability or supine position suffering), constant 

arrhythmia (atrial fibrillation or more than five premature heart beats per minute), New York 

Heart Association class IV heart failure, renal insufficiency (serum creatinine level greater 

than 1.4 mg/dL), and known allergy to iodinated contrast agents. 

In-Vivo scanning protocol (Coronary CT protocol) : in order to reduce motion artifacts, 

included patients underwent preoperative electrocardiographically gated cardiac multi-

detector CT performed with a 64-slices system (General Electric Medical Systems VCT 64 or 

Discovery 750HD, GE Healthcare, Waukesha, WI). Patients with a heart rate of more than 75 

beats per minute received oral Bisoprolol 5 mg/day for 2 days prior to CT associated to 

intravenous Atenolol (intravenous bolus injection of 5 mg before exam) if they had no 

contraindication to beta-blocker administration. 

The scanning direction was craniocaudal and extended from the level of the carina to the 

diaphragm. Prior to scanning, a technologist instructed all patients regarding breath holding in 

an effort to minimize changes in body posture during the examination. The scanning sequence 

was as follows: topography was performed and was followed by a bolus tracking examination 

and two coronary CT angiography algorithms. 



The intravenous bolus of contrast medium was tracked in the ascending aorta at the level of 

the pulmonary trunk every 2 seconds. The administered contrast medium was Iobitridol 

(Xenetix) (Guerbet Aulnay-sous-Bois, France) or Iohexol (Omnipaque) (GE Healthscare 

Healthcare, Inc. Princeton, NJ). The intravenous triple bolus was realized with 95 ml of 

contrast medium, followed by 45 ml of a mix of contrast and saline solution (50/50%) and 

finally rinsed by 30 ml of saline solution at 5 ml/sec. Individual body weight–adapted volume 

of contrast media and injection rate were not performed. 

Retrospective CT angiography was performed with the following parameters: helical scanning 

direction, 233-msec x-ray exposure time (two-thirds of the gantry rotation speed), 64 x 0.625-

mm collimation, 0.35-second gantry rotation time, 100-kV tube voltage, 0.16–0.22 pitch and 

use of dose modulation (peak tube current of 750 mA during 0%– 90% of the R-R interval 

and minimal tube current of 300 mA) to reduce DLP (Dose Length Product in mGy x cm). 

Retrospective reconstruction of multiple phases of cardiac cycle was performed. The diastole 

phase (70% of cardiac cycle) was considered as the best to study the aortic bioprosthesis with 

leaflets in their closed position.   

Ex-Vivo scanning protocol (Temporal bone protocol) : after reoperation and intraoperative 

evaluation of the failure mechanism, CT-scan images of the isolated explanted aortic 

bioprosthesis were obtained using a high image resolution protocol with the following 

parameters: 64 x 0.3125-mm collimation, 1-second gantry rotation time, 140-kV tube voltage, 

0.531 pitch and tube current of 170 mA. 

Patient Population 

During a 2 years period, 9 patients were considered for the study. Among these, only 4 

patients were included according to selection criteria. Three patients were excluded because 

of associated stable arrhythmia, heart failure (requiring emergency care) and renal 



insufficiency which contraindicated the use of iodinated contrast enhanced imaging. 

Degenerated bioprostheses were represented by two Carpentier-Edwards Supra Annular 

Valve  (Case 2 – MAG and 3 - BOU), one 23 mm Edwards Perimount (Case 1 – HER)  and 

one 23 mm Medtronic Mosaic (Case 4 – DAV). Bioprostheses echocardiographic 

characteristics and failure mechanisms are shown in table 1. 

Image Processing 

A semi-automatic segmentation of pre-operative tomodensitometric images was conducted, 

using 2 different implementations of the region growing algorithm. Here we report all 

segmentation steps. 

1 - Selection of the region of interest 

In order to deal with the difficulties of segmentation of the bioprosthesis CT images (metal 

artifacts, thickness of leaflets compared with image resolution, density of valve components 

compared to stent) we considered a region of interest (ROI) defined by the stent. According to 

the type of bioprosthesis stent implanted in the patient, we considered two kind of shape for 

the ROI: a cylindrical shape preferentially for incomplete metallic stents and a conformational 

shape for complete metallic stents (Fig. 1). 

   2 - Preprocessing 

A preprocessing step is implemented in order to reduce the noise in CT images. The goal is to 

increase the signal to noise ratio (SNR) as well as to increase the contrast of the structures of 

interest, especially the valve leaflets. We considered methods based on diffusion filters 

(curvature and anisotropic diffusion filter) as well as an adaptation of stick filters, initially 

introduced to segment ultrasound images, and to reduce noise and keep details in thin 

structures [18,19]. To select the most appropriate approach before the segmentation step, we 



considered the SNR as the performance criterion. To compute the SNR we used the definition 

given in [20]:  
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Var  is the the local variance in the neighborhood of leaflets and vascular lumen voxels 

located in the ROI. Voxels located at the boundary between leaflets and vascular lumen are 

used to obtain the maximum variance whereas voxels located in the vascular lumen are used 

to obtain minimum variance.  Due to their high value, voxels representing stent, calcifications 

and pannus are not considered in the computation of SNR.  

The diffusion filters are non-linear filters based on partial differential equations. They have 

been proposed for noise reduction and segmentation, particularly for vascular images.  
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Classical Anisotropic diffusion operators as PM model can enhance edge while denoising the 

image. Nevertheless, they may exhibit both edge and noise in low SNR conditions. 

Anisotropic Curvature Diffusion, which is based on a modified curvature diffusion equation 

(MCDE) [22-24], has been introduced to overcome this problem and to be less sensitive to 

noise. 

In Anisotropic Curvature Diffusion, the Discrete Gradient ,

t

p q
I!  used in PM Model was 

replaced by Gaussian Curvature of the voxel: 
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As suggested by Perona et al [21], in the proposed CT data pre-processing approach we chose 
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 was selected thanks to its simple 

computational complexity. Values of !  and k were set at 1 for a low level of noise (high 

SNR).  In the case of images showing a high level of noise (SNR<=8), !  and k were set at 

0.5. In general, K value should be set in a range of grey level values between the gradient 

leaflet/vascular lumen and the gradient inside the noise. 

Stick filter is also a non-linear filter. With stick filtering approach, the neighborhood of the 

considered voxel is divided into a set of asymmetric sticks to perform a non-linear filtering of 

the image. Because of its asymmetric stick, the filter could get better performance in terms of 

keeping details of thin structure, as valve leaflets, while denoising the image. 



The filter output I' at the current voxel was originally defined as:  
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where i
I  denotes the local mean value along the 

th
 stick, is the number of sticks, gi is the 

reciprocal of local variance along the i
th

 stick, used to classify edge and noise. 

This filter was adapted to pre-process CT images of degenerative aortic valve bioprosthesis. 

In our approach, the resulting value of the filtering process was considered as the sum of voxel 

median values normalized by the standard deviation along 4 voxels length sticks defined in the 

neighborhood. The values of resulting voxels I' were more precisely defined as: 
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where I  denotes the local median value along the 
th

 stick, is the number of   sticks 

( 2
24 48 26N L L= ! +  in 3D conditions), L  is the number of voxels along the stick, and gi is the 

reciprocal of local variance along the i
th

 stick. 

L, the length of stick, is the main parameter of this filter. We tested different values of L, from 

3 to 7. L should be larger than texture caused by noise and smaller than thin structure (leaflet). 

We found that normally, L=5 is suitable for our data sets (voxel is 0.312*0.312*0.625mm^3, 

thickness of leaflets is 0.5-1mm, width of noise texture is different in data sets, 3-5 voxels). 

Other values of L can be used if the parameters of data set change. L is also determined by 

SNR of original CT images. When SNR<=8, L=5; 8<SNR<=10, L=4; SNR>10, L=3. 

Besides, the number of iteration is not a critical issue unlike Diffusion Filter. Stick Filter 

shows a convergent behavior after several iterations. Typically, in a low SNR condition 

(SNR<=8), the result converged after 5 iterations (after 3 iterations when SNR>10). It was not 

necessary to limit the number of iterations to avoid an over-smoothing of edges.  



The drawback of Stick Filter is its high computation complexity. A 5 voxels-length Stick 

Filter (  a 9*9*9 cubic neighborhood), requires for each voxel and at each iteration, the 

calculation of 386 local medians and local variances. The time of calculation can be decreased 

by the stent-defined ROI. The number of voxels located in the ROI is much less than in the 

cubic volume encompassing the aortic valve bioprosthesis. Cylindrical ROI typically decreases 

the number of voxels to 40% and conformational ROI to 16%. 

   3 - Valve segmentation 

According to surgical expertise, four main classes of tissues were identified. They were 

related to the Hounsfield Units (HU) measured by CT. We considered, from high to low HU, 

the following classes: stent, calcifications, vascular lumen and leaflets. The first two elements, 

showing high CT values, can be easily segmented by thresholding; the issue of segmentation is 

more particularly focused on bioprosthetic leaflets. 

Two kinds of region-based segmentation processes were implemented, with a decreasing 

level of user interactivity.  

A - Isotropic Region Growing (IRG) 

It was applied using the 3D Slicer software, an open-source application that assists with the 

visualization, registration, segmentation and quantification of medical image data. It can be 

downloaded at http://www.slicer.org. 

Multiple seed points were interactively selected for each component of the prosthesis. The 

region growing algorithm was started (26-neighbour connectivity) with automatic calculation 

of the criterion used for the aggregation of voxels. This similarity criterion was based on mean 

and standard deviation of the voxel values within the considered cubic neighborhood [25]. The 

extraction and visualization of the resulting 3D surface meshes delineating the regions were 

performed by using the Marching Cube algorithm [26]. 



B - Stick Region Growing (SRG) 

To better deal with the segmentation of thin structures, like the components of a valve 

bioprosthesis and especially valve leaflets, we developed a directional region growing process 

based on stick neighborhood. The segmentation was thus performed by the stick region 

growing algorithm applied to a previously selected region of interest (ROI). 

Some seeds were interactively selected inside the leaflets at different locations (typically 4 

to 6 seeds). A set of N voxels inside the leaflets was defined by considering for each seed the 

voxels belonging to their neighborhood. The similarity criterion was locally based on mean 

and standard deviation of the CT voxel values along the directions defined by the sticks. This 

approach was implemented using MatLab development tools. 

In order to examine each voxel in the cubic neighborhood of the seed, we specifically 

computed the stick variances in the set of sticks defined by each of these voxels: 
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L was chosen to be less than the thickness of the leaflets. Typically L was between 3 and 5 

voxels (about 1mm).  

To ensure region growth is not early stopped, or in other words to limit the number of seed 

points selection in some critical cases (highly noisy data), the size of the cubic neighborhood 

was chosen to be large enough to include space between homogeneous fragment of leaflets. 

We typically used a 342-connected neighborhood (7x7x7). We also defined ,
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local mean of the stick with minimum local variance. 

The voxels were classified as belonging to the region of the seed voxel (  as a voxel of 

normal leaflet tissue) when: (i) 
m
I  belongs to the grey level range of normal leaflets and (ii) 

minimum local variance along stick is lower than a variance threshold (VTH). VTH was 



determined by the difference of local cubic neighborhood variances of leaflets voxels and 

boundary voxels. These variances have been previously calculated in SNR computation (for 

image preprocessing). When this voxel belonged to the ROI, it constituted a new seed voxel. 

This process was iterated until no new voxel can be marked as a seed. 

RESULTS 

We obtained preoperative CT images (in-vivo) in four patients (HER, MAG, BOU, DAV) 

presenting a degeneration of aortic bioprosthesis. The radiation dose for each patient was 

comprised between 440 and 480 DLP (Dose Length Product - mGy x cm). Depending on the 

case, the reoperation was performed from 7 to 19 years after implantation for different 

pathological reasons. In one case it was a pericardial bioprosthesis (HER), in which bovine 

pericardium is cut to reproduce aortic valve leaflets that are sewn on a complete metallic stent. 

Three more cases were represented by porcine bioprostheses, in which a porcine aortic valve is 

mounted on a complete metallic stent (2 cases: MAG and BOU) or incomplete metallic stent (1 

case: DAV). After reoperation, CT-scan images of isolated explanted aortic bioprosthesis were 

obtained using the highest image resolution protocol (ex-vivo). Table 2 shows the results of 

resolution parameters for in-vivo and ex-vivo images. 

The preprocessing based either on diffusion or on stick filter was applied to the in-vivo CT 

volumes of the four patients. The bioprosthesis voxels were first isolated by considering the 

ROI defined by the stent. An example of original image and the result of two different filters is 

reported in Fig. 2. A first qualitative appreciation of the results let appear that stick filter based 

approach better enhance the contrast between valve leaflets and surrounding structures. 

In addition to this qualitative assessment, the SNR was computed on original images and 

resulting images (Fig. 3). This objective assessment showed that stick filtering had the best 

SNR in the four patients. This was consistent with the subjective appreciation. 



Following the ad hoc preprocessing step, the different segmentation methods (IRG and 

SRG) were applied to the in-vivo (IV) and ex-vivo (EV) images. Ex-vivo images, easier to 

segment with both methods and showing similar results, were used as reference. 

Figures 4 and 5 show some examples of segmentation with both methods. The first case of a 

segmented pericardial bioprosthesis (HER) showed minimal leaflet degeneration. The leaflet 

prolapse resulting in imperfect coaptation appears as commissure lost in the segmented images. 

The second case (MAG), a porcine bioprothesis, was characterized by a calcified pannus that 

was responsible for valve obstruction. The pannus was not detected at preoperative 

echocardiography. 

 In the third case (BOU) the calcification of a leaflet was responsible for a functional 

stenosis of the porcine bioprosthesis. The last case (DAV) was represented by a porcine 

bioprosthesis with an incomplete metallic stent. This bioprosthesis, considered as normal at 

preoperative echocardiography, was explanted during a surgery for infected ascending aorta 

pseudo-aneurysm. Intra-operative evaluation showed leaflets thickening as starting process of 

infective endocarditis. 

!" #$%&'('%'()*" %&%+,-(-" .%-" '/*&" 01&2$0'*2" '1" 134*0'()*+," 0156%7*" '/*" 7*-$+'-" obtained 

respectively by IRG and SRG on in-vivo (IV) and ex-vivo (EV) images. The criterion used to 

evaluate the results was the volume of bioprothesis components computing the voxel volume 

and counting the number of voxels for each component (stent, leaflets, and calcifications). 

Results of this analysis are shown in Fig. 6 (volumes are expressed in mm
3
). When we look at 

stent results we find that the stent of the first case is bigger in volumes comparing to the 

others. This corresponds to reality because the stent of the bioprosthesis Edwards Perimount 

is volumetrically bigger than the Carpentier-Edwards Supra Annular Valve or the Medtronic 

Mosaic stents. Moreover stent volumes in vivo are bigger than ex-vivo. Concerning leaflets, 

volumes results show a good coherence between methods. Case 4 – DAV is characterized by 



an incomplete stent. In this case segmentation considered the basal part of the non metallic 

stent as leaflet. This explains the big volumes of leaflets in this case. The studied 

bioprostheses doesn’t show leaflets strongly calcified. Only the case 2 – MAG was 

characterized by a calcified sub-valvular pannus that was well represented in volume analysis. 

DISCUSSION 

An aortic bioprosthesis can have functional degradation and prosthesis dysfunction over time 

[27,28]. In more recent bioprostheses, the rate of structural failure appears to be somewhat 

lower [29,30] than with the first generation, but it is still occurring. 

Obstruction in aortic bioprosthesis may be caused by the presence of thrombus on the leaflets 

or stents, by fibrous or calcified pannus (ie, fibrous tissue growing within the bioprosthesis 

due to excessive cicatrisation) or by the structural deterioration of leaflets due to calcification. 

Prosthetic thrombosis may be suspected clinically when the bioprosthesis shows acute 

deterioration of its effective orifice area (EOA). Fibrous pannus and structural deterioration 

may be suspected when EAO decreases slowly over time. Treatment is different: thrombosis 

may reverse with anticoagulation treatment. Structural deterioration and fibrous pannus are 

irreversible and typically require reoperation with replacement of the bioprosthesis, which has 

a high risk of surgical morbidity and mortality, especially in elderly patients with associated 

comorbidities. Moreover, in the next future, these high risk patients suffering from a structural 

valve deterioration of their bioprosthesis, could benefit from the new techniques of trans-

catheter aortic valve implantation (valve-in-valve procedure) [31]. 

Understanding the precise mechanism of bioprosthesis dysfunction would thus be important 

to direct clinical management. Yet, it can often be difficult to identify these entities in clinical 

practice. Indeed, both transthoracic and transesophageal echocardiography have limited 

usefulness for detection of the mechanism of stenotic bioprostheses, because of the acoustic 

shadowing from valve stents or annulus. 



CT images would potentially allow better visualization of the bioprosthetic valve leaflets after 

aortic valve replacement, but at the moment CT scan softwares don’t allow automatic leaflets 

enhancement. In this study we have tested two different implementations of the region growing 

segmentation on CT images of degenerated aortic bioprosthesis. These two methods, 

considered as semiautomatic segmentation methods, seem to be similar in terms of results even 

if different in their approach. 

The pre-processing represents a key point of the analysis: bioprostheses CT images need to 

be treated before to be segmented because of noise and metallic stent artifacts. 

The ROI selection reduces most of the effects of the artifacts. In fact we define a ROI in order 

to stop region growing into artifacts. Normally, metal artifact reduction needs a process of 

radon translation, interpolation and in-translation. These represent very complex methods that 

often loose images details as thin structure. Remaining artifacts could impact on qualitative 

and quantitative results of segmentation. 

Different filters have been tested in order to improve images by noise reduction and to reach 

the best leaflets enhancement. Stick filtering showed the best results and this was confirmed by 

SNR analyses. The stick filtering process can directly reduce metal artifacts (without the need 

for radon translation) keeping a reliable surrounding tissue. This filtering process is performed 

by MatLab software and it takes time to be finalized. To reduce this computing time it is 

important to select a ROI that takes into account only the bioprosthesis stent region with its 

leaflets. Stick processing time is estimated in 2 hours for each data set from original images to 

segmentation. The algorithm can be optimized using more processors to parallelize the process 

and obtain faster results in order to improve its clinical application. 

Concerning segmentations results, we have some considerations. Among the analyzed data 

sets, the best results have been obtained in the case of the pericardial bioprosthesis. The reason 



has to be attributed to the thickness of the valve tissue: pericardial leaflets are largely thicker 

than porcine with consequent better detection by CT scan. 

There are different factors that could explain the volumes differences observed in some cases 

for in-vivo images comparing to ex-vivo. Firstly, image resolution is not the same. In-vivo 

acquisition protocol represents the standard protocol used for coronary ECG gated angio-CT-

scan. Changing the acquisition parameters was not considered and specific acquisition for 

bioprosthesis analysis doesn’t exist at the moment. For the ex-vivo images we chose the 

highest resolution protocol to be close to reality and to use these images as reference. Other 

than image resolution, we can consider heart motion and blood superposition as important 

factor for volumes differences. These two factors participate to modify the experimental 

condition of in-vivo images that explain the differences with ex-vivo images in qualitative and 

quantitative analysis.   

Computing of leaflets volumes can be altered by the non-metallic part of bioprosthesis stent. 

Only the metallic stent can be used as spatial limitation for the leaflets because the non metallic 

part has the same density of the leaflets. For this reason leaflet volumes are higher than normal 

in the only case with incomplete metallic stent.     

Another factor that plays a fundamental role for the quality of in-vivo images (preoperative 

images) is the heart rate during the exam. It should be as low as possible and not more than 70 

bpm. Patient preoperative clinical conditions can be responsible for higher heart rate and 

contra-indicate medical therapy as beta-blockers to reduce it. 

In all cases, we observed in-vivo underestimation of leaflets degeneration. This is only 

partially true. In fact, in the studied cases, leaflets are not so calcified and most part of 

degeneration consists in leaflets thickening. These leaflets modifications do not appear with the 

same density of calcifications and are difficult to be detected in in-vivo CT images. Only 



actual calcifications can be detected with consequent underestimation compared to ex-vivo 

images, in which smaller differences in density can be easily appreciated. 

The study has a number of limitations: the small number of studied data sets and their 

heterogeneity do not allow data validation by statistical analysis. Moreover the quantitative 

analysis is conducted on in-vivo and ex-vivo data of bioprostheses in different experimental 

conditions which can explain the volumetric deviations. 

Our study suggests that segmentation of CT images could play a role in clarifying the 

mechanism of bioprosthesis dysfunction. Indeed, we demonstrated that segmentation can help 

directly visualize leaflet morphology. Furthermore, we demonstrated the ability of these 

methods to identify bioprosthesis leaflet thickening, calcification as well as presence of 

pannus under bioprosthetic leaflets. 

Our preliminary results suggest the feasibility to enhance aortic bioprosthesis leaflets by the 

application of the region growing segmentation to preoperative CT images after filtering 

process. Because today such morphological evaluation of bioprosthesis leaflets is intricate to 

impossible with other imaging techniques, we believe that in the next future CT scan images 

segmentation may play an important role to better understand the mechanism of dysfunction 

in patients with a degenerated aortic bioprosthesis during normal follow-up. After acquisition 

protocols adaptation and methods validations by larger series application, 3D reconstructions 

could be used for patient’s selection, planning and simulation of the valve-in-valve procedure. 
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Tab. 1: pre-operative echocardiographic assessment and intra-operative failure evaluation of 

studied bioprostheses.'

Case Bioprosthesis type Bioprosthesis Size Echocardiographic assessment Failure mechanism 

          

1 - HER Edwards Perimount 23 mm Aortic regurgitation Leaflet prolapse 

2 - MAG Edwards SAV 25 mm Aortic stenosis Calcified pannus 

3 - BOU Edwards SAV 23 mm Aortic stenosis Leaflet calcification 

4 - DAV Medtronic Mosaic 23 mm Normal Endocarditis 

 

Tab.2: image resolution parameters of in-vivo (IV) and ex-vivo (EV) acquisitions.  
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Figures Legend 

 

 

 

Fig. 1: 3D representation of a cylindrical (a) or conformational (b) region of interest. 

 

Fig. 2: Example of results about pre-processing by diffusion and stick filters for case n 3 - 

BOU. The same section, before and after filtering processes, is presented including the stent 

(bright) and bioprosthetic leaflets (dark). Leaflets are indicated by white arrows.    

 



 

Fig. 3: Results of preprocessing (SNR) with stick filter and curvature diffusion filter for each 

database. 

 



 

Fig. 4: Examples of segmentation results for cases HER (the yellow arrows show the 

commissure lost because of leaflet prolapse) and MAG (the calcified pannus is well detected). 

 



 

Fig. 5: Examples of segmentation results for cases BOU (yellow arrows show the calcified 

leaflet) and DAV (yellow arrows indicate leaflet thickening). 

 



 

 

Fig. 6: Volume analysis of bioprosthesis components (volumes expressed in mm
3
). 

 


