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Data 
European air-transportation network 
Here we provide the statistics associated to the European air transportation network 
[1,2]. Specifically Figure S1 shows the probability distributions of the number of 
connections ! per airport and of the flows of passengers !!" travelling between any pair 
of linked airports ! and !. 
 
 

 
Figure S1: statistics on the European air transportation network. Data source:  
Eurostat [1], see also Ref. [2]. (a) Distribution of the airport degree !, i.e. airport’s 
number of the flight connections. The Figure clearly shows the power law like behavior 
characteristic of the distribution. (b) Distribution of the weights ! associated to the links: 
the weight !!"  between the pair of linked airports !  and ! is defined as the average 
number of people traveling each day between !  and ! . The quantity is extremely 
heterogeneous and spans several orders of magnitude.  
 
Sources of travel statistics 
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In the following we provide the sources of traveling statistics stratified by age presented 
in Figure 1 and discuss in the main paper: 
 
Helsinki airport: 
http://www.lawa.org/uploadedfiles/lax/pdf/2006LAXPassengerSurveyFinal.pdf 
Teheran airport: http://amonline.trb.org/20vv77/20vv77/1 
London airports (Heathrow, Gatwick, Stansted, Luton): 
http://www.londonsdc.org/documents/research/lsdc_airtransportskm.pdf 
Amsterdam airports: 
http://www.schiphol.nl/B2B/Advertising/MediaProducts/AirportDemographics.htm 
Venice airport: http://tesi.cab.unipd.it/142/1/Mazzetto.pdf 
German airports (Hannover, Frankfurt, Hamburg, Munich): 
http://www.mediafrankfurt.biz/en/infopool/passengerprofile/index.php?block=3 
http://www.media-frankfurt.de/1126.html?&no_cache=1&L=1 
 
 
Age classes 
Population estimates by age were obtained ffrom the following sources: Eurostat  [1] for 

the eight Polymod countries with age brackets of 1 year; U.N. data [3] for Mexico, with 

age brackets of 5 years; US Census [4] for the US, with age brackets of 1 year. 

Indicating with  the total number of age classes in the dataset, we have  for 

Europe,  for Mexico and ! = 91 for the US. 

The age grouping used in the specific data set constraints our definition for children and 

adults classes. For European countries and the US we define children the group of 

individuals below 18 years. For Mexico, children are individuals below 15 years. We 

indicate with the number of children age classes. Indicating with the size of age 

class !, then the fraction of children in each country is evaluated as: 

 

 

                    

(S1) 

 

The fraction of children in Europe corresponds to the weighted average over all 

countries. 

 

Calculation of the contacts matrices 
We describe in the following the procedure adopted for evaluating the parameters 

from the Mexican and the eight Polymod countries’ contact matrices. For the United 

States case, since we have used individual synthetic information on contacts, the 

procedure will be described in the corresponding section.  
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The elements of the contact matrices are estimates of the average number of contacts 

established by an individual belonging to group  with individuals in group , and we 

indicate with . While contact data for the European countries are obtained through 

contact diary surveys [5], for the Mexican case an “ad hoc model” has been 

implemented to be fitted against epidemiological data [6]. The procedure adopted to 

build up the two groups contact matrices involves two steps: simmetrization to get rid of 

possible respondent bias; aggregation to evaluate the parameters .  
Data collected are in general asymmetric, i.e. they don’t satisfy the relation !!"!! = !!"!!, 

due to the fact that respondents can overestimate or underestimate their social 

interactions. We correct this error by assuming inter-group contacts being the average 

between the two values, namely we assume  
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This operation is repeated for all group pairs i and j. 

Once symmetrized, we start from the elements  to evaluate the parameters  of the 

2x2 contact matrix describing interactions among children and adults. We first evaluate 

the average number of contacts of children and adults,  and  respectively by taking 

the weighted averages, over the corresponding age classes, of the total number of 

contacts made by of an individual of that specific class. The average number of contacts 

established by an individual in the age group ! is the sum of the elements of the row !, 

therefore  
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The parameter  is then evaluated as: 
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The parameters , representing the fraction of contacts established outside groups, 

are computed as  
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Where the second sum is restricted to contacts with groups not belonging to the class 

considered. The cross group mixing  is then evaluated from the symmetry relation on 

the off diagonal elements of the contact matrix: 
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Global invasion threshold 
Full calculation of  expression  

In this section we provide the details on the derivation of the global invasion threshold 

parameter . We recall equation (5) reported in the main paper  
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The term  is the probability that a major epidemic will be triggered in the 

not-yet-infected population of degree , by  children and  adults traveling from a 

diseased subpopulation . The term can be written as 
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where the latter approximation is valid in the assumption of mild epidemics, i.e. in the 

limit of !! close to 1, and thus !! ,!! → 1. We plug expression (S8) into (S7) in order to 

re-write the invasion equation in terms of the attack rates,  and and of the extinction 

probabilities, and . We consider the case of uncorrelated networks in which the 

conditional probability does not depend on the originating node, i.e. ! ! !! = !"(!)/ ! , 

and assume that at the early stage of the spatial invasion the number of infected 

subpopulations can be neglected !!
!

!!
!!!
!!! ≪ 1. Equation (S7) becomes then 
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Multiplying both terms by  and summing over we obtain the recursive 
equation [7,8]  
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where  and the invasion threshold parameter : 
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The number of infected subpopulations increases if the threshold condition  is 

satisfied.  

The plots of  shown in the main paper are obtained by computing the expression 

(S11) after evaluating numerically . The term  is 

computed for a finite network having  nodes and power law degree distribution 

, where the two values   and  are considered. Degree takes values  
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 respectively, and  for both the degree distributions, as indicated in [9]. 

Defining the degree interval in such a way ensures that the two degree distribution have 

the same average degree. 

 

Explicit expression in the limit cases  and  

Approximate analytical expression of  can be obtained under the assumption ! → 0 in 

two limit cases: ! → 0, i.e. adults make very few contacts, and ! → 1, i.e. the system is 

homogeneous in terms of average number of contacts. We recall, however, that η 

assumes also values larger than 1 like the case of Belgium. Another regime of possible 

interest is given by , however in this case adults would become the main driving 

force of both the local transmission dynamics and the spatial dissemination of the 

pathogen, thus leading to an expected trivial decrease of the global threshold condition.  

Let’s first recall that in taking the two-fold limit ! → 0 and  the relation ! < !(1 − !) 

has to be satisfied in order the model to be consistent. In the limiting cases, ! → 0, ! → 1, 

we can write the attack rate for children and adults by writing the series expansion 

around ! = 0  and retaining the linear terms either in !  either in !:   
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for the case  ! → 1.  

We notice that, in the case , the fraction of adults infected is sub-leading with 

respect to children.  In the second case, instead, the fractions of infected in both classes 
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for ! → 1 .  

In the first case, due to the few contacts established by adults, the epidemic is most 

likely to die immediately when seeded by adults. In the other case, instead, the 

probability of triggering the epidemic slightly depends on the type of seed. 

The expressions for the attack rate and the extinction probability can be combined 

providing the explicit form for the invasion threshold parameter . In the case that only 

adults travel, this reads as 
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The factor  accounts for the heterogeneity of the network:  

Table S1 addresses the comparison between the two approximate expressions of  

and the solution obtained numerically for the cases  with  set to 
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we measure the relative difference  

 
 

 

 

A large value of this quantity can indicate that the approximation is not good enough to 

determine if the system is over or under the threshold condition. The approximate 

solutions are in good agreement with the corresponding numerical solutions, in particular 

in the limit for ; larger discrepancies are obtained in the limit  and they are 

found to decrease in decreasing . The largest deviation corresponds to the case of 

mild influenza, when the solutions for are more sensible to small variations of the 

parameters !, !  A more detailed analysis of this comparison is the object of future work 

[10]. 

 

 

   

       

1.05       

1.20       

1.40       

 

Table S 1 Comparison between invasion threshold obtained numerically ( ), and 
the approximated results , for different values of .  The difference in 
estimation is compared to the gap between the theoretical value and the threshold value 
1 (Deviation(%)). For each value of  we have considered fixed to the European 
average value, and and assuming two values:  and . 

 

 

Calculation of  in the case of an SEIR dynamics 

The next generation matrix depends on the contact pattern, the transmissibility (!) and 

the infectious period (!!!) and doesn’t change after the introduction of a latent period 

(!!!). The final sizes in the two classes (!! and !!) and the extinction probabilities (!! 

and !!) for the SEIR model are then the same as in the SIR case, given the same 
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R*
R*(approx.) R0

R0 !
! = 0.001 ! ! = 0.01 ! = 0.99

R*



 9 

transmissibility, recovery rate, and contact patterns. The neat effect of the latency period 

consists in the delay of the epidemic unfolding, making more efficient the epidemic 

spread from one subpopulation to another because individuals who contract the disease 

have more time to travel while epidemiologically active. This is encoded in the general 

expression of the term  that accounts for exposed and infectious stages as 

Ω !!!!,!  , !!!!,! = 1− !! !!! + 1− !! 1− ! !! !!!!(!!!)!, 

where !! =
!
!
+ !

!
 is the generation time, i.e. the sum of the infection duration, !!!, and 

the latency period, indicated here with !!!. The rest of Equation (S7) remains unchanged, 

thus the resulting expression for !∗ is given by: 

!∗ = 1 − !! !!! + 1 − !! 1 − ! !! !!!!
!!!!! ! !!!!!

!
. 

Figure S2 shows !∗ as a function of the contact ratio ! for the case of Europe, comparing 

the SIR and SEIR case, with different generation times considered. The red and the green 

curves compare two situations with the same generation time but different repartitions in 

infectious and exposed period and show that two cases have the same invasion threshold 

parameter. By keeping fixed !!! = 2.5 days, the addition of an exposed period shifts the 

curve upward.  

 

 

 

!(!kk ',a,!kk ',c )



 10 

 
Figure S2: Effect of latency period on the global invasion threshold. !∗  as a 
function of the contact ratio ! for the case of Europe. Different generation times are 
compared. !∗ increases linearly with the generation time. The case considered here has 
!! = 1.2 , mobility air network structure having !(!) ∝ !!!  with ! = 3 , and contact 
parameters ! and ! set to the European average. 
 

 

 

 

Global invasion threshold for the case of United States 

We evaluate the contact structure parameters for the US case by relying on contact 

network information reconstructed from the synthetic population of Portland and freely 

available at N.D.S.S.L. website [11]. In the synthetic population approach individuals are 

endowed with realistic demographic characteristics, drawn from census, as well as 

activity routines as drawn from mobility surveys: individuals sharing the same location at 

the same time are assumed to be able to establish links. This approach provides a realistic 

contact network in Portland [12] evolving in time according to activity patterns. 

Population is divided in two groups, based on age, and the number of contacts for each 

individual is recorded thus evaluating the average number of contacts for each group 

member and how they are distributed. In this way, parameters estimated from this dataset 
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read as: cross-group mixing ! = 0.11, and contact ratio ! = 1.1. The former is in the 

ballpark for the estimates for Europe and quite close to the average European value of 

0.097, the latter points out a behavior close to the one observed for Belgium, where adults 

are the principal responsible for the long range seeding and also the drivers of the local 

spreading since they interact more than children. From census data we have an estimate 

of the fraction of children ! = 0.24, which is quite close to the European value.  

Figure S3 addresses the comparison between Europe and the US by displaying the global 

invasion threshold as a function of the contact ratio ! for the two cases, and the other 

parameters (!, !) fixed to the estimated values. The two curves are almost overlapping 

which means that the small differences in the estimated ! and ! do not impact . Also 

the difference in !  (0.79 of Europe and 1.1 of US) has a small effect, since for higher 

values of ! (! ≳ 0.8) the curve saturates around !∗ ≅ 2. 

 
Figure S3: Global invasion threshold as a function of the contact ratio ! : 
comparison between Europe and US. The curves blue and red are obtained by setting 
the parameter !  and !  to the case of the US and Europe respectively. The case 
considered here has !! = 1.05 and mobility air network structure having !(!) ∝ !!! with 
! = 3. 
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