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Abstract 

 

Given the global prevalence and long-term complications of chronic hepatitis C virus 

(HCV) infection, HCV constitutes one of the greatest challenges to human health of this 

decade. Considerable efforts have focused on the development of new effective 

treatments, but about three to four million individuals become infected each year, 

adding to the world reservoir of HCV infection. The development of a prophylactic 

vaccine against hepatitis C virus has thus become an important medical priority. Only a 

few vaccine candidates have progressed to the clinical phase, and published data on both 

the efficacy and safety of these vaccines are limited, due to many scientific, logistic and 

bioethic challenges. Fortunately, new innovative vaccine formulations, modes of 

vaccination and delivery technologies have been developed in recent years. Several 

preclinical trials of virus-like particle (VLP)-based vaccination strategies are currently 

underway and have already generated very promising results. In this commentary, we 

consider the current state of prophylactic HCV vaccines, the hurdles to be overcome in 

the future and the various VLP-based vaccination approaches currently being 

developed. 

 

 

 

 

 

 

 

 



Beaumont & Roingeard - Human Vaccines & Immunotherapeutics 2013 ; 9 : 1-7.  

                                                                                                                                          Page 3 

Introduction 

 

The hepatitis C virus (HCV) is a major pathogen known to cause chronic liver disease, which 

may progress to cirrhosis and hepatocellular carcinoma. This virus is thus a leading cause of 

liver transplantation in industrialized countries.
1
 Chronic HCV infection is currently a major 

public health problem, affecting approximately 3% of the world population.
2,3

 Moreover, it 

has been estimated that more than 350,000 people die from HCV-related liver disease each 

year, worldwide.
4
  

 Over the last 10 years, it has been shown that progression to severe disease can be 

prevented by treatment with a combination of pegylated interferon (IFN)- and ribavirin. 

However, the efficacy of this treatment is limited, with a sustained virological response rate of 

only 55%, and this treatment is poorly tolerated, often impairing quality of life.
5,6

 Given these 

disappointing results, researchers have focused their efforts in recent years on characterizing 

the multiple steps of the HCV life cycle, with a view to identifying new treatment targets for 

the development of novel antiviral molecules. The standard treatment has, in some cases 

(particularly in patients infected with HCV genotype 1), recently been supplemented with the 

newly approved NS3/4A protease inhibitors, better known as telaprevir and boceprevir.
7
 This 

triple therapy increases sustained response rates, but its use is nonetheless limited by its very 

high cost, potential drug-drug interactions and substantial side effects. 

 Despite these considerable therapeutic advances, it is estimated that world reservoir of 

HCV-infected individuals is increased by three to four million newly infected subjects each 

year. This increase is not limited to developing countries, as the Center for Disease Control 

and Prevention (CDC) has estimated that 18,000 new HCV infections occur each year in the 

USA, corresponding to about one new case every 30 minutes.
8
 The development of safe, 

effective and affordable prophylactic vaccines against HCV has thus become a major medical 
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priority, providing the best long-term hope for controlling the global epidemic, thereby 

decreasing the burden on healthcare systems. However, there are many obstacles to the 

development of vaccines against HCV, including the considerable sequence divergence of the 

HCV RNA genome
9
, leading to the emergence of mutants resistant to the humoral and 

cellular immune responses to infection,
10–12

 and the limited availability of convenient small-

animal models other than the chimpanzee, mimicking HCV infection in humans. Conversely, 

there is encouraging evidence that it might be possible to develop a successful vaccine. A 

subset of acutely infected individuals (15 to 25%) have been shown to eradicate the virus 

spontaneously
13

 and significant levels of natural immunity to HCV have been reported in 

studies of the chimpanzee model of HCV infection
14

 and in studies of reinfections in 

intravenous drug users.
15

 The pessimistic view has also been moderated by advances in our 

understanding of the immunological correlates and mechanisms underlying the successful 

control of viral infection.
16

 Many studies have demonstrated that the development of robust, 

broadly cross-reactive, long-lasting cellular immunity mediated by both CD4
+
 and CD8

+
 T 

cells is associated with the resolution of HCV infection.
17–20

 It is also becoming increasingly 

apparent that such responses alone are not sufficient
21

 and that neutralizing antibodies (NAbs) 

also play an important role in conferring protection and facilitating viral clearance.
22–25

 The 

correlates of protective immunity have not yet been completely elucidated, but it is now 

widely accepted that for a vaccine formulation to provide effective protection against the 

various genotypes and quasispecies of HCV, it must incorporate epitopes from HCV 

structural proteins (core, E1, E2) in their correct three-dimensional conformations, to induce 

the production of high titers of broad NAbs, together with HCV-specific T-cell epitopes from 

HCV nonstructural proteins (NS3, NS4, NS5), to elicit strong cellular responses.
26

  

 The recent development of an efficient system for HCV culture
27

 and the potential 

dangers associated with the use of attenuated HCV particles as a vaccine have led to the 
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development of modern vaccines with different modes of HCV antigen delivery. In recent 

years, several different strategies, including the use of recombinant proteins, virus-like 

particles (VLPs), recombinant nonpathogenic live vectors, and prime-boost approaches, have 

been investigated for use in prophylactic vaccination against HCV, with various degrees of 

success.
28–31

 Some of these vaccine candidates have made it to the clinical phase, but clinical 

data remain scarce and there are still many hurdles slowing the development of these 

approaches. However, several preclinical trials involving VLP-based vaccine candidates are 

currently underway and have already generated very promising results. 

 

Early vaccination strategies based on the recombinant HCV envelope 

glycoproteins E1 and E2  

 

Most of the successful prophylactic vaccines against viruses developed to date are effective 

mostly through the action of NAbs. A prophylactic vaccination strategy based on the use of 

adjuvanted recombinant E1 and E2 viral envelope proteins was, therefore, initially proposed. 

This prophylactic vaccine effectively protected immunized chimpanzees against experimental 

intravenous challenge with the homologous 1a strain.
32,33

 Moreover, additional studies in 

chimpanzees demonstrated that this prophylactic vaccine did not result in sterilizing immunity 

against experimental challenge with a heterologous 1a strain, instead inhibiting disease 

progression to chronic, persistent infection.
33

 As human disease is almost exclusively 

associated with chronic, persistent HCV infection rather than with acute infection, these data 

indicated that a prophylactic vaccine based on the E1-E2 viral envelope proteins might be 

effective at protecting against HCV-associated disease in humans. Furthermore, vaccinated 

chimpanzees have been shown to produce high titers of NAbs against HCV genotype 1a that 

can neutralize the in vitro infectivity of HCV pseudoparticles (HCVpp) and HCV grown in 
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cell culture (HCVcc) containing E1 and E2 envelope proteins derived from various 

genotypes.
34

 These data indicate that this recombinant E1/E2 vaccine can elicit cross-

neutralizing antibodies targeting broadly conserved epitopes within the diverse Hepacivirus 

genus, with no apparent cellular immune response. Based on these encouraging data, a dose-

ranging phase I trial was initiated to explore the safety and immunogenicity of this 

recombinant E1-E2 vaccine, which was found to be well tolerated and immunogenic in 

humans volunteers.
28,35,36

   

 Many other studies have since demonstrated that the resolution of HCV infection is 

mediated largely by the effects of NAbs raised against the HCV E1 and E2 envelope proteins, 

which are exposed on the surface
 
of viral particles.

22,23
 A recent meta-analysis of the 

efficiency of HCV vaccines in chimpanzees also demonstrated that the inclusion of all or part 

of the HCV envelope glycoproteins in vaccines leads to significantly more protective immune 

responses than are obtained with vaccines based on nonstructural proteins.
37

 In addition, 

recent reports of human monoclonal antibodies (mAbs) neutralizing genetically diverse HCV 

isolates and protecting against heterologous HCV quasispecies challenge have validated the 

concept of the use of neutralizing antibodies to prevent HCV infection.
38–41

 

 These data are all very encouraging, but there is a major obstacle hindering the further 

development of this vaccine candidate. The coexpression of the full-length E1 and E2 genes 

has been shown to result in the synthesis of highly mannosylated immature glycoforms with a 

transmembrane domain (TMD) anchoring them in intracellular compartments in the form of a 

large, noncovalently linked heterodimer, making the extraction and purification of these 

proteins extremely difficult and essentially incompatible with industrial development for 

vaccination purposes.
42,43

 These difficulties have led to the development of alternative 

strategies based on the use of truncated E1 and/or E2 proteins, which are then secreted. 

However, such approaches have met with limited success, because the deletion of the TMD of 
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these proteins has been shown to impair their antigenic and functional properties.
44,45

 

 

Promising innovative virus-like particle (VLP)-based vaccination strategies 

 

In the last few years, new vaccination approaches involving the use of VLP-based vaccines 

have thus been developed to improve the delivery system for HCV neutralizing antibody- and 

core-specific T-cell epitopes. This approach is justified by previous reports of convincing 

demonstrations of the efficacy of VLP-based vaccines, particularly for preventing persistent 

infection and associated diseases caused by hepatitis B virus (HBV)
46

 and human 

papillomavirus.
47

 

 The generation of HCV-like particles (HCV-LPs) in insect cells has been described 

and involves the use of a recombinant baculovirus containing the complementary DNA 

(cDNA) encoding the HCV structural proteins.
48

 These HCV-LPs have been shown to have 

morphological, biophysical and antigenic properties similar to those of the putative virions,
49

 

and to be highly immunoreactive when incubated with purified antibodies from the serum of 

patients infected with various HCV genotypes or with various mAbs recognizing 

conformational determinants, suggesting that they contain correctly assembled HCV 

structural proteins.
49,50

 Many studies on baboons and mice have suggested that HCV-LPs are 

potent immunogens for the induction of broad, long-lasting antigen-specific cellular and 

humoral immune responses.
49,51–53

 The efficacy of HCV-LPs has been confirmed in a 

chimpanzee model, in which protective HCV-specific CD4
+
 and CD8

+
 T-cell responses were 

observed.
54

 However, the induction of NAbs by HCV-LPs has yet to be demonstrated in the 

recently developed HCVpp and HCVcc models.
27,55,56

 

 Modern VLP technology has been shown to be advantageous for the development of 

safe and effective vaccines, and VLPs have thus been used as useful platforms for delivering 
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heterologous virus-derived antigens to the immune system.
57

 Recombinant retrovirus-derived 

VLPs formed by the expression of the retroviral Gag protein alone, which can be pseudotyped 

with a wide array of full-length heterologous viral envelope proteins, have thus become a 

versatile and efficient platform for vaccination. It has been shown that HCV E1 and E2 

envelope proteins can be pseudotyped onto murine leukemia virus (MLV)-Gag retroviral core 

particles, to generate chimeric infectious particles (HCVpp) (Figure 1A).
58

 These particles, 

displaying E1 and E2 envelope proteins in the correct conformation and maintaining a 

preferential tropism for hepatic cells, are commonly used to investigate the early events of 

HCV infection and for the neutralization assays now widely used worldwide.
55,59

 More 

recently, retroviral (MLV)-Gag particles pseudotyped for HCV envelope proteins have been 

proposed as a new vaccination platform.
60

 When used in a prime-boost strategy with HCV-

recombinant viral vectors for priming, retroviral particles pseudotyped with E2 and/or E1 

HCV envelope proteins have been shown to induce high titers of anti-E2 and/or anti-E1 

antibodies, and of NAbs, in both mice and macaques.
60

 The NAbs, which were raised against 

genotype 1a HCV, cross-neutralized the five other genotypes tested (1b, 2a, 2b, 4 and 5) in 

vitro. The results of all these studies were encouraging, supporting the development of 

retrovirus-derived VLP-based vaccines, but the multiple-dose regimen required to induce a 

protective immune response nonetheless represents a major difficulty. Moreover, the use of 

animal retroviral particles for the development of a prophylactic vaccine for humans will 

require validation, and the large-scale vaccine manufacturing process may represent a 

bottleneck for the development of vaccines of this type. An alternative approach, overcoming 

the difficult production of such retrovirus-derived VLPs, involves the direct injection of DNA 

plasmids encoding proteins generating retrovirus-derived VLPs (plasma-retroVLPs) into 

mice.
61

 This new genetic vaccination approach has been shown to elicit similar HCV-specific 

immune responses. 
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 The generation of recombinant VLPs by fusing viral antigens of interest to 

heterologous viral structural proteins that can self-assemble into VLPs also constitutes a 

promising approach for the induction of HCV-specific immune responses. In recent years, 

various strategies involving the HBV core (HBc) protein,
62,63

 the small (S) HBV envelope 

protein
64–68

 and the papaya mosaic virus coat protein (PapMV CP),
69

 which have been shown 

to self-assemble into VLPs, have been investigated as prophylactic HCV vaccine candidates, 

with various degrees of success. Many of the immunization assays conducted with such 

chimeric particles indicated that relatively weak antibody and T-cell responses to HCV 

epitopes were elicited, suggesting that the nature of the viral epitopes and the site of fusion 

are determinants of the process of protein assembly into VLPs and of the conformation and 

immunogenicity of the antigen. However, very encouraging data have recently been reported 

for immunization with chimeric HBV-HCV envelope particles (Figure 1B). The HBV S 

protein has been shown to self-assemble into highly immunogenic, noninfectious and secreted 

subviral particles, which have been used worldwide as a safe, commercial hepatitis B vaccine 

since the early 1980s.
46

 The use of these particles as carriers of small foreign viral antigenic 

sequences inserted into the antigenic external hydrophilic loop
64–66,70

 or the N- or C- 

terminus
71,72

 of HBV S has also since been reported. However, the capacity of these chimeric 

proteins to self-assemble into VLPs and the induction of an effective immune response were 

not systematically demonstrated. In efforts to develop an original strategy for incorporating 

the entire HCV E1 and E2 proteins into these particles, a new concept in vaccine design was 

recently developed, based on the use of plasmids encoding chimeric HBV-HCV envelope 

proteins in which the N-terminal TMD of S is replaced with the TMD of E1 or E2.
67

 When 

produced in stably transduced Chinese hamster ovary (CHO) cells, these chimeric HBV-HCV 

envelope proteins were efficiently coassembled with the wild-type S protein into subviral 

secreted particles presenting the full-length E1 and E2 proteins in an appropriate 
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conformation for formation of the E1-E2 heterodimer.
68

 These chimeric particles induced a 

strong specific antibody response to the HCV and HBV envelope proteins in immunized 

rabbits. More importantly, rabbit sera containing anti-E1 and/or anti-E2 antibodies elicited by 

this vaccination strategy had cross-neutralizing properties in vitro against HCVpp and HCVcc 

harboring heterologous HCV envelope proteins derived from strains of genotypes 1a, 1b, 2a 

and 3, highlighting the importance of including both envelope proteins for an effective 

vaccination strategy.
68

 Moreover, the humoral anti-HBs response induced by these particles 

was shown to be equivalent to that observed in animals immunized with a commercial HBV 

vaccine. Further studies are required to increase the broadly neutralizing properties of the 

NAbs induced by this vaccination strategy, and to investigate this specific HCV-neutralizing 

response in different animal models, but the encouraging data generated by this study support 

the development of a bivalent HBV-HCV prophylactic vaccine candidate potentially able to 

prevent initial infection with either of these two hepatotropic viruses. Such a vaccine would 

be of considerable value, because the populations at risk of infection with HBV and HCV 

through exposure to infected blood are essentially the same, in both developed and developing 

countries.
73 

In this context, the induction by HBV-HCV envelope particles of an anti-HBs 

response equivalent to that induced by commercially available HBV vaccines is also 

important, as it suggests that bivalent HBV-HCV vaccines could replace existing vaccines 

against HBV whilst providing the additional benefit of protection against HCV. Another 

major advantage of this approach is that this vaccine candidate could be produced by the same 

procedures established for HBV vaccines, reducing the time and cost of its industrial 

development. 
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Future Perspectives and Conclusions 

 

As many studies in humans and chimpanzees have shown that the effective immune control of 

HCV infection is clearly associated with the establishment of vigorous, sustained and broadly 

directed CD4
+
 and CD8

+
 T-cell responses,

17–20
 the development of prophylactic vaccination 

approaches has been largely based on attempts to enhance the cellular arm of the adaptive 

immune response. In the last few years, many recombinant nonpathogenic live vector-based 

vaccination strategies have thus emerged. In this perspective, a new T-cell HCV genetic 

vaccination strategy based on the use of a target immunogen spanning the HCV nonstructural 

genes NS3-NS5B, a region that contains many well defined CD4
+
 and CD8

+
 epitopes, has 

been developed in the form of recombinant replication-deficient human adenovirus constructs 

or plasmid DNA.
74

 The use of this vaccination approach in a multiple prime-boost regimen 

has been shown to protect chimpanzees against progression to chronic infection after 

challenge with a heterologous HCV virus, due to the induction of broadly reactive, sustained 

and vigorous HCV-specific CD4
+
 and CD8

+
 T cell-mediated immunity. Despite the promising 

results obtained with this strategy, the adenoviral vectors were shown to suffer from the 

limitation that adenoviral infection is common in humans, and preexisting high-titer anti-

vector NAbs may interfere with the immunological potency of such vaccines. Attempts have 

been made to overcome this obstacle and to evaluate the safety and potency of such vaccines 

in healthy volunteers. Phase I clinical trials have been initiated to explore prime-boost 

immunization regimens involving the use of two adenoviral vectors based on rare serotypes 

expressing the HCV NS3-NS5B gene cassette.
75

 This vaccination approach has been shown to 

be highly immunogenic in humans, with the induction of robust, cross-rective and sustained 

CD4
+
 and CD8

+
 T cell-mediated responses, and has also been shown to be safe and well 

tolerated. Thus, HCV vaccine formulations comprising prime-boost heterologous 
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immunization with a recombinant live virus-based vector seem to constitute promising 

approaches for eliciting strong cellular responses with broader ranges of epitopes, with the 

aim of clearing HCV infection. As the resolution of HCV infection is frequently associated 

with the development of robust, cross-reactive and long-lasting cellular immunity and the 

production of NAbs, it would be very interesting to investigate, in a prime-boost regimen, a 

combination of the bivalent HBV-HCV prophylactic vaccine eliciting anti-E1 and anti-E2 

cross-neutralizing antibodies with a vaccine inducing strong cellular immune responses. The 

ultimate goal of these investigations would be the induction of highly protective, long-lasting 

immunity to HCV.  

 In conclusion, promising results for several types of HCV vaccination in clinical trials, 

including adjuvanted recombinant envelope E1⁄E2 proteins and prime⁄boost immunization 

regimens involving the use of recombinant replication-deficient human adenoviruses 

expressing nonstructural genes, suggest that it should be possible to develop vaccines with at 

least partial efficacy against HCV-induced chronic liver disease. In addition, the recently 

developed VLP-based strategies have already proved highly promising for the development of 

HCV vaccine candidates. All these encouraging data suggest that it should be possible to 

develop a prophylactic hepatitis C vaccine in the near future. 
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Figure 1. Virus-like particles constitute potential platforms able to carry full-length HCV E1-

E2 envelope proteins in an appropriate conformation. A: Murine leukemia virus (MLV) 

particles formed by the production of the retroviral Gag protein alone can incorporate HCV 

E1-E2 proteins. B: Hepatitis B virus (HBV) surface protein self-assembles into subviral, 

noninfectious particles, which can be used as an effective hepatitis B vaccine. Similar 

particles can be obtained with chimeric proteins formed by the fusion of the HBV S protein 

with the HCV E1 and/or E2 proteins. Both pseudotyped MLV-like particles and chimeric 

HBV-HCV subviral envelope particles have been shown to induce antibodies cross-

neutralizing various HCV genotypes.  

 

 

 

 

 

 

 


