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Abstract

In this paper, patient-specific perfusion abnormalities in Arterial Spin Labeling (ASL) were identified by comparing a sin-
gle patient to a group of healthy controls using a mixed-effect hierarchical General Linear Model (GLM). Two approaches
are currently in use to solve hierarchical GLMs: (1) the homoscedastic approach assumes homogeneous variances across
subjects and (2) the heteroscedastic approach is theoretically more efficient in the presence of heterogeneous variances
but algorithmically more demanding. In practice, in functional magnetic resonance imaging studies, the superiority of
the heteroscedastic approach is still under debate. Due to the low signal-to-noise ratio of ASL sequences, within-subject
variances have a significant impact on the estimated perfusion maps and the heteroscedastic model might be better
suited in this context.

In this paper we studied how the homoscedastic and heteroscedastic approaches behave in terms of specificity and
sensitivity in the detection of patient-specific ASL perfusion abnormalities. Validation was undertaken on a dataset of 25
patients diagnosed with brain tumors and 36 healthy volunteers. We showed evidence of heterogeneous within-subject
variances in ASL and pointed out an increased false positive rate of the homoscedastic model. In the detection of
patient-specific brain perfusion abnormalities with ASL, modeling heterogeneous variances increases the sensitivity at
the same specificity level.

Keywords: Arterial Spin Labeling, Hypo-perfusion, Hyper-perfusion, General Linear Model, Within-subject variance,
Heteroscedasticity

1. Introduction

Arterial Spin Labeling (ASL), a Magnetic Resonance
Imaging (MRI) technique introduced in the early 1990’s,
permits the measurement of the level of perfusion through
a quantitative index: the cerebral blood flow (CBF). Con-
trary to standard perfusion imaging, including Positron
Emission Tomography (PET) and Single Photon Emission
Computed Tomography (SPECT) in nuclear medicine, or
Dynamic Susceptibility weighted Contrast (DSC) in MRI,
ASL is completely non-invasive and does not require the
injection of an exogenous contrast agent. In the context of
this paper, we aim at outlining areas of abnormal perfusion
in the perfusion map of a subject of interest by comparison
to a group of healthy controls.

The most widespread approach to compare voxel-wise
maps in neuroimaging is the massively univariate Gen-
eral Linear Model (GLM). To detect differential patterns
between two groups with repeated measurements a sub-
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type of GLM is employed: a mixed-effect hierarchical two-
sample t-test with two levels: subject and group. In this
context, two variance components are of interest: the within-
subject variance (or the measurement error, estimated from
the repeated ASL acquisitions of a single subject) and the
between-subject variance.

In the functional MRI community, where similar sta-
tistical models are applied, two approaches are currently
in use to solve hierarchical GLMs. On the one hand,
the homoscedastic approach, also termed “summary statis-
tics” (Penny and Holmes, 2004), or referred as “ordinary
least square estimation” (Mumford et al., 2006; Mum-
ford and Nichols, 2009) or “conventional group analysis”
(Chen et al., 2012), assumes homogeneous within-subject
variances or negligible within-subject variances by com-
parison to between-subject variance. On the other hand,
the heteroscedastic approach, also referred as “full mixed-
effect” (Friston et al., 2005; Thirion et al., 2007; Poldrack
et al., 2011), “mixed-effect model” (Chen et al., 2012)
or “weighted least square estimation” (Mumford et al.,
2006; Mumford and Nichols, 2009) models heterogeneous
within-subject variances. There is indeed a large panel
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of homonyms to refer to these two approaches, in current
practice they are also sometimes referred as “mixed-effect”
and “random-effect” approaches (Lindquist et al., 2012).
However, in a statistical sense both the homoscedastic and
the heteroscedastic approaches are mixed-effect models.
That is why, in the context of this paper, we chose to term
the two approaches “homoscedastic model” and “hetero-
scedastic model” to identify them according to their main
difference: the homoscedasticity (constant within-subject
variance across subjects) assumption.

The homoscedastic model is theoretically less efficient
in the presence of heterogeneous within-subject variances.
However, in practice, the true variance components are
unknown and the superiority of the heteroscedastic model
is therefore questioned. Whether modeling heterogeneous
variances should be preferred over the homoscedastic model
is still under discussion in the fMRI community. Several
authors outlined the benefits of heteroscedastic models in-
cluding (Worsley et al., 2002; Beckmann et al., 2003; Wool-
rich et al., 2004; Mumford et al., 2006; Mériaux et al.,
2006; Thirion et al., 2007; Chen et al., 2012). However,
Mumford and Nichols (2009) showed that the homosce-
dastic approach is still valid with near optimal sensitivity
in the context of one-sample t-tests. Nonetheless, the same
authors acknowledged that, in two-sample t-tests, appro-
priate modeling of heterogeneous within-subject variances
might be crucial (Mumford and Nichols, 2009; Poldrack
et al., 2011). Recently the conclusions regarding one-
sample t-tests were revisited leading to opposite conclu-
sions (Chen et al., 2012). In the different software pack-
ages currently available to deal with fMRI data both ap-
proaches are represented: SPM1 favors the homoscedastic
approach (Holmes and Friston, 1998) while FSL2 (Wool-
rich et al., 2004), AFNI3 (Cox, 1996) and fmristat4 (Wors-
ley et al., 2002) use the heteroscedastic model.

In this paper, we focus on quantitative detections of
pathological brain perfusion abnormalities at the individ-
ual level. To this aim, we employ and compare two GLM-
based models: the homoscedastic and heteroscedastic ap-
proaches. We test whether the assumptions underlying
the homoscedastic approach are verified in pulsed ASL
datasets. We furthermore study how the homoscedastic
and heteroscedastic approaches behave in terms of speci-
ficity and sensitivity in the detection of patient-specific
perfusion abnormalities.

A quantitative validation is performed on a dataset of
25 patients diagnosed with brain tumors. The model of
normal perfusion is computed out of the data of 36 healthy
volunteers.

Section 2 begins with a presentation of the homosce-
dastic and heteroscedastic models employed in the detec-
tion of patient-specific brain perfusion abnormalities with

1http://www.fil.ion.ucl.ac.uk/spm
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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4http://www.math.mcgill.ca/keith/fmristat

ASL. Section 3 presents the datasets under study: the ac-
quisition and pre-processing are described. Then, in sec-
tion 4, the experiments designed to test the assumptions
of the homoscedastic model and measure sensitivity and
specificity are described. The results are presented in sec-
tion 5. Section 6 gives a discussion and concludes.

2. Theory

In this section, the homoscedastic and heteroscedastic
models used in the context of patient-specific detection of
perfusion abnormalities in ASL are presented. In the stan-
dard approach, the GLM is defined for each voxel, which is
why this approach is often termed “massively univariate”.
Without loss of generality to the multi-voxel procedure,
we will consider the case of a single voxel in the remain-
der of this section. The voxel index is therefore omitted.
In the context of this paper, we focus on a subtype of
GLM: a one-versus-many mixed-effect two-sample t-test.
As several measurements are available for each subject, a
hierarchical model is defined with 2 levels: subject and
group.

2.1. Subject level (First level)

In ASL, at the subject level, the data under study is
a 4D volume of CBF maps containing r volumes (1 per
repeated acquisition). The observations are therefore re-
peated measurements of the same underlying value. The
subject level is therefore defined by:

Ys =

1
...
1

 βs + εs

where Ys is a vector of length r containing the observa-
tions at the given voxel and βs is the subject parameter
to be estimated. Assuming Gaussian noise of the errors,
each element of εs follows a normal distribution: εvs ∼
N (0, σ2

s). While in fMRI temporal autocorrelation must
be accounted for (Aguirre et al., 1997), in ASL, thanks to
the subtraction process between control and labeled scans,
we can reasonably assume white noise (Aguirre et al.,
2002; Mumford et al., 2006). The subject parameter βs is
thus estimated by Ordinary Least Squares (OLS):

β̂s =
1

r

r∑
i=1

ys,i, (1)

where ys,i is the ith element of vector Ys. Similarly, the

sampling variance of β̂s is estimated by:

V̂ar(β̂s) =
σ̂2
s

r
where σ̂2

s =
1

r − 1

r∑
i=1

(
ys,i − β̂s

)2
. (2)

2
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2.2. Group level (Second level)

Given a group of n subjects, without loss of generality
we assume that subjects 1 to n− 1 are part of the control
group and subject n is the patient of interest. Then, the
one-versus-many second-level model is defined by:

β̂1
...

β̂n−1

β̂n

 =


1 0
...

...
1 0
0 1


[
βcontrols
βpatient

]
+ γGC . (3)

The error term γGC contains two combined sources
of variations: the error measurement on the subject pa-
rameters (also termed within-subject variance) and the
between-subject variance. Each element of γGC therefore

follows a normal distribution: γsGC
∼ N

(
0, σ2

G +
σ2
s

r

)
.

Linear combinations of the group parameters can be
calculated using a particular contrast. Here we are inter-
ested in the patient versus control group contrast:

b = [1 − 1]

[
βcontrols
βpatient

]
= βcontrols − βpatient . (4)

Two approaches have been proposed in the neuroimag-
ing literature to solve the system (3) and find an estimate

of the patient versus control group contrast, b̂, and its as-
sociated sampling variance, V̂ar(b̂).

The homoscedastic model is based on the assumption
that the within-subject variance is either negligible by
comparison to the between-subject variance (i.e. σ2

s �
σ2
G, ∀ 1 ≤ s ≤ n) or, roughly constant across subjects (i.e.
σ2
s ≈ σ2

SUB , ∀ 1 ≤ s ≤ n). Then each element of γGC

follows a normal distribution:

γsGC
∼ N (0, σ2

GC
) (5)

where σ2
GC

is the combined within- and between-subject
variance. Depending on the assumption, we have σ2

GC
≈

σ2
G +

σ2
SUB

r
or σ2

GC
≈ σ2

G and the combined within- and

between-subject variance is therefore constant across sub-
jects. The sphericity assumption (no heteroscedasticity
and no autocorrelation) hence holds and the system (3)
is then solved by OLS. In the heteroscedastic model, het-
erogeneous variances are accounted for. Due to the non-
sphericity of the measurement errors (as a consequence
of heteroscedasticity), the system (3) is solved by using a
weighted least square.

For a detailed calculation of the homoscedastic and
heteroscedastic estimates, the interested reader is referred
to previous developments of this methodology in the fMRI
literature (for example Mumford and Nichols (2009); Beck-
mann et al. (2003)). Tables 1 and 2 provides a summary
of the final estimates for the homoscedastic and heterosce-
dastic models. Table 1 gives the estimates of the control
group (β̂controls) and patient (β̂patient) effects along with

their sampling variances (V̂ar(β̂controls) and V̂ar(β̂patient)).
Table 2 provides the estimate of the control group versus
patient effect (b̂) along with its sampling variance (V̂ar(b̂)),
both estimates are obtained by combination of the control
group and patient estimates:

b̂ = β̂controls − β̂patient
V̂ar(b̂) = V̂ar(β̂controls) + V̂ar(β̂patient)

(6)

If the data are homoscedastic then it can easily be
proven that the heteroscedastic model reduces to the homo-
scedastic model. However, in the presence of heteroscedas-
ticity, the heteroscedastic model has two main advantages
by comparison to the homoscedastic model:

1. In the control group, observations with high within-
subject variances are downweighted in order to pro-
vide a more efficient estimate of the control group
parameter, β̂controls .

2. While with the homoscedastic model the sampling
variance of the patient group estimate, V̂ar(β̂patient),
depends solely on variance estimations performed in
the control group, the heteroscedastic sampling vari-
ance takes advantage of both the control group (es-
timation of σ2

G) and the patient (estimation of σ2
n)

data.

The impact on the efficiency of the control group esti-
mate (point 1) might be subtle and leads to no substantial
improvement in one-sample t-tests if the homoscedasticity
assumption is not overly altered (Mumford and Nichols,
2009). However, the impact on the variance estimate of
the patient parameter (point 2) can be large if the within-
subject variance of the patient of interest is very different
from the control subjects. In ASL studies, the large influ-
ence of within-subject variance has been described in (Vi-
viani et al., 2009). Furthermore, patients are known to
be less cooperative than control subjects which could po-
tentially lead to within-subject variance inflation due to
increased movement.

2.3. Hypothesis testing

Under the null hypothesis:

H0 : βcontrols = βpatient , (7)

the estimated patient versus control group contrast, b̂, di-
vided by its estimated sampling standard deviation (V̂ar(b̂))

1
2

follows a t-distribution with n− 1 degrees of freedom.
A probability under the null hypothesis can therefore

be calculated for each voxel with:

P (X < x) where X =
b̂√

V̂ar(b̂)

∼ Tn−1, (8)

and x is the value taken by X at the voxel of inter-
est. Equation (8) gives the probability to have a hyper-
perfusion, similarly, hypo-perfusions can be detected by
substituting P (X < x) by P (X > x). The thresholding of
this probability map gives the detections.
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Table 1: Control group and patient estimates along with their sampling variances for the homoscedastic and heteroscedastic models.

β̂controls β̂patient V̂ ar
(
β̂controls

)
V̂ ar

(
β̂patient

)
Homoscedastic

1

n− 1

n−1∑
s=1

β̂s β̂n
σ̂2
GC

n− 1
σ̂2
GC

Heteroscedastic
1∑n−1

j=1
1

σ̂2
G+σ̂2

j

n−1∑
s=1

1

σ̂2
G + σ̂2

s

β̂s β̂n
1∑n−1

s=1
1

σ̂2
G+σ̂2

s

σ̂2
G + σ̂2

n

Table 2: Control group versus patient estimate along with its sampling variance for the homoscedastic and heteroscedastic models.

b̂ V̂ ar
(
b̂
)

Homoscedastic
1

n− 1

n−1∑
s=1

β̂s − β̂n σ̂2
GC

( 1

n− 1
+ 1
)

Heteroscedastic
1∑n−1

j=1
1

σ̂2
G+σ̂2

j

n−1∑
s=1

1

σ̂2
G + σ̂2

s

β̂s − β̂n
1∑n−1

s=1
1

σ̂2
G+σ̂2

s

+ σ̂2
G + σ̂2

n

3. Materials

This section starts with a presentation of the datasets
under study in 3.1. The pre-processing steps applied to
the data before the statistical analysis are then described
in 3.2.

3.1. Data acquisition

25 patients diagnosed with brain tumors and 36 healthy
volunteers were involved in this study. One control sub-
ject and four patients were excluded because of strong bor-
derzone signs (Zaharchuk et al., 2009). The final dataset
therefore included 21 patients (13 males, 8 females, age:
55.2 ± 14.1 years) and 35 healthy volunteers (16 males,
19 females, age: 27.7 ± 6.4 years).

Data acquisition was performed on a 3T Siemens Verio
MR scanner with a 32-channel head-coil. Patients were
scanned in the context of clinical practice. The imag-
ing protocol included a 3D T1-weighted anatomical se-
quence (T1w) (TR: 1900 ms, TE: 2.27 ms, FOV: 256 mm
× 256 mm × 176 mm, flip angle: 9◦, resolution: 1 mm
× 1 mm × 1 mm), a PICORE Q2TIPS sequence (Wong
et al., 1998) with crusher gradients (TR: 3000 ms, TE:
18 ms, FOV: 192 mm × 192 mm, flip angle: 90◦, resolu-
tion: 3 mm × 3 mm, slice thickness: 7 mm, inter-slice
gap: 0.7 mm, TI: 1700 ms, TIwd: 700 ms, 60 repe-
titions, mSENSE parallel imaging with accelerating fac-
tor of 2). In addition to these sequences, the patients
also underwent a 3D T1w post gadolinium (T1w-Gd) se-
quence (TR: 1900 ms, TE: 2.27 ms, flip angle: 9◦, FOV:
250 mm × 250 mm ×176 mm, resolution: 1 mm × 1 mm
× 1 mm) and a 2D T2w FLAIR sequence (TR: 9000 ms,
TE: 90 ms, FOV: 220 mm × 199.4 mm, flip angle: 150◦,
resolution: 0.69 mm × 0.69 mm, slice thickness: 4 mm).

Out of the 22 patients, 17 subjects also underwent a DSC
sequence (GRE EPI, TR: 1500 ms, TE: 30 ms, FOV:
230 mm× 230 mm, flip angle: 90◦, in plane resolution:
1.8 mm × 1.8 mm, slice thickness: 4 mm, inter-slice gap:
1.2 mm).

3.2. Pre-processing

3.2.1. CBF estimation with ASL

Image pre-processing was performed using SPM8 (Sta-
tistical Parametric Mapping 8, Wellcome Department of
Imaging Neuroscience, University College, London) in Mat-
lab R2012a (Mathworks, Natick, MA). The anatomical im-
age of each subject was segmented, bias corrected and nor-
malized into the ICBM-452 T1 template space using the
unified segmentation (Ashburner and Friston, 2005). The
normalization was performed using an affine linear trans-
formation followed by a non-linear transformation based
on discrete cosine transform functions (default SPM nor-
malization scheme). A subject-specific anatomical brain
mask was created, excluding voxels with less than 50%
of brain tissue in subsequent statistical analyses. A six-
parameter rigid-body registration of the ASL volumes was
carried out in order to reduce undesired effects due to
subject motion. Rigid coregistration onto the whole-brain
anatomical map was then performed based on mutual in-
formation. The average of unlabeled volumes was used to
estimate the geometrical transformation to apply to each
volume. Pair-wise subtraction of the control and labeled
scans was then computed. A standard kinetic model (Bux-
ton et al., 1998) was applied in order to get ASL CBF,
according to the following equation:

f = 6000× λ∆M

2 M0 αTIwd exp−(TI+idxsl∗TI sl)/T1b
(9)

4



where f is the 4D CBF map in mL.100g−1.min−1, M0

the acquired M0 map (first volume of the ASL series), λ
the blood/tissue water partition coefficient, α the labeling
efficiency, ∆M the 4D perfusion-weighted map, TI = 1.7 s
the inversion time (Ferré et al., 2012), idx sl the slice index
(0 for the first slice), TI sl = 0.045 s the readout time for
one slice, TIwd = 0.7 s the temporal width of the bolus,
TI b the T1 of blood. According to Wang et al. (2011),
we assumed: λ = 0.9 mL.g−1, TI b = 1.5 s and α = 0.95.
The 6000 factor allows the conversion from mL.g−1.s−1

to mL.100g−1.min−1 which is the standard unit for CBF.
We bring the attention of the reader to the fact that, con-
trary to what is usually done in ASL pre-processing, ∆M
represents the set of perfusion-weighted maps (one vol-
ume per repetition) instead of a single perfusion-weighted
map obtained by averaging across the repetitions. This
is necessary in order to allow for the measurement of the
within-subject variance.

Spatial normalization parameters estimated during the
segmentation step were then applied to the T1 and ASL
CBF maps in order to normalize the subjects into a com-
mon template space. Normalisation in intensity was then
applied to each ASL CBF map in order to reduce the inter-
subject variability Aslan and Lu (2010). The normalisa-
tion parameter was calculated as the average CBF in grey
matter similarly to Petr et al. (2012).

3.2.2. CBF estimation with DSC

The DSC images were processed using MR manufac-
turer software by manually choosing an arterial input func-
tion to calculate: the CBF, cerebral blood volume, and
mean transit time maps. The method is based on a de-
convolution algorithm as described in (Ostergaard et al.,
1996). Similarly to ASL, DSC CBF maps were coregis-
tered on anatomical maps and spatially normalized.

3.3. Ground truth

Based on clinical knowledge, we used a semi-automatic
procedure that took advantage of the complementary anatom-
ical (T1w-Gd, T2w FLAIR) and perfusion (DSC) informa-
tion to get an estimation of the ground truth.

True positives. In order to get an estimation of the ground
truth, we implemented a method inspired by the hotspot
technique (Noguchi et al., 2008) on the DSC CBF map.
To this aim, the tumor was first segmented using a semi-
automated method based on the T2w and T1w-Gd im-
ages and visually inspected by an expert neuro-radiologist.
Then, we compared the tissue segmented as part of the tu-
mor to its controlateral counterpart in the DSC CBF map.
Voxels overtaking the lower and upper deciles were iden-
tified as potential hypo- and hyper-perfusions. Each po-
tential perfusion abnormality was then visually inspected
by an expert neuro-radiologist and manually corrected if
needed. Special care was taken in order to avoid inclusion
of hyper-perfusions related to the presence of arteries.

Due to its low SNR, ASL is not well suited to measure
low levels of perfusion (Wintermark et al., 2005). That
is why, we focused on hyper-perfusions for sensitivity es-
timation. Hypo-perfusions were nevertheless retained for
specificity calculations.

Out of the 17 patients included in this study who un-
derwent a DSC sequence, 9 presented hyper-perfusions, 16
hypo-perfusions and 8 both.

False positives. According to clinical knowledge, in the ab-
sence of metastasis, the perfusion abnormalities should be
confined to the affected tissue (tumor and oedema) iden-
tifiable on T1w-Gd and T2w. The proportion of non-
affected tissue detected as a perfusion abnormality was
used as a measure of the false positive rate.

In the control group, in which no detections were ex-
pected, an additional estimate of the specificity was calcu-
lated by leave-one-out cross-validation.

4. Methods

In 4.1, the implementation of the heteroscedastic model
employed in this paper is described. Then, in 4.2, the ex-
periments undertaken in order to test the assumptions of
the homoscedastic model and to compare the homosce-
dastic and heteroscedastic models are presented.

4.1. Implementation choice for the heteroscedastic model

In this paper, we computed the estimate of the between-
subject variance, σ̂2

G, using a recent computationally ef-
ficient approach available in the MEMA function of the
AFNI software package. This algorithm is based on the
method of moments and the restricted maximum likeli-
hood. The estimation method is then selected depending
on the data observed at the voxel level (Chen et al., 2012).
It is however worth noting that alternative publicly avail-
able algorithms, such as FLAME1 in FSL, are also suited
to compute this kind of heteroscedastic approach.

4.2. Evaluation framework

4.2.1. Validity of the assumptions of the homoscedastic
model

The homoscedastic model makes the assumption that
within-subject variance is either negligible by comparison
to between-subject variance, or roughly constant across
subjects. In order to test these assumptions, we performed
two experiments.

Negligible within-subject variance. First, following Chen
et al. (2012), we measured the proportion of total variabil-
ity that occurred within subjects with the following index,
defined at each voxel v for each subject s:

λs,v =
σ̂2
s,v

σ̂2
G,v + σ̂2

s,v

(10)
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Figure 1: Parameter estimates of the homoscedastic and heteroscedastic model in the control group, computed from 35 healthy subjects. a)

Mean perfusion estimate β̂controls . b) Combined within- and between-subject standard deviation estimate from the homoscedastic model σ̂GC
.

c) Between-subject standard deviation estimate from the heteroscedastic model σ̂G. d) Root square of the average within-subject variance in
the control group. Perfusion is expressed in normalized units (ratio to mean grey matter perfusion). Axial slices are displayed in neurological
convention.

Values close to 1 mean that the within-subject variance
(σ2
s,v) is preponderant compared to between-subject vari-

ance (σ2
G,v) and values close to 0 mean that between-

subject variance holds the majority of the total variance.
This measure is provided as an output of the MEMA func-
tion in AFNI (Chen et al., 2012).

Constant within-subject variance across subjects. In a sec-
ond experiment, we focused on the within-subject vari-
ance to verify whether it could be assumed roughly con-
stant across subjects. To this aim, we calculated an av-
erage within-subject variance for each subject. This in-
dex was computed as suggested by Mumford and Nichols
(2009) by averaging the within-subject variance for vox-
els within the interquartile range of the nonzero between-
subject variance. Given this index of within-subject vari-
ance, we searched for outliers in the control group with
Rosner’s test (Rosner, 1983), assuming that the distribu-
tion of the variance estimate was approximately normal.
Then, we checked whether the control and patient groups
had significantly different medians with a non-parametric
Kruskal-Wallis test.

4.2.2. Comparison of the homoscedastic and heteroscedastic
models

Detections at a fixed threshold. In order to assess the dif-
ference that heteroscedasticity modeling would induce, we
compared the sensitivity and specificity of the homosce-
dastic and heteroscedastic models. We compared both ap-
proaches in a usual setting, where the detections were iden-
tified at a threshold p < 0.05 with False Discovery Rate
(FDR) correction for multiple comparisons (Benjamini and
Hochberg, 1995). The sensitivity was estimated as the av-
erage sensitivity across the patient group. In each group
(patient, control), the specificity was estimated by averag-
ing the specificity across subjects. As the data is usually
pre-smoothed with a Gaussian kernel at the end of the
pre-processing, we studied 6 kernel sizes within the typ-
ical smoothing range, defined by their full-width at half
maximum (FWHM): 0 mm3 (i.e. no smoothing), 4 mm3,
6 mm3, 8 mm3, 10 mm3, 12 mm3.

ROC analysis. We compared the sensitivity and speci-
ficity of the homoscedastic and heteroscedastic models with
Receiver-Operating-Characteristics (ROC) curves. In or-
der to draw the ROC curves, we used 122 p-values (un-
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corrected), equally spaced in the logarithmic space. For
each p-value, the false positive rate (respectively true pos-
itive rate) was calculated as the average false positive rate
(respectively true positive rate) over the subjects of the
patient group. ROC curves provide a way to measure the
performance of a classifier without focusing on a single
threshold. We calculated the area under the curve as an
indicator of the classification accuracy. Since the size of
the expected detections is much smaller than the number
of voxels that must not be detected, the area of interest in
the ROC curve is the one of high specificity. That is why,
as previously proposed in the literature, we focused on the
area under the curve corresponding to false positive rates
ranging from 0% to 10% (Skudlarski et al., 1999). As in
the previous experiment, different smoothing kernels were
studied.

5. Results

In this section we start with a graphical presentation of
the parameter estimates of the homoscedastic and hetero-
scedastic models in the control group (5.1). Then, we
present the results of the experiments regarding the valid-
ity of the assumptions of the homoscedastic model (5.2).
In a last subsection, we display the results of the quanti-
tative comparison between the homoscedastic and hetero-
scedastic models (5.3).

5.1. ASL template: a model of normal perfusion

In fig. 1, the parameter estimates of the homoscedastic
and heteroscedastic models are displayed. Each parame-
ter is defined as a voxelwise map. First, an estimate of
the control group parameter, β̂controls , is provided (the
heteroscedastic estimate is displayed, the homoscedastic
estimate being visually nearly identical). As expected, the
CBF is higher in the cortex and the basal ganglia than in
white matter. Then, three standard deviation estimates
are displayed:

• the combined within- and between-subject standard
deviation estimate σ̂GC

from the homoscedastic model
(1 b);

• the between-subject standard deviation estimate σ̂G
from the heteroscedastic model (1 c);

• the root square of the average within-subject vari-
ance estimates in the control group ( 1

n−1

∑n−1
s=1 σ̂

2
s)

1
2 .

This map is not part of the estimated standard de-
viations but is provided as a visual example of ex-
pected within-subject standard deviation in the con-
trol group (1 d).

The high variance values observed in the vascular struc-
tures, such as the transverse sinus, are in concordance
with the findings of Viviani et al. (2009). This pattern
is clearly visible in the combined within- and between-
subject variance estimate of the homoscedastic model and

Figure 2: Histogram of the ratio of within-subject variance onto
total variance in the control group across subjects and voxels. Both
variance estimates have a significant impact depending on the voxels.

captured by the within-subject variance estimate in the
heteroscedastic model. The main variations observed in
the between-subject variance, as estimated in the hetero-
scedastic model, are related to inter-subject misregistra-
tions in the cortex. An increased variance is also visible
in the occipital lobe, probably related to increased arterial
transit times in these regions (MacIntosh et al., 2010).

5.2. Testing the assumptions of the homoscedastic model

The homoscedastic model stands on one of the fol-
lowing assumptions: either the within-subject variance is
negligible by comparison to between-subject variance, or
the within-subject variance is roughly constant across sub-
jects.

5.2.1. Relative weights of between-subject and within-subject
variances in the control group

In order to verify if the within-subject variance can be
assumed negligible by comparison to between-subject vari-
ance, fig. 2 presents the histogram of the ratio of within-
subject to total variance in the control group (λs,v from
eq. (10)). Overall, a total of 1 094 790 voxels are con-
sidered. Values close to one indicate a preponderance of
the within-subject variance, whereas values close to zero
outline a dominating between-subject variance. Clearly,
both components of variance have an important impact
as the λs,v index spans the complete range of values be-
tween 0 and 1. The large peak indicating voxels with a zero
between-subject variance was also observed in (Chen et al.,
2012) and might be the consequence of calculation inaccu-
racies. While the true between-subject variance might not
be exactly zero, these voxels nevertheless present a very
small between-subject variance, negligible by comparison
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Figure 3: Average estimated within-subject variances in control and
patient groups. For each box, the red line corresponds to the me-
dian and the top and bottom lines of the blue square are the upper
and lower quartiles of the distribution. The whiskers cover the data
points that are located up to 1.5 times the inter-quartile distance
away from the lower or upper quartile. Points falling out of the
whiskers are displayed with a red cross.

to the within-subject variance. The quartiles of the distri-
bution are 0.23 and 0.78, so that the outermost 25% of the
voxels (on each side) have either a dominant within-subject
variance or a dominant between-subject variance. In the
remaining 50% voxels, both variance components have a
significant impact. In conclusion, it cannot be assumed
that within-subject variance is negligible in comparison to
between-subject variance.

5.2.2. Cross-subject comparison of within-subject variances

In this experiment, we tested whether within-subject
variance could be assumed roughly constant across sub-
jects. As proposed by Mumford and Nichols (2009), we
calculated an average within-subject variance across vox-
els. This led to an index of within-subject variance per
subject. Fig. 3 displays the within-subject variance in-
dexes in the control and patient groups.

In the control group, it is clear that one of the subjects
presents an unexpected high variance by comparison to
the other controls. Retrospectively, we found out that this
subject moved substantially more than other controls and
was identified as uncooperative by the MR physicist during
the acquisition. As expected from fig. 3, we found one
outlier in the control group with Rosner’s test.

The within-subject variance was significantly higher in
the patient group than in the control group (p < 0.05
with Kruskal-Wallis test). This might be explained by the
fact that patients tend to have more difficulties to lie still
during the acquisition due to their pathological condition.

The index proposed by Mumford and Nichols (2009) is
an average across voxels and therefore focused on global
variations of the within-subject variance. However, strong
variations, sometimes caused by artefacts, that appear lo-

cally can also be a concern. As an example, fig. 4a displays
the estimated within-subject standard deviation for a con-
trol subject presenting locally atypical patterns. While the
high variance induced by the presence of large vessels is a
pattern shared across subjects (as previously described in
fig. 1, last panel), the high variance observed bilaterally in
the frontal lobe is specific of this control subject. We hy-
pothesize that these strong variations are the consequence
of motion during the acquisition that was not correctly
compensated during the pre-processing. Even if this sub-
ject was not previously outlined as an outlier (with an
average within-subject variance of 0.0024), these atypical
patterns of variance might have a detrimental impact on
the analysis if not properly taken into account.

In conclusion, variations across subjects of the within-
subject variance appear to be important in ASL. This
might be a consequence of the low SNR of this technique,
since small artefacts in the original control and labeled
scans can lead to substantial variations in the perfusion-
weighted map after subtraction. In the next sections we
investigate whether modeling heteroscedasticity can im-
prove the detections of perfusion abnormalities.

5.3. Comparison of homoscedastic and heteroscedastic models

5.3.1. Fixed threshold

Quantitative analysis. Table 3 presents the sensitivity to
detect hyper-perfusions and the specificity both in the pa-
tient group and by leave-one-out cross-validation in the
control group with the homoscedastic and heteroscedastic
models for different smoothing kernels (FWHM = [0, 4, 6,
8, 10, 12] mm3), at p < 0.05 FDR corrected.

Overall, the heteroscedastic model leads to a decrease
in false positive rate. This is particularly noticeable in the
patient group where the specificity is improved for each
smoothing studied. As expected, in the control group, this
effect is also observed but to a lesser extent. This is proba-
bly due to the fact that the hypothesis of homoscedasticity
is better suited for the control subjects.

Qualitative analysis. At the individual level, as illustrated
in fig. 4, local atypical patterns of variance can further lead
to a substantial increase in false positives with the homo-
scedastic model. The unexpected high standard deviation
in the frontal lobe for the control subject presented in fig. 4
leads to false positive hyper-perfusions with the homosce-
dastic model whereas the heteroscedastic model does not
get any false positive (smoothing FWHM = 8 mm3). Fig. 5
further illustrates the benefits of the heteroscedastic model
compared to the homoscedastic model in a patient subject.
The motion artefacts and hyper-signals induced by arteries
indeed correspond to regions of high within-subject stan-
dard deviation. Modeling heterogeneous variances reduces
the artefactual detections in these regions while preserving
the quality of the true detections.

To investigate whether, at a same specificity rate, the
sensitivity differs between the two approaches, we em-
ployed a ROC analysis as described in the next section.

8



Figure 4: a) Estimated within-subject standard deviation in a control subject presenting locally atypical values. b) T1w map with false positive
detections (in red) by leave-one-out cross-validation (smoothing FWHM = 8 mm3) with the homoscedastic model (b) and the heteroscedastic
model (c). No false positive detections are observed with the heteroscedastic model.

Table 3: Sensitivity and specificity in the control (first row) and patient (second and third rows) groups with the homoscedastic and
heteroscedastic models for different smoothing kernels (FWHM = [0, 4, 6, 8, 10, 12] mm3), at p < 0.05 FDR corrected.

Homoscedastic model Heteroscedastic model
0 4 6 8 10 12 0 4 6 8 10 12

Specificity (controls) 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Specificity (patients) 0.92 0.89 0.87 0.86 0.85 0.84 1.00 0.99 0.99 0.99 0.99 0.98
Sensitivity (hyper) 0.49 0.59 0.63 0.66 0.67 0.67 0.51 0.59 0.61 0.58 0.57 0.55

5.3.2. ROC analysis

Quantitative comparison. Fig. 6 presents the ROC curves
in the patient group for the homoscedastic and heterosce-
dastic models. The average over the studied smoothing
kernels is plotted along with the spread provided by the
standard deviation over the 6 measurements. The ROC
curve of the heteroscedastic model is substantially closer
to the ideal classifier than the homoscedastic curve.

Table 4 presents the area under the ROC curves for
false positives rates ranging from 0 to 10%, for the homo-
scedastic and heteroscedastic models with different smooth-
ing kernels. The heteroscedastic model outperforms the
homoscedastic model with an increased area under the
curve. The best values are 0.72 and 0.49 with the hetero-
scedastic and homoscedastic model respectively. For both
approaches, a maximum area under the curve is reached
for a smoothing kernel of 8 mm3.

Qualitative comparison. In order to illustrate the advan-
tage of the heteroscedastic over the homoscedastic model,
we chose 3 representative subjects and compared the meth-
ods at fixed false positive rate and true positive rate. To
this aim, we selected the uncorrected p-values that would
lead to a pre-specified false positive rate (respectively true

positive rate) from the ROC analysis. We worked with
data smoothed with a Gaussian kernel of 8 mm3 that led
to the best area under the curve with both models. It
is worth noting that in the previous section the sensitiv-
ity and specificity were estimated at the group level and
that the 3 subjects presented in this part were chosen so
that they would best illustrate the group findings. Fig. 7
presents the detections obtained with both methods on
the 3 selected patients. The first subject, which presents
a small hyper-perfusion, is studied at a true positive rate
of 50%. In the two remaining patients, the methods are
compared at a false positive rate of 0.1%.

Patient 15 suffers from a gliosarcoma in the left hemi-
sphere close to the parahippocampal region. The lesion
displays a small hyper-perfusion in its dorsal part, small
hypo-perfusions are seen in the surrounding edema. At a
true positive rate of 50%, the homoscedastic model dis-
plays a larger number of false positives than the hetero-
scedastic model. Patient 16 was diagnosed with a high
grade tumor in the left temporal lobe. The lesion is char-
acterized by a large hyper-perfusion and a surrounding
hypo-perfusion. With a false positive rate of 0.1%, the
hyper-perfusion is correctly located with both methods.
The extent of the hyper-perfusion is however better cov-
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Table 4: Area under the ROC curve for false positive rates ranging between 0% and 10% with the homoscedastic and heteroscedastic models.
The heteroscedastic model outperforms the homoscedastic model.

Homoscedastic model Heteroscedastic model
0 4 6 8 10 12 0 4 6 8 10 12

Area under the ROC curve 0.46 0.49 0.49 0.49 0.48 0.48 0.63 0.70 0.72 0.72 0.69 0.65

Figure 5: Detections of perfusion abnormalities with the homosce-
dastic and heteroscedastic models in a patient suffering from a high
grade glioma. a) T1w-Gd map, the tumor site is pointed by a black

arrow. b) Patient ASL CBF estimate β̂n . c) Within-subject standard
deviation of ASL CBF σ̂2

n . d) T1w-Gd map with ground truth over-
laid. T1w-Gd map with hypo- (blue color-map) and hyper-perfusions
(hot color-map) overlaid for the homoscedastic (e) and heterosce-
dastic (f) models. Modeling heterogeneous variances (heterosce-
dastic model) reduces the false positive detections while preserving
the true detections. Axial slices are displayed in neurological con-
vention.

Figure 6: ROC curves for perfusion abnormality detections with the
homoscedastic and heteroscedastic models. The average ROC curves
across the studied smoothings are plotted in plain line. Dotted lines
are plotted one standard deviation away from the average.

ered by the heteroscedastic model. Patient 6 suffers from a
meningioma partly hyperperfused. Similarly to patient 16,
at a false positive rate of 0.1%, both methods detect the
hyper-perfusion but the heteroscedastic model is clearly

more sensitive.
These 3 cases illustrate the loss of sensitivity of the

homoscedastic model by comparison to the heteroscedastic
model at the same specificity level.

6. Discussion and conclusion

We have compared two approaches to quantitatively
outline patient-specific pathological patterns of abnormal
perfusion in ASL data based on the massively univariate
GLM: the homoscedastic and heteroscedastic models.

We demonstrated that the assumptions underlying the
homoscedastic model are not verified in ASL studies. More
precisely, the within-subject variance cannot be considered
as negligible by comparison to between-subject variance,
nor constant across subjects. In fMRI data, small devi-
ations from homoscedasticity have shown to not overly
alter the results in one-sample mixed-effects GLM anal-
ysis (Mumford and Nichols, 2009). Here, we showed that
modeling heterogeneous within-subject variances is essen-
tial in order to reach a satisfactory level of specificity in
a mixed-effect two-sample t-test comparing a patient to a
group of controls in ASL. These results are in line with a
recent study by Chen et al. (2012) where heteroscedastic
mixed-effects GLM were shown to provide more accurate
results in fMRI.

In the context of this paper, we defined a single pa-
rameter in the subject-level design matrix and focused on
perfusion-weighted images obtained after pair-wise sub-
traction of the control and labeled scans. Other authors
have suggested that taking the complete ASL time-course
into account (before subtraction) would lead to more ef-
ficient estimates of perfusion in fMRI (Mumford et al.,
2006). Also, additional regressors can be introduced as
nuisance covariates for denoising purposes in the subject-
level design matrix as suggested in (Wang, 2012). Modi-
fying the subject-level design matrix would change the es-
timated subject parameters and their sampling variances.
However, an heteroscedastic model would still be appro-
priate in this setting so that the conclusions of this paper
remain valid even with a different subject-level model.

We demonstrated that within-subject variance captures
important information regarding the subject-specific spa-
tial distribution of noise in ASL data. We also outlined
that patient-specific brain perfusion abnormalities can be
correctly detected using ASL if the heterogeneous within-
subject variances are properly modeled. We therefore ad-
vise the use of heteroscedastic models in ASL studies.
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Figure 7: Perfusion abnormalities detections in 3 patients with homoscedastic and heteroscedastic models. From left to right: ground truth
hyper-perfusions (red) and hypo-perfusions (blue) overlaid on the T1w-Gd map; detections with the homoscedastic model with a smoothing
kernel of FWHM = 8 mm3, hyper-perfusions (hot colormap) and hypo-perfusions (blue); detections with the heteroscedastic model with a
smoothing kernel of FWHM = 8 mm3, hyper-perfusions (hot colormap) and hypo-perfusions (blue).
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