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Model composition through model reduction: a
combined model of CD95 and NF-κB signaling
pathways
Elena Kutumova1,2*, Andrei Zinovyev3,4,5, Ruslan Sharipov1,6 and Fedor Kolpakov1,2

Abstract

Background: Many mathematical models characterizing mechanisms of cell fate decisions have been constructed

recently. Their further study may be impossible without development of methods of model composition, which is

complicated by the fact that several models describing the same processes could use different reaction chains or

incomparable sets of parameters. Detailed models not supported by sufficient volume of experimental data suffer

from non-unique choice of parameter values, non-reproducible results, and difficulty of analysis. Thus, it is necessary

to reduce existing models to identify key elements determining their dynamics, and it is also required to design the

methods allowing us to combine them.

Results: Here we propose a new approach to model composition, based on reducing several models to the same

level of complexity and subsequent combining them together. Firstly, we suggest a set of model reduction tools

that can be systematically applied to a given model. Secondly, we suggest a notion of a minimal complexity

model. This model is the simplest one that can be obtained from the original model using these tools and still able

to approximate experimental data. Thirdly, we propose a strategy for composing the reduced models together.

Connection with the detailed model is preserved, which can be advantageous in some applications. A toolbox for

model reduction and composition has been implemented as part of the BioUML software and tested on the

example of integrating two previously published models of the CD95 (APO-1/Fas) signaling pathways. We show

that the reduced models lead to the same dynamical behavior of observable species and the same predictions as

in the precursor models. The composite model is able to recapitulate several experimental datasets which were

used by the authors of the original models to calibrate them separately, but also has new dynamical properties.

Conclusion: Model complexity should be comparable to the complexity of the data used to train the model.

Systematic application of model reduction methods allows implementing this modeling principle and finding

models of minimal complexity compatible with the data. Combining such models is much easier than of precursor

models and leads to new model properties and predictions.

Background
Systems biology aims to study complex interactions in

living systems and focuses on analysis and modeling

their properties. Mathematical modeling provides several

ways to describe biological processes based on experi-

mental information of different kind. However, creation

of detailed models not supported by enough experimen-

tal data often makes their analysis and interpretation dif-

ficult [1]. Several aspects of the same process can be

modeled using different levels of abstraction involving

different reaction chains, chemical kinetics, and incom-

parable sets of parameters. Such models are difficult to

merge. Meanwhile, merging is an important approach

for creation of complex models. Thus, development of

efficient methods and software, allowing us to combine

models, is the object of intense study in systems biology.

In our work, we focused on the fact that, generally, com-

plexity of models is not comparable to the volume of
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experimental data used to adjust their parameters. Due

to this fact, we turn to the methods of model reduction

allowing us to minimize model’s complexity without af-

fecting the model simulation dynamics.

Model reduction is a well-established technique in

many fields of biochemical research and engineering. It

has been used for many years in chemical kinetics (for

reviews, see [2-4]) and has already found multiple appli-

cations in systems biology, including discrete modeling

[5] and modeling of metabolic pathways [6,7]. The prin-

ciples of this technique have been applied in computa-

tional biology [8] and implemented as a part of widely

used pathway simulators such as BioUML [9], BIOCHAM

[10], COPASI [11], and GINsim [12]. Model reduction led

to new insights in mechanisms of translation regulation

by microRNAs [13,14] and was applied for analysis of

such signaling pathways as JAK-STAT [15], NF-κB [16],

and EGFR [17].

In our investigation, we used the principles of model

reduction to construct reasonably accurate minimal size

approximations of two different models describing the

CD95 signaling pathways [18,19]. The first model ex-

plores pro-apoptotic properties of CD95 after stimu-

lation by its natural ligand CD95L or by agonistic

antibodies anti-CD95 implying formation of the death-

inducing signaling complex (DISC) [18,20]. DISC con-

sists of oligomerized CD95, death domain-containing

adaptor FAS-associated molecule (FADD), procaspases-8

and −10, and two isoforms of cellular FLIP (CFLAR)

protein (cFLIP long and cFLIP short). Caspase-8 leads to

activation of effector caspase-3 directly (type I cells) or

via stimulation of cytochrome C release from the mito-

chondria (type II cells) [21]. The latter step requires for-

mation of the apoptosome complex and activation of

caspase-9. Once activated, caspase-3 cleaves poly(ADP-

ribose) polymerase (PARP), thereby making the apop-

totic process irreversible. The second model describes

the state when CD95 not only activates the pro-apoptotic

pathway, but also induces transcription factor NF-κB that

is an important regulator of cell survival functioning [19].

This is possible due to cFLIPL cleavage in the DISC com-

plex. The cleaved p43-FLIP directly interacts with the IKK

complex and activates it. The activated IKK performs

phosphorylation of the IκB protein and thereby frees

NF-κB.

The authors of the models have evaluated concen-

tration changes of major apoptotic molecules by

Western blot analysis and represented them as rela-

tive values at given time points. Using the systematic

methodology [2] implemented in the BioUML soft-

ware, we reduced the models so that they still satisfy

these data. This allowed us to simplify the overlap-

ping components of the models and find a way for

their composition.

Methods
Model reduction

Mathematical modeling of biological processes based on

the classical theory of chemical kinetics assumes that a

model consists of a set of species S = (S1,. . .,Sm) associ-

ated with a set of variables C(t) = (C1(t), . . .,Cm(t)) de-

pending on time t ∈ [0,T],T ∈ R+ and representing their

concentrations, and a set of biochemical reactions with

rates v(t) = (v1(t), . . ., vn(t)) depending on a set of kinetic

constants K. Reaction rates are modeled by mass-action

or Michaelis-Menten kinetics. A system of ordinary dif-

ferential equations (ODE) representing a linear combin-

ation of reaction rates is used to describe the model

behavior over time:

dC tð Þ

dt
¼ N⋅v C;K ; tð Þ;C 0ð Þ ¼ C0: ð1Þ

Here N is a stoichiometric matrix of n by m. We say

that CSS is a steady state of the system (1) if

N⋅v Css;K ; tð Þ ¼ 0; lim
t→1

Ci tð Þ ¼ Css
i : ð2Þ

Model reduction implies transformation of the ODE

system to another one with smaller number of equations

without affecting dynamics of variables C1(t), . . .,Cs(t),

which is fixed by a set of experimental points Ci
exp(tij) at

given times tij, j = 1, . . ., ri, where ri is number of such

points for the concentration Ci(t), i = 1, . . .,s. To check

dynamics preservation in the course of model reduction,

we consider the function of deviations defined as a nor-

malized sum of squared differences [11]:

fdist C0;K
� �

¼
X

s

i¼1

X

ri

j¼1

ωmin

ωi
⋅ Ci tij

� �

� C
exp
i tij

� �� �2
;

ð3Þ

where ωmin ¼ min
i
ωi; weights ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r�1
i ⋅

X

j
C

exp
i tij

� �� �2
q

are calculated as mean squared values of experimental

concentrations for each variable and the normalizing fac-

tor ωmin/ωi is used to make all concentration trajectories

to have similar importance.

Reducing kinetic model is possible when some quan-

tities are much smaller than other quantities and can be

neglected. Usually, this implies some qualitative relations

(much bigger, much smaller) between model parameters.

When these relations satisfy certain rules, we can ap-

proximate the detailed model by a simpler one. If the

parameters are (approximately) determined, as in our

case, we find an approximation specific for a region of

the parameter space. However, if we want to investigate

the model behavior for the entire space, we need to de-

compose it into regions characterized by asymptotically

different behaviors of the dynamical systems. Afterwards,
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a specific reduction should be performed for each region

(Figure 1).

We define the minimal complexity model as a reduced

model with the minimal number of elements (species

and reactions) so that the deviation function value (3)

calculated for the reduced model is different from the

original model no more than 20%. Such threshold is

explained by the fact that in this work we considered ex-

perimental data obtained by Bentele et al. [18] and Neu-

mann et al. [18] using Western blot technology with the

standard deviation 15-20%.

Reduction of mathematical model complexity is

achievable by different methods [2]. Description of the

methods directly used in our work is provided below.

(MR1) Removal of slow reactions. We say that reaction

r1 is much slower than reaction r2; vr1 tð Þ≪vr2 tð Þ if

max
t

vr1 tð Þj j < k⋅max
t

vr2 tð Þj j , where k=10-2. When such

reactions do not affect experimental dynamics of species,

we neglect them. Note, that in some cases, it is sufficient

to consider k = 10−1 or even k = 1.

(MR2) Quasi-steady-state approximation [22] assumes

that all variables C(t) of the model are split in two

groups: basic variables Cs(t) and quasi-stationary vari-

ables Cf(t) for which we could write:

dCs tð Þ

dt
¼ N s

⋅vs C;K ; tð Þ;
dCf tð Þ

dt
¼

1

ε
⋅N f

⋅v f C;K ; tð Þ;

where ɛ is small parameter. We consider the approxima-

tion ɛ→ 0 resulting in the equation N f
⋅ v f(C, K, t) = 0.

Thus, the chain of reactions S→ I→ P with a quasi-

stationary species I can be reduced to the form S→ P.

(MR3) Lumping analysis refers to reducing the num-

ber of model variables by grouping some species. In par-

ticular, this can be illustrated by reactions

r1 : Aþ S1→P1; r2 : Aþ S2→P2 ð4Þ

with kinetic rates vr1 tð Þ ¼ k1⋅CA tð Þ⋅CS1 tð Þ and vr2 tð Þ ¼
k2⋅CA tð Þ⋅CS2 tð Þ . If k1 = k2 and CS1 tð Þ ¼ CS2 tð Þ , then the

system (4) can be replaced by a single reaction

2Aþ S→P;

where CS tð Þ ¼ CS1 tð Þ ¼ CS2 tð Þ , CP tð Þ ¼ CP1 tð Þ ¼ CP2 tð Þ
and k = k1 = k2. Note, that in this example lumped vari-

ables CS1 tð Þ , CS2 tð Þ and CP1 tð Þ , CP2 tð Þ are linearly

dependent: however, this is not required in general case.

For conditions on lumpability in monomolecular reac-

tion networks, see [23].

(MR4) Removal of approximately linearly dependent

variables. If variables A(t) and B(t) (species concentra-

tions or reaction rates of the model) are approximately

linearly dependent:

A tð Þ≈ k⋅B tð Þ; t ∈ 0;T½ �; k ¼ const;

then we can replace one of them with another in all kin-

etic laws of the model.

(MR5) Simplification of the Michaelis-Menten kinetics.

Consider a reaction r of the form S –E → P, where

an enzyme E converts a substrate S into product P.

Figure 1 Schematic representation of the model reduction technique. A model consisting of four species (A, B, C, and D) and two reactions

(r1 and r2) was reduced taking into account the relations between time-dependent concentrations CA(t) and CB(t), as well as reaction rates vr1(t)

and vr2(t). In the case when CA(t)≫ CB(t), the concentration of A can be considered constant for some period of time. The same simplification

could be applied to B. If vr1(t) ≈ vr2(t), then C could be removed, resulting in direct formation of D triggered by the binding of A and B only.
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Reaction rate of such reaction is frequently defined by

the Michaelis-Menten formula

vr tð Þ ¼
k⋅CS tð Þ⋅CE tð Þ

Kmþ CS tð Þ
ð5Þ

where the enzyme concentration is a dynamic variable

allowing to use the same kinetics in different regions

of the phase space. If Km≫ CS(t), then we can reduce

this formula to the form: vr tð Þ ¼ k⋅CS tð Þ⋅CE tð Þ
Km . On the other

hand, if CS(t)≫ Km, then (5) can be replaced by the

equation vr(t) = k ⋅CE(t).

(MR6) Simplification of equations based on the law of

mass action when one reactant dominates others. Con-

sider a reaction r of the form S1 + S2→ P with the kin-

etic law

vr tð Þ ¼ k⋅CS1 tð Þ⋅CS2 tð Þ: ð6Þ

When CS1 tð Þ≫CS2 tð Þ for t ∈ [0,T], the formula (6) can

be replaced by the linear equation vr tð Þ ¼
k⋅CS1 0ð Þ⋅CS2 tð Þ . The time T of validity of such pseudo-

lineary approximation is defined as a period during

which the relative change of CS1 tð Þ does not exceed

some ε, i.e. k

Z T

0

CS2 tð Þdt < ε.

One way to perform the model reduction is to apply

the foregoing methods in the numerical order (Figure 2).

Note that the methods MR5 and MR6 are of the same

type, so it does not matter which one to use first. This

way assumes that we calculate the value of the distance

function (3) at each reduction step to test whether ap-

proximation of the experimental data is still within al-

lowable limit or not.

Model analysis and comparison

Model comparison using Akaike information criterion

(AIC). This criterion [24] defines the relative complexity

of a model based on the goodness of experimental data

fit and the number of model parameters |K| (initial con-

centrations of species are not considered):

AIC ¼ χ2 þ 2⋅ Kj j: ð7Þ

The function χ
2 is defined by the formula (3) with

weights 1/σij
2 (instead of ωmin/ωi) [15], where mean devi-

ations σij of experimental values Ci
exp(tij) are calculated

using smoothing spline [25]:

σ2ij ¼
1

4

X

2

k¼�2

Ci ti;jþk

� �

� C
exp
i ti;jþk

� �� �2
:

For j + k < 0 and j + k > ri we assumed Ci(ti,j+k) = Ci
exp

(ti,j+k) = 0.

Models can be compared using the Akaike criterion, if

they approximate the same experimental data. When the

AIC value of one model is less than of others, we say

that this model is simpler in terms of this criterion.

Model comparison with the mean AIC. When we want

to compare models approximating different sets of ex-

perimental data, we could calculate the mean AIC coeffi-

cients by the formula

AICmean ¼
AIC

nexp
ð8Þ

where nexp determines the number of experimental

points.

Steady-state analysis finds values of species concentra-

tions according to the rules (2). It is desirable to reduce

a model so that steady-state concentrations of all experi-

mentally measured chemical species have not changed

significantly.

Sensitivity analysis reveals steady-state concentrations

response to parameter perturbations. The local sensitiv-

ities Ci
ss, i = 1, . . .,m, for all parameters pj, j = 1, . . ., |K|,

are calculated via finite difference approximations:

Sij ¼
∂Css

i

∂pj
¼

Css
i pj þ Δpj
� �

� Css
i pj
� �

Δpj

It is useful to compute the mean log sensitivity for all

fitted species:

Smean ¼

X

i;j
ln Sij
�

�

�

�

np⋅s
; Sij≠0; i ¼ 1; . . . ; s; j ¼ 1; . . . ; np; ð9Þ

where np is the number of all parameters |K| or the num-

ber of parameters retained after the model reduction.

Figure 2 Flow chart of the model reduction. The methods of

model reduction are presented in the order of their application. The

last two methods are of the same type, so this is a choice of the

systems biologist which one to use first.
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Modular modeling

Considering the mathematical models of CD95 signaling

pathways [18,19], we decomposed them into functional

modules. This step allowed us to identify overlapping

components of the models and simplify their analysis.

We defined a module as a submodel (including several

species, reactions and parameters of the model) with in-

put, output and contact ports. The first two types of

ports characterized variables calculated in one module

and passed to another through a directed connection.

The contact ports declared common variables of mod-

ules via undirected connections (for more details of

modular modeling, see [26]).

Results
Preliminary analysis, problems and inconsistencies in the

precursor models

The mathematical model by Bentele et al. (Figure 3A) con-

sists of 43 species including a virtual variable xaa intended

for quantification of “apoptotic activity” caused by active

caspases-3, -6 and -7 and calculated by the formula

dxaa

dt
¼

1� xaað Þ⋅ k36act⋅Ccasp3 þ k36act⋅Ccasp6 þ k7act⋅Ccasp7

� �

Km367act þ 1� xaað Þ
� kdd⋅xaa;

ð10Þ

where k36act, k7act, Km367act ∈ K. The variable xaa specifies

a process of degradation in the model introduced as an ex-

ponential decay function fdegr(xaa). This function is defined

by the formula kd ⋅ xaa
2 + kds with kd,kds ∈ K for all active

caspases and complexes containing their cleaved products,

and by the formula kd ⋅ xaa
2 for all other molecules besides

cPARP (cleaved PARP), where fdegr(xaa) is constant. All

species in the model are degraded with the exception of

cytochrome C and Smac stored in the mitochondria,

whose concentrations are constant.

In total, the model contains 80 reactions (Table 1) includ-

ing 24 reactions based on mass action kinetics, 12 reactions

taken with kinetics of Michaelis-Menten, 41 reactions of

degradation, the reaction of xaa production specified above

and two reactions of cytochrome C and Smac release from

the mitochondria modeled using a discrete event. The lat-

ter implies complete cytochrome C and Smac release

within 7 minutes as soon as tBid reaches a certain level in

comparison to Bcl-2/Bcl-XL. Since the authors did not pro-

vide exact form of the release function, we proposed the

sigmoid function which has the expected behavior:

frelease tð Þ ¼ 1�
1

1þ exp kcontr⋅ �t þ ttrigger þ 0:5⋅trelease
� �� �

ð11Þ

where ttrigger is the time when tBid concentration reaches a

value of Bcl-2/Bcl-XL, trelease is the start time of release and

kcontr is the contraction coefficient.

The model comprises 43 species (including xaa) and

45 kinetic parameters, which the authors estimated

based on the experimental data obtained by Western

blot analysis for the human cell line SKW 6.4. Cells were

stimulated by 5 μg/ml and 200 ng/ml of anti-CD95

(fast and reduced activation scenarios, respectively)

and dynamics of several proteins (Bid, tBid, PARP,

cPARP, procaspases-2, -3, -7, -8, -9, cleaved pro-

duct of procaspase-8 p43/p41, and caspases-8) were

measured.

We could not reproduce the dynamics of the original

model using the parameter values provided by the au-

thors. In particular, there was too rapid consumption of

procaspases-2, -3, -7, -8 in the case of 5 μg/ml of anti-

CD95 and procaspases-2, -9 in the case of 200 ng/ml.

Degradation rates of procaspase-8 and caspases-8 was

insufficient for both activation scenarios. Thus, we had

to make several modifications of the original model to

obtain the same dynamics as described in the original

paper. Namely, we multiplied the rate constants of all

the bimolecular reactions by the value 5∙ 10-5 and speci-

fied kd equal to 3.56 min-1 and 0.62 min-1 (instead of

0.891 min-1 and 0.184 min-1) for fast and reduced activa-

tion scenarios, respectively.

The model by Neumann et al. includes 23 species, 23

reactions constructed according to the law of mass ac-

tion, and 17 kinetic parameters (Figure 4A). It repro-

duces experimental measurements of 8 entities (total

amount of procaspase-8, its cleaved product p43/p41,

caspase-8, procaspase-3, caspase-3, IκB-α, phosphory-

lated IκB-α and cleaved p43-FLIP) obtained using West-

ern blot technology for HeLa cells stably overexpressing

CD95–GFP and treated with three different concentra-

tions of agonistic anti-CD95 antibodies (1500, 500 and

250 ng/ml). This is the reduced model suggested by the

authors for description of the CD95-mediated pathways

of cell death and NF-κB activation. Model reduction was

based on intuition about what is important in the bio-

chemical mechanisms. It was performed as long as the

parameter estimation procedure (repeated after each

step of the reduction) was able to provide a good fit of

the experimental data. Particularly, the details of some

complex formations were omitted as well as some non-

measured species were removed. The authors submitted

the model to the BioModels database [27]. Thus, we had

no problems reproducing it.

Reduction of the CD95-signaling model

We started the Bentele’s model reduction by excluding

the direct dependence of the virtual species xaa on

caspases-6 and -7. For this purpose, we approximated

the amount of caspases-7 by the linear function of

caspase-3 concentration:
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Figure 3 The model by Bentele et al. and results of its reduction. A. The original model decomposed into modules according to three steps

of apoptosis: activation of caspases-8 and -9 and inactivation of PARP. The species retained after the model reduction are colored. B. The modular

view of the model. The dashed connections were deleted during the model reduction. C. The minimal reduced model. D. The graphical notation

used for representation of the models A-C.
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Table 1 Summary of reactions from the original model by Bentele et al. and the reduced model

Original model Reduced model

№ Reactions (Kinetics) Rates
(nM/min)

№ Reactions (Kinetics)

Activation of caspase-8 induced by CD95

br1 CD95L + CD95R → СD95R:СD95L (MA) 101/100 br1* CD95L → DISC (kLR ⋅ CCD95R ⋅ CCD95L, CCD95R
is determined by the formula (14))

br2 FADD + СD95R:СD95L → DISC (MA) 101/100

br3 pro8 + DISC → DISC:pro8 (MA) 100/10-1

br4 pro8 + DISC:pro8 → DISC:pro82 (MA) 100/10-1

br5 DISC:pro82 → DISC:p43/p41 (MA) 100/10-1 br2* pro8 –DISC → casp8 (kDISC_pro8 ⋅ Cpro8 ⋅
CDISC)br6 DISC:p43/p41 → casp8 + DISC (MA) 100/10-1

Activation of caspase-8 by caspase-3

br7 pro6 -casp3 → casp6 (M-M) 100/10-1 br3* pro8 –casp3 → casp8 (k38 ⋅ Ccasp3)

br8 pro8 -casp6 → casp8 (M-M) 10-1/100

Inhibition of the DISC complex

br9 DISC + cFLIPL → DISC:cFLIPL (MA) 101/100 br4* cFLIP + 2⋅DISC + pro8 → DISC:FLIP:pro8
(kDISC_FLIP ⋅ CFLIP ⋅ CDISC)br10 pro8 + DISC:cFLIPL → DISC:cFLIPL:pro8 (MA) 100

br11 DISC + cFLIPS → blocked DISC (MA) 101/100

br12 DISC:pro8 + cFLIPL → DISC:cFLIPL:pro8 (MA) 10-2/10-3 br5* DISC:FLIP:pro8 → p43/p41
(kDFp8 ⋅ CDISC:FLIP:pro8)br13 DISC:pro8 + cFLIPS → blocked DISC (MA) 10-2/10-3

br14 DISC:cFLIPL:pro8 → p43/p41 + blocked DISC (MA) 10-1

Activation of caspase-9 triggered by cytochrome C

br15 Cyt C stored → Cyt C (frelease(t)⋅CCytCstored) 102 br6* pro9 → cleavage (the formula (16))

br16 Apaf-1 + Cyt C → Cyt C:Apaf-1 (MA) 102

br17 Cyt C:Apaf-1 → Apaf-1 + Cyt C (MA) 101

br18 pro9 + Cyt C:Apaf → Apop (MA) 100

br19 Apop -casp3 → casp9 + Cyt C:Apaf-1 100

(M-M)

br20 Apop → casp9 + Cyt C:Apaf-1 (MA) 10-2

Activation of Bid

br21 pro2 –casp3 → casp2 (M-M) 100 br7* Bid –casp8 → tBid ( k8Bid
Km8Bid

⋅Ccasp8⋅CBid )

br22 Bid –casp8 → tBid (M-M) 100

br23 Bid –casp2 → tBid (M-M) 10-1/100 br8* pro2 –casp3 → cleavage (
k32⋅Ccasp3⋅Cpro2
Cpro2þKm32

)

Blocking of IAP by Smac

br24 Smac stored → Smac (frelease(t)⋅CSmac stored) 102 –

br25 Smac + IAP → IAP:Smac (MA) 10-5

br26 IAP:Smac → Smac + IAP (MA) 10-5

Activation of caspases-3 and −7

br27 pro3 –casp8 → casp3 (M-M) 101/100 br9* pro3 –casp8 → casp3 (M-M)

br28 pro3 –casp9 → casp3 (M-M) 10-3/100

br29 pro7 –casp8 → casp7 (M-M) 100/10-1 br10* pro7 –casp8→ cleavage ( k78
Km78

⋅Ccasp8⋅Cpro7)

br30 pro7 –casp9 → casp7 (M-M) 10-5/10-3

PARP inactivation

br31 PARP -casp3 → cPARP (М-М) 10-1 br11* PARP -casp3 → cPARP

( k3act
Km367act

⋅Ccasp3⋅CPARP)br32 PARP –casp7 → cPARP (М-М) 100/10-1
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Ccasp7≈ a⋅Ccasp3; ð12Þ

where a = 0.18 for both activation scenarios. In addition,

we considered inequalities holding for the parameters in

the formula (10):

k7act⋅Ccasp7≫k36act⋅Ccasp3 > k36act⋅Ccasp6;

Km367act≫1� xaa;

and simplified it:

dxaa

dt
¼

k36act þ 0:18⋅k7actð Þ

Km367act
⋅ 1� xaað Þ⋅Ccasp3 � kdd⋅xaa:

ð13Þ

After that we decomposed the model into modules

(Figure 3B) corresponding to three biological steps: acti-

vation of caspase-8, cytochrome C-induced activation of

caspase-9 and PARP cleavage down-regulated by these

caspases.

Below we provide detailed description of the reduction

process of all modules. The process is based on the flow

chart represented in the Figure 2. If it is enough for a

reader to have a general idea of model reduction without

going into full details, we suggest to go directly to the

last two paragraphs of this section, where you find the

summary of the model reduction procedure.

Caspase-8 activation module includes 20 species and

14 reactions (besides the reactions of degradation),

which could be divided into three groups: cleavage of

procaspase-8 at the DISC complex, its activation trig-

gered by caspase-3, and inhibition of complexes

containing DISC by cFLIPL and cFLIPS (Table 1,

Figure 3A, reactions br1-br14).

Firstly, we eliminated slow reactions br12 and br13

according to the method MR1. Next, we applied the

quasi-steady-state analysis (MR2) to the module and re-

moved quasi-stationary intermediates CD95R:CD95L,

DISC:pro8, DISC:pro82, DISC:p43/p41 and DISC:

cFLIPL. Thus, in particular, we got two main reactions

instead of br1-br6: fast formation of the DISC complex

(Table 1, Figure 3B, br1*) and slower activation of

caspase-8 in this complex (br2*).

Further, we noticed that the consumptions of cFLIPL

and cFLIPS satisfied the same kinetic laws. Therefore,

these species could be lumped (MR3) resulting in the re-

action br4*:

cFLIP + 2∙ DISC + pro8 → cFLIP:DISC:pro8,

where cFLIP indicated two isoforms cFLIPL and cFLIPS

so that CcFLIP =CcFLIPL =CcFLIPS.

We approximated the concentration of caspase-6 by

the linear function b ⋅ Ccasp3, b = 0.145 (MR4), and

merged reactions br7 and br8 of caspases-8 activation

induced by caspases-3 and mediated by caspases-6 into

one reaction br3*:

pro8 –casp3 → casp8.

Since the reaction br8 followed the Michaelis-Menten

kinetics with the constants k68 and Km68, then the reac-

tion rate of br3* was provided by the kinetic law

vbr3� ¼ k38⋅Cpro8⋅Ccasp3= Km38 þ Cpro8

� �

;

where k38 = 0.145 ⋅ k68 and Km38 = Km68. Analysis of

this kinetic law for low level of CD95L ensured that

Cpro8 ≫ Km38. In addition, in the case of the fast activa-

tion scenario the value of vbr3* was much lower than the

rate of caspase-8 activation mediated by CD95. Thus, we

established vbr3* = k38⋅Ccasp3 without significant changes

in the results of the model simulation (MR1, MR5).

Complementing the above reduction steps, we re-

moved the elements that were unnecessary to fit the ex-

perimental dynamics provided by Bentele et al. These

elements were degradation reactions of CD95L, CD95R

Table 1 Summary of reactions from the original model by Bentele et al. and the reduced model (Continued)

Inhibition of caspases-3, -7 and −9

br33 casp3 + IAP → casp3:IAP (МA) 100 br12* casp3 + IAP → inhibition (MA)

br34 casp7 + IAP → casp7:IAP (МA) 10-1

br35 casp9 + IAP → casp9:IAP (МA) 10-3

br36 casp3:IAP → casp3 + IAP (МA) 10-2

br37 casp7:IAP → casp7 + IAP (МA) 10-4/10-3

br38 casp9:IAP → casp9 + IAP (МA) 10-5/10-4

Production of the virtual variable xaa

br39 → xaa (1 − xaa/Km367act + (1 − xaa) ⋅ (k36act ⋅ Ccasp3 + k36act ⋅ Ccasp6 + k7act ⋅
Ccasp7))

100 br13* → xaa (
k36actþ0:18⋅k7act

Km367act
⋅ 1� xaað Þ⋅Ccasp3)

Prototypes of parameter notations in the original Bentele’s model are listed in Additional file 1: Table 1S. Abbreviations used in the table represent МA – mass action

kinetics and M-M – Michaelis-Menten kinetics. The column with rates includes rate orders for the fast/reduced activation scenarios.
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Figure 4 The original model by Neumann et al. and results of the model reduction. A. The original model decomposed into modules

according to three steps of the CD95 signaling pathways: activation of caspase-8, pro-apoptotic pathway resulting in caspase-3 activation and

anti-apoptotic pathway regulated by NF-κB. The species retained during the model reduction are colored; reactions are represented by solid lines.

B. The modular view of the model. Activation of caspase-8 and p43-FLIP (product of cFLIPL cleavage) occurs at the DISC complex and triggers

simultaneous processes of cell death and survival.

Kutumova et al. BMC Systems Biology 2013, 7:13 Page 9 of 21

http://www.biomedcentral.com/1752-0509/7/13



and FLIP, and the blocked DISC complex (inactivated

DISC). As a result, we introduced the conservation law:

CCD95L–CCD95R ¼ L0–R0 ¼ const;
where L0 and R0 denote initial concentrations of the ligand

and receptor, respectively. Solving the differential equation

dCCD95R

dt
¼ �kLR⋅CCD95R⋅CCD95L;

we obtained the analytical function for the receptor con-

centration:

CCD95R ¼
R0 � L0

1� L0=R0⋅ exp �kLR⋅ R0 � L0ð Þ⋅tð Þ
ð14Þ

The module of caspase-9 activation consisted of 19

species and 14 reactions (besides the reactions of deg-

radation) including activation of caspase-9 triggered by

cytochrome C, cleavage/activation of Bid by caspases-2

and -8, IAP inhibition of caspase-9 activity and binding

of inhibitors by Smac (br15-br26, br35, br38). Based on

the method MR1, we eliminated the last two reversible

reactions, as well as the slow reaction br20 of the

apoptosome complex dissociation. Further, since this

complex was a quasi-stationary intermediate and the

rate of br15 was linearly dependent on a difference of

br16 and br17 rates, we reduced the chain of

procaspase-9 activation (br15-br20), using the methods

MR2 and MR4, to the form:

Cyt C stored→Cyt C : Apaf � 1;

pro9–Cyt C : Apaf � 1→casp9

ð15Þ

Accordingly to Bentele et al., we have the following

rule of cytochrome C release from mitochondria:

CCyt C stored ¼ CCyt C stored 0ð Þ⋅frelease tð Þ;

dCCyt C released

dt
¼ �

dCCyt C stored

dt

Here frelease(t) satisfies the formula (11). Taking into

account (15) and ignoring degradation of the complex

Cyt C:Apaf-1, we got

dCCyt C:Apaf�1

dt
¼ �c⋅

dCCyt C stored

dt

where c = 0.59 was the coefficient of linearity.

Then, we noticed that the experimental measurements

of procaspase-9 concentration were presented by Bentele

and his colleagues only for 200 ng/ml of anti-CD95. In

this case, degradation of procaspase-9 was insignificant.

Thus, neglecting it and considering the kinetic law

kApop⋅Cpro9⋅CCytC:Apaf-1 of the second reaction in (15), we

obtained the differential equation of procaspase-9 dy-

namics:

dCpro9

dt
¼ �0:59⋅ 1� frelease tð Þ⋅CCyt C stored 0ð Þ⋅kApop⋅Cpro9

� �

:

Solving it, we found:

Cpro9 ¼ Cpro9 0ð Þ⋅

frelease tð Þ⋅ exp kcontr⋅tð Þ � 1ð Þ þ 1

exp kcontr⋅tð Þ

� �

0:59⋅CCyt C stored 0ð Þ⋅kApop
kcontr

:

ð16Þ

Finally, analyzing reactions of Bid activation (br21-

br23), we removed the slower reaction mediated by

caspase-2. The similar reaction involving caspase-8

followed the Michaelis-Menten kinetics with the constant

Km28Bid≫CBid. Therefore, we redefined the kinetics of

this reaction based on the law of mass action (MR5):

vbr7� ¼ k8Bid=Km8Bid⋅Ccasp8⋅CBid:

The module of PARP inactivation contained 13 species

(including the virtual species xaa) and 11 reactions (ex-

cepting reactions of degradation). Six reactions (activa-

tion of caspases-3 and -7 by caspases-8 and -9, and

cleavage/inactivation of PARP) were based on the

Michaelis-Menten kinetics (br27-br32), four reactions

reproduced the reversible inhibition of caspases-3 and -7

based on the law of mass action (br33, br34, br36, br37),

and one corresponded to the production of xaa (br38),

simplification of which was discussed above.

We deleted slow reactions of casp3:IAP and casp7:IAP

complexes dissociation and ignored slow degradation of

procaspase-7 and IAP. Then analyzing the cleavage of

procaspases-3 and -7, we eliminated reactions triggered

by caspase-9, which were slower in comparison to the

similar reactions induced by caspase-8. For the same

reason we ignored the reaction of PARP inactivation by

caspase-3 (MR1).

Considering the remaining reactions with the

Michaelis-Menten kinetics (br29, br32), we used the fol-

lowing inequalities Km78≫ Cpro7 and Km376act≫ CPARP,

which, in combination with MR5 and (12), led to the fol-

lowing kinetic laws:

vbr29 ¼
k78

Km78
⋅Ccasp8⋅Cpro7;

vbr32 ¼
k3act

Km367act
⋅Ccasp3⋅CPARP;

where k3act = 0.18 ⋅ k7act
Thus, the CD95-signaling model consisting of 43 spe-

cies (including one virtual species), 80 reactions and 45
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kinetic parameters was approximated by a model with

18 species, 26 reactions and 25 parameters, except the

constant concentration of Cytochrome C (Figure 3C).

Figure 5 shows the comparison of simulated concentra-

tions of these models with experimental dynamics

obtained by Bentele et al. for the 11 species mentioned

above. Since this dynamics was expressed in arbitrary

units, we uniquely translated it into precise values for all

proteins with non-zero initial values. However, for such

molecules as caspase-8, p43/p41, tBid and cPARP, pre-

cise values directly depended on the concentration levels

at the end or in the middle of time series. Accordingly,

we computed these levels during the model reduction

and recalculated experimental dots if necessary.

Figure 5 Results of the composite model approximation to the experimental data by Bentele et al. The experimental data (dots) were

obtained by Bentele et al. [17] using Western blot analysis and expressed as relative values. Once simulated values (curves in the figure) were

found for the original Bentele’s model (solid red), the reduced model (dashed black) and the composite model (solid blue), experimental points

were recalculated taking into account these values. Wherever blue or black dots are missing, they coincide with the red dots. Note that

considering the concentration of procaspase-8 in the original model, we observed experimental dynamics for the separate species only, but not

for the total amount as expected from experiments. Thus, validating parameters of the composite model, we evaluated the total amount

of procaspase-8.
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Species without experimental evidence (CD95L, DISC,

cFLIP, DISC:pro8:cFLIP, IAP, caspase-3 and virtual spe-

cies xaa) and reactions br1*-br13* directly affect the sim-

ulated dynamics of the experimentally measured

concentrations (Table 2). Thus, further reduction of the

model by removing these elements is impossible. Re-

garding the degradation process, we agree with Bentele

et al. that experimental data cannot be matched if this

process is fully ignored. Actually, if we remove any of

the retained reactions of degradation, then excepted

concentration dynamics will be impaired. Thus, we

found the minimal complexity approximation of the ori-

ginal model.

Reduction of the CD95-mediated and NF-κB signaling

model

As was mentioned above, Neumann et al. simplified

their model in order to reduce the large number of free

parameters. The authors noted that further simplifica-

tion of the model was not possible because the model fit

significantly decreased. However, we removed slow reac-

tions (nr4, nr11-nr13, Figure 4A) using the method

MR1, and removed the reaction of NF-κB degradation

(nr23), which was not significant for reproducing the ex-

perimental data of the original model. Note that we

retained the slow reactions nr6 and nr7, the former of

which regulates apoptosis inhibition in the case of high

levels of cFLIPL and procaspase-8 in accordance with

the precursor model prediction (see the analysis of the

predictions below), and the latter of which will be

required to combine this model with the Bentele’s model

hereafter.

Based on the method MR6, we also took into account

the inequality CIKK≫ Cp43−FLIP and simplified the kinetic

law

vnr19 ¼ kp43�FLIPIKK
⋅CIKK ⋅Cp43�FLIP

of the reaction nr19 to the form

vnr19� ¼ kp43�FLIPIKK
⋅CIKK 0ð Þ⋅Cp43�FLIP:

Therefore, we reduced the number of model species

from 23 to 20, the number of reactions from 23 to 18

and the number of kinetic parameters from 17 to 15 (be-

sides the constant concentration of IKK). These modifi-

cations did not change the fit to the experimental data

provided by Neumann et al. (Figure 6).

Model composition

Analysis of the reduced models based on the Akaike cri-

terion (7) confirmed that they had lower complexity

than the original models (Table 3). The difference be-

tween the mean AIC coefficients (8) of the models de-

creased by 60%, relative to the initial value. In addition,

the reduced Neumann’s model better approximated ex-

perimental data. Therefore, we used it as the basis for

the model composition.

We took into account that the considered experimen-

tal data were obtained with SKW 6.4 [18] and HeLa [19]

cells, which were shown to behave as type I [21] and

Table 2 The role of species and reactions in the apoptotic process described by the reduced model

Species Reactions The role in the apoptosis process

CD95L br1* Triggering the apoptosis process.

DISC br2* Activation of caspase-8 in the DISC complex. In the case of a high ligand
concentration, DISC is a slow species, so reactions br1* and br2* cannot be combined.

caspase-3 br3* Activation of caspase-8 via the negative-feedback loop. When the concentration
of CD95L is reduced, the rate of br3* is an order of magnitude higher than the rate
of br2*. Thus, activation of caspase-8 is mainly caused by caspase-3.

br8* Cleavage/activation of procaspase-2 is confirmed by the experimental data.

br9* Caspase-3 activation plays a crucial role in the cleavage of procaspases-2, -8 and PARP.

br11* PARP inactivation is confirmed by the experimental measurements of PARP and cPARP
concentrations.

cFLIP br4* Inhibition of the DISC complex. cFLIP blocks the activity of DISC preventing a significant
increase of caspase-8 concentration. This conclusion is consistent with the observations
by Bentele et al. asserting that down-regulation of cFLIP resulted in cell death occurring
already upon low concentration of anti-CD95 (1 ng/ml).

DISC:cFLIP:pro8 br5* Production of blocked p43/p41, whose concentration is detected by the experimental data.

br6*, br7*, br10* Activation of Bid and cleavage of procaspases-7 and −9. These reactions determine
dynamics of the mentioned species in agreement with the experimental data.

IAP br12* Inhibition of caspase-3. In the case of the reduced activation scenario, IAP prevents caspase-3
from reaching a significant level and, therefore, blocks significant increase of caspase-8 due to br3*.

xaa br13* The virtual variable xaa specifies the process of degradation.

“Experimental data” in this table refers to the data obtained by Bentele et al. [17].
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type II [28] cells, respectively. In this regard, we assumed

that:

(A) initial species concentrations could vary for

different cell lines;

(B) kinetic parameters of all reactions (besides the

degradation rate modeled as the function kd · xaa
2 )

have the same values for both cell lines, whereas

the value of kd could be regulated by various

entities and, moreover, is dependent on the initial

concentration of anti-CD95 [18];

(C) type I and type II cells conform to different

reaction chains of caspases-3 activation [21].

We constructed the composite model of CD95 and

NF-κB signaling in the following way. Firstly, according

to the assumption (C), we replaced reaction nr15 in the

Neumann’s model by a chain of three reactions:

Bid–casp8→tBid; pro9–tBid→casp9; pro3–casp9→casp3

ð17Þ

The first reaction of this chain had the same kinetic

law as br7*. The other reactions represented br6* and

nr15 with kinetics modified using the law of mass action.

Such modification of br6* was necessary to get the slow

increase of caspase-3 concentration experimentally de-

scribed by Neumann et al. [19]. Modification of nr15

consisted in substitution of Ccasp9 for Ccasp8 .

Secondly, we supplemented the Neumann’s model

with reaction of caspase-3 inhibition by IAP and

Table 3 Comparison of the investigated models according to Akaike’s information criterion (AIC)

Bentele et al. Neumann et al. Composite
model

Original model Reduced model Original model Reduced model

AIC 182.46 138.83 201.58 198.17 318.10

Mean AIC 1.50 1.14 0.96 0.94 0.96

Figure 6 Comparison of the composite model simulation results with the experimental data by Neumann et al. The simulated

concentrations of the original and reduced models (solid lines), as well as the simulated values of the composite model (dashed lines) were

obtained by Neumann et al. [18] for three different concentrations of anti-CD95: 1500 ng/ml (black), 500 ng/ml (blue), and 250 ng/ml (red). We

did not recalculate the relative experimental data (dots) as in the case of the Bentele’s model due to a slight difference between the results of

the composite and precursor models. An exception was made for values of procaspase-3 and caspase-3, which were normalized for the

composite model by the term 0.1 for convenience of the visual plots comparison.
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evaluated parameters in this reaction together with

parameters in (17) using the corresponding data by

Neumann et al. and optimization tools of BioUML [29].

Thirdly, we analyzed the changes of the initial concen-

trations and parameters of the derived model required

to reproduce the Bentele’s experimental data fixing levels

of procaspases-3, -8, cleaved product p43/p41, and

caspase-8 (Table 4). All the changes, except step 4,

agreed with assumptions (A) and (B). To reproduce the

species dynamics, we had to increase the initial concen-

tration of procaspase-3 in the case of HeLa cells by an

order of magnitude.

Table 4 Modifications of the reduced Neumann’s model to reproduce the experimental data by Bentele et al

Step Changed parameters
and concentrations

Initial values,
modifications

Reason Ranges and initial

values of fitting

1 CD95R:FADD 91.266 nM, increase Case: anti-CD95 = 5 μg/ml Procaspase-8 is cleaved in about 30
minutes. This is possible only if DISC concentration reaches a level
sufficient to accelerate the reaction nr2.

[102, 103], 442.821,
Bentele et al.

2 procaspase-8 64.477 nM, increase Case: anti-CD95 = 5 μg/ml The concentration of caspase-8 should
reach its maxim value in about 20 minutes.

[102, 103], 442.821,
Bentele et al.

3 FLIPS 5.084 nM, increase Case: anti-CD95 = 200 ng/ml As mentioned in Table 2, activation of
caspase-8 is mainly caused by caspase-3 and, therefore, is delayed
approximately for 30 minutes. Since reactions nr2 and nr5 have the
same rates, we cannot observe the delay, but when we reduce the
rate of nr5, we can. The latter is achieved by upregulation of the
DISC:pro8 complex inhibition.

[101, 102], 65.021,
Bentele et al.

4 k10 0.121 nM-1min-1, decrease
by an order of magnitude

Case: anti-CD95 = 200 ng/ml Preventing a rapid growth of caspase-8
concentration.

0.012

5 procaspase-3 1.443 nM, refitting Case: anti-CD95 = 5 μg/ml Improving approximation of the
experimental data by Bentele et al.

[100, 101], 1.443,
Neumann et al.

6 Bid, procaspase-9 5.003 nM, 2.909 nM,
replacement by
Bentele’s values

Case: anti-CD95 = 200 ng/ml Reproducing the experimental dynamics
of procaspase-9.

231.760 (Bid),
245.101 (pro-9),
Bentele et al.

Figure 7 Creation of the composite model. The modules of caspase-8 and NF-κB activation were taken from the reduced Neumann’s model

and combined with the modules of caspase-9 activation and PARP inactivation isolated from the reduced Bentele’s model. In addition, two last

modules were supplemented by reactions from the modified module of caspases-3 activation.
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Finally, we combined the modules of caspase-8 and

NF-κB activation with the modules of caspase-9 acti-

vation and PARP inactivation (Figure 7). For this pur-

pose, we modified the last two modules based on (17)

and refitted their parameters as well as the concentra-

tions mentioned in Table 4, using experimental data

by Bentele et al. For better fit we also supplemented

the model by degradation reactions of some species

(procaspase-9, caspase-9, DISC:pro8 and DISC:pro8:

FLIPS).

The resulting composite model (Figure 8) consists of

30 species (including one virtual species), 38 reactions

(including 15 reactions of the species degradation) and 30

kinetic parameters, except for the constant concentration

Figure 8 The composite model of the CD95- and NF-κB-signaling. A. The model integrating pro- and anti-apoptotic machinery described by

the models by Neumann et al. and Bentele et al. Reactions with the “nr” titles were taken from the first model, while the “br” titles indicate

reactions from the second one. The “*” symbol marks reactions defined in the reduced models. The subscript “m” means that reaction was

modified for the models composition. B. The modular view of the model. Activation of caspase-8 triggered by CD95 leads to NF-κB activation

and cell survival, on the one hand, and PARP cleavage resulted in the cell death, on the other hand.
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of IKK (Additional file 1: Table 2S, Additional file 1: Ta-

ble3S, Additional file 1: Table4S). The model showed a

good fit between the simulation results and the experi-

mental data (Figures 5 and 6).

Calculation of the mean AIC coefficient for this model

revealed that it has the same level of complexity as the

reduced models (Table 3). We also noted that reduction

of both models did not significantly alter the steady-state

concentrations (Additional file 1: Table 5S, Additional

file 1: Table6S). However, the composite model has dif-

ferent steady-states, which are more stable according to

the mean sensitivities (9) in the cases of SKW 6.4 cells

and HeLa cells stimulated with 250 ng/ml of anti-CD95

(Additional file 1: Table 7S).

The reduced models are equivalent to the precursor

models with respect to their biological predictions

Analyzing the models constructed by Neumann et al.

and Bentele et al., we divided predictions made by them

into two groups: qualitative and quantitative. The first

group concerned the model network and described me-

chanisms of the protein-protein interactions. It is this

group to which we assigned the experimentally validated

Neumann's predictions that processed caspases are not

required for NF-κB activation, as well as that pro-

apoptotic and NF-κB pathways diverge already at DISC.

The corresponding network of reactions was preserved

in the reduced model. Thus, the prediction remained

valid.

The second group of predictions characterized behav-

ior of the models after changing concentrations of some

species, such as CD95L, CD95R, procaspase-8, and in-

hibitors cFLIPL, cFLIPS, and IAP. Analyzing the predic-

tions of the models by Neumann et al. and Bentele et al.

listed in the Tables 5 and 6 respectively, we concluded

that the reduction of the first of them did not alter the

species dynamics (Additional file 1: Table 8S). For the

second reduced model, we detected some minor changes

in the predictions. However, in general, the model be-

havior remained in a good agreement with the Bentele's

experiments (Additional file 1: Table 9S).

Model composition modifies some properties of the

precursor models and leads to new predictions

Considering the predictive ability of the composite

model, we found that in the case of HeLa cells it was

completely preserved (Table 5).

In the case of SKW 6.4 cell line, we estimated the

value of degradation rate parameter kd based on the ex-

perimental observations by Bentele et al. for 1–10 ng/ml

of anti-CD95 (Table 6). When performing simulation

experiments of the model for this cell line, we used

three different values of kd depending on whether the

initial concentration of CD95L was within the range

1–100 ng/ml, within the range 100–1000 ng/ml or

greater than 1000 ng/ml (Additional file 1: Table 3S).

Analyzing the model predictions, we detected differ-

ences in the behavior of the Bentele’s and the composite

models (Table 6). The first of them describes a threshold

mechanism for CD95-induced apoptosis implying that

this process is completely stopped when CD95L concen-

tration is below the critical value. However, the model

predicts a sharp increase of cPARP immediately when

the level of CD95L exceeds the threshold (Table 6, № 1).

In contrast, the composite model shows a gradual in-

crease of cPARP with increase of the ligand level. To de-

termine the apoptotic threshold in this case, we found

concentration of CD95L for which cPARP ratio is equal

to 10% of the initial PARP amount [30]. As in the ori-

ginal model, this concentration was in the range of 1–10

ng/ml. Additionally, the models revealed sensitivity of

the threshold to the concentration of cFLIP (Table 6, №

2). Both of them predicted the cell death phenotype

upon stimulation by 1 ng/ml anti-CD95 and the level of

cFLIP decreased by ~50%.

The next prediction, which we observed for SKW 6.4

cells, considers a delay of caspase-8 activation caused by

low concentrations of anti-CD95 (Table 6, № 3). The

maximal delay predicted by the Bentele’s model was

about 2500 min, whereas the composite model detected

a much lower value (700–800 min). Analysis of depend-

ence of caspase-3 concentration on initial values of IAP

and CD95L (Table 6, № 4) also demonstrated differences

in the models’ predictions. Thus, low level of IAP (less

than 1 nM) in the original model results in complete cell

death. However, under the same condition the compos-

ite model shows a smooth increase of caspase-3 levels

with CD95L changing from 0.3 nM to 1000 nM. If the

amount of the ligand is less than 0.3 nM, IAP blocks

apoptosis completely. In addition, the Bentele’s model

predicts that high concentration of IAP prevents a sig-

nificant increase of caspase-3 even for high levels of the

ligand, whereas in the composite model high concentra-

tion of CD95L leads to cell death.

Limitations of the composite model

We analyzed a set of parametric constraints which

allowed us to reduce the precursor models (Additional

file 1: Table 10S). Following them, we can recover a de-

tailed description of the investigated process. Connec-

tion of the composite model with the original model by

Neumann et al. was preserved, whereas with the original

model by Bentele et al. it was partially lost since the

chains of species interactions were changed for the sake

of combining the models together. In particular, the

pathway of caspase-8 activation in DISC was derived

from the Neumann’s model as well as the reaction

chain of procaspase-9 cleavage was modified. However,
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Table 5 Analysis of predictions regarding apoptosis in HeLa cells as formulated by Neumann et al

№ The composite model behavior Predictions by Neumann et al.

1* The concentration of anti-CD95 required for the apoptosis induction (the apoptotic
threshold), is within the range of 30–100 ng/ml. This range remains the same for CD95
decreased by about 12-fold. The simulation time, which we used to reproduce this
prediction, was 60 hours.

2* The decreased receptor number results in impairment of both CD95- and NF-κB-signaling
pathways. To test this prediction, Neumann et al. considered levels of caspases-8 cleavage
and IκB-α degradation for the original (solid lines) amount of CD95 and the amount
decreased by about 12-fold (dashed lines). The concentration of anti-CD95 was 500 ng/ml.

3* Along with increasing the concentration of anti-CD95 from 500 ng/ml to 1500 ng/ml, p43/
p41 peaks earlier, while there is almost no difference for p43-FLIP.

4 Increased concentrations of cFLIPS inhibit both apoptotic and NF-κB pathways, although
p43-FLIP generation is inhibited at a lower threshold than p43/p41 generation.

5* Increasing the concentration of cFLIPL leads to a steep increase in p43-FLIP generation until
it reaches a maximum, after which the curve drops. Lowered levels of cFLIPL result in very
little p43-FLIP but almost unchanged levels of p43/p41.

At very high concentrations of cFLIPL no p43-FLIP is generated. This drop-off was not
observed experimentally by the authors.
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following the constraints of Additional file 1: Table 10S,

we can complete the composite model with such reactions

as Bid truncation by caspase-2 and PARP cleavage trig-

gered by caspase-7. We can also recover the details of

caspase-9 activation mediated by cytochrome C and Smac

release from mitochondria but with altered kinetics of re-

lease. For now, the question of admissibility of such modi-

fications as well as extension of the composite model

based on other apoptosis models remains open and is a

challenge for further research.

Discussion
In this paper, we considered two approaches to develop-

ment of mathematical models of cell fate decisions. The

first concerns the methodology of model reduction and

involves approximation of one model by another one of

lower dimension without affecting dynamics of experi-

mentally measured species. The second implies compos-

ition of the models and aims at reproducing experimental

dynamics of all precursor models.

There are many advantages of working with low-

dimensional models [8]. In particular, the researcher has

a clear vision of the most important biochemical reac-

tions taking place in the modeled system as well as bet-

ter understanding of them. Low-dimensional models are

easier to analyze and faster to simulate. This helps to

save time and enhances productivity. The main limi-

tation of model reduction consists in loss of biological

information. However, it should be noted that even if

some information (for example, about very slow bio-

chemical reactions) may be lost, it can result in a more

clear understanding of the most important interactions

and allows focusing on the decisive processes in the

model, predictive ability of which is reasonably pre-

served. Hence, this limitation can be transformed into

an advantage.

Model composition aiming at getting a single model

from several ones is useful because in such a case a

computational biologist is able to investigate the com-

posite model behavior under different conditions that

cannot be performed in the precursor models separately.

For example, our model allows studying the role of p43-

FLIP or IAP in the type I SKW 6.4 or type II HeLa cells,

respectively, that might become a task for the future

work. In other words, we constructed the model that de-

scribes pro- and anti-apoptotic signal transduction in

different cell types with reasonable accuracy instead of a

couple of different models. Whenever necessary, some

reaction chains and parameters can be switched off giv-

ing opportunity to simulate a certain type of cells. In

addition, the composite model covers experimental data

obtained from all precursor models, each of which sep-

arately satisfies its own data only.

Model composition sometimes causes modification of

some properties of the initial models, resulting in new

testable predictions. In our case, such predictions were

related to SKW 6.4 cells, and some simulation results

were different from the corresponding results of the

Table 5 Analysis of predictions regarding apoptosis in HeLa cells as formulated by Neumann et al (Continued)

6* Only an intermediate level of cFLIPL promotes NF-kB activation. Decreased levels of
procaspase-8 lead to a significantly lower amount of p43-FLIP and, subsequently, NF-κB. The
figures show of logarithmic dependence of the maximal NF-κB concentration on the initial
values of procaspase-8 and cFLIPL

7* High cFLIPL or low procaspase-8 concentrations cause suppression of apoptosis. The figures
show the same dependence as considered in the previous prediction, but with caspases-3
instead of NF-κB.

All the predictions marked with an asterisk were experimentally tested by Neumann et al. and confirmed, unless otherwise noted. The simulation time in

predictions 3–7 was 360 min. The concentration of anti-CD95 considered by the authors in predictions 4–7 was 1000 ng/ml.
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Table 6 Predictions of the models for SKW 6.4 cells

№ The models behavior Experimental observations by Bentele et al. and predictions of the models

1 Experiments by Bentele et al.:

− for 1 ng/ml of anti-CD95, PARP cleavage was not observed;

− the measured death rate for 10 ng/ml of anti-CD95 was 20-30%.

Original model (red):

− the apoptotic threshold is 1.9 ng/ml;

− cPARP concentration rises dramatically within an extremely narrow interval of anti-CD95
levels overcoming the apoptotic threshold.

Composite model (blue):

− the apoptotic threshold is 3.5 ng/ml;

− cPARP concentration rises in a smooth manner along with the increase of anti-CD95 level.

2
Experiments by Bentele et al.: down-regulation of cFLIP in SKW 6.4 cells by addition of
cyclohexamide resulted in cell death (40% for 1 day) already upon 1 ng/ml of anti-CD95.
The level of cFLIP was decreased to 70%.

Original (red) and composite (blue) models:

− the apoptotic threshold is highly sensitive to the concentration of cFLIP;

− decreasing the initial concentration of cFLIP by more than 51% and 49% for the original and
composite models, respectively, leads to cell death upon stimulation by 1 ng/ml of anti-CD95.

3
Experiments by Bentele et al.: in the 10 ng/ml activation scenario, a significant increase of
caspase-8 was observed after more than 4 hours.

Original (red) and composite (blue) models: anti-CD95 concentrations which are slightly
above the apoptotic threshold result in caspase-8 activation after a delay of many hours.

The figure shows peak times of caspase-8 concentration exceeding 0.1% of the initial
procaspase-8 level.

4

Original model:

− low concentrations of IAP (less than 1 nM) result in complete cell death;

− high concentrations of IAP prevent a significant increase of caspase-3 even
for high concentrations of the ligand.

Composite model:

− low concentrations of IAP (less than 1 nM) block apoptosis for CD95L less than 0.3 nM;

− high concentrations of CD95L lead to cell death.

The figures show logarithmic dependence of the maximal caspases-3 concentration
on initial values of IAP and CD95L.

The simulation time was 2880 min (2 days) in all predictions. The apoptotic threshold in the prediction 1 is the concentration of anti-CD95 after which cPARP

amount exceeds 10% of the initial PARP level.
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original Bentele’s model. Nonetheless, the composite

model behavior remained in good agreement with ex-

perimental data used in modeling by Bentele et al.

Thus, the question of what model (original or com-

posite) is more realistic requires further experimental

investigation.

One of the questions that can be asked concerns the

need of reducing models in order to combine them. An

attempt to construct the composite modular model of

apoptosis was made in [26]. This attempt revealed mul-

tiple conceptual and methodological difficulties. The

main obvious obstacles included:

– choice of elements in the overlapping parts of

different models;

– incomparable sets of parameters;

– the lack of experimental data, as well as inability to

use the data obtained for different cell lines or in

different ways (e.g. single-cell or cell culture

measurements);

– inability to make accurate predictions.

Model reduction allows solving some of these prob-

lems. In particular, reducing the number of model ele-

ments, we reduce the overlapping parts as well. This

may be essential for direct combining of models. In

addition, the complexity of the reduced model become

comparable with the complexity of available experimen-

tal data. Therefore, the risk of model overfitting is

decreased.

In the case when two models are directly related (for

example, one model was emerged from the other), their

composition may be significantly easier in comparison

to composition of quite different models. In our work,

the models by Bentele et al. and Neumann et al. are not

directly related, as it could be expected as these models

were constructed in the same research group. For ex-

ample, they use different reaction chains of caspase-8 ac-

tivation and different values of kinetic parameters in the

overlapping reactions.

Another quite useful principle that we used in model-

ing was modular structure of the developed model. This

principle provides flexibility for future extensions. Thus,

we are planning to extend the composite model and

supply it with modules and data from studies of TRAIL

[31-33] and TNF-α [34,35] signaling, apoptosome-

dependent caspase activation [36] and p53 oscillation

system [37]. It is noteworthy that the model by

Laussmann et al. [33], describing TRAIL-induced ac-

tivation of caspase-8, emerged from the original study

by Bentele et al. [18]. This fact may help us in our

future work.

Characterising the models used in our work, we can

say that we saved our time working with the model by

Neumann et al. [19] derived from the BioModels data-

base [27], and spent a lot of time to reproduce the

model by Bentele et al. [18] that had not existed in a

ready-to-use format. Thus, we would like to emphasize

that for the common benefit, the systematic application

of biological standards in modeling (e.g. SBML [38] and

SBGN [39]) and depositing the working models in public

databases (e.g. BioModels [27]) would significantly facili-

tate analysis of existing biomathematical models and

using them as the base for development of new compos-

ite systems.

Finally, we believe that the composite model itself may

be useful for further investigation of apoptosis.

Conclusions
Mathematical modeling provides a powerful tool for

studying the properties of biological processes. Methods

of model reduction allowed us to take a first step to-

wards validation of the modular model of apoptosis [26].

Using these methods, we composed two models describ-

ing pathways of CD95- and NF-κB-signaling in one

without affecting the fit to the experimentally measured

dynamics and model predictions. For the model reduc-

tion and composition, we used the BioUML software

that was extended by the required methods of analysis.

The models by Bentele et al. and Neumann et al.

reconstructed in BioUML and represented using SBML

format and SBGN notation, as well as their reduced and

decomposed versions are available at http://ie.biouml.

org/bioumlweb/#de=databases/The%20composite%20mo

del%20of%20CD95%20and%20NF-kB%20signaling.
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